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Chapter 1: Trigonometric Functions of Angles

In the previous chapters we have explored a variety of functions which could be
combined to form a variety of shapes. In this discussion, one common shape has been
missing: the circle. We already know certain things about the circle, like how to find area
and circumference, and the relationship between radius and diameter, but now, in this
chapter, we explore the circle and its unique features that lead us into the rich world of
trigonometry.

SECHION 1.1 CUICIES .o

SECHON 1.2 ANGIES ..o 17
Section 1.3 Points on Circles Using Sine and COSINE...........cccuvirieieiienenene e 31
Section 1.4 The Other Trigonometric FUNCLIONS ........c.ccoveiviieiieiicic e 43
Section 1.5 Right Triangle TrigonOmMELry ........ccccovieiiieninisieieeee e 53

Section 1.1 Circles

To begin, we need to remember how to find distances. Starting with the Pythagorean
Theorem, which relates the sides of a right triangle, we can find the distance between two
points.

Pythagorean Theorem

The Pythagorean Theorem states that the sum of the squares of the legs of a right
triangle will equal the square of the hypotenuse of the triangle.

In graphical form, given the triangle shown, a* +b* = c*. a &

b

We can use the Pythagorean Theorem to find the distance between two points on a graph.

Example 1
Find the distance between the points (-3, 2) and (2, 5).

By plotting these points on the plane, we can then > /
draw a right triangle with these points at each end 43
of the hypotenuse. We can calculate horizontal 1
width of the triangle to be 5 and the vertical height 27
to be 3. From these we can find the distance It
between the points using the Pythagorean i —
. S5 o4 3 2 A I 2 3 4
Theorem: 4
24

dist? =5% +32 =34
dist = /34

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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Notice that the width of the triangle was calculated using the difference between the x
(input) values of the two points, and the height of the triangle was found using the
difference between the y (output) values of the two points. Generalizing this process
gives us the general distance formula.

Distance Formula
The distance between two points (x,,y,) and (x,,y,) can be calculated as

dist = (%, —%.)? + (¥, - ¥,)°

Try it Now
| 1. Find the distance between the points (1, 6) and (3, -5).

Circles
If we wanted to find an equation to represent a circle with (x, y)
a radius of r centered at a point (h, k), we notice that the
distance between any point (x, y) on the circle and the
center point is always the same: r. Noting this, we can
use our distance formula to write an equation for the
radius:

r=J(x—h)% +(y—k)?

Squaring both sides of the equation gives us the standard equation for a circle.

Equation of a Circle
The equation of a circle centered at the point (h, k) with radius r can be written as

(x=h)? +(y-k)> =r?

Notice that a circle does not pass the vertical line test. It is not possible to write y as a
function of x or vice versa.

Write an equation for a circle centered at the point (-3, 2) with radius 4.

Using the equation from above, h = -3, k = 2, and the radius r = 4. Using these in our
formula,

(Xx—(-3))* +(y—2)* =4° simplified a bit, this gives
(x+3)*+(y—-2)* =16
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Example 3
Write an equation for the circle graphed here. N

This circle is centered at the origin, the point (0, 0). By /;
74

measuring horizontally or vertically from the center out to
the circle, we can see the radius is 3. Using this information

_:i;t--lz-}yijl

in our formula gives: -1
(x—0)% +(y—0)? =32 simplified a bit, this gives M
x> +y*=9 -+

2. Write an equation for a circle centered at (4, -2) with radius 6.

Notice that, relative to a circle centered at the origin, horizontal and vertical shifts of the
circle are revealed in the values of h and k, which are the coordinates for the center of the
circle.

Points on a Circle

As noted earlier, an equation for a circle cannot be written so that y is a function of x or
vice versa. To find coordinates on the circle given only the x or y value, we must solve
algebraically for the unknown values.

xample 4
Find the points on a circle of radius 5 centered at the origin with an x value of 3.

We begin by writing an equation for the circle centered at the origin with a radius of 5.
x> +y>=25

Substituting in the desired x value of 3 gives an equation we can solve fory
32 +y*=25

y>=25-9=16

y = +./16 = +4

There are two points on the circle with an x value of 3: (3, 4) and (3, -4).
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Example 5

Find the x intercepts of a circle with radius 6 centered at the point (2, 4).

We can start by writing an equation for the circle.
(x=2)*+(y-4)*=36

To find the x intercepts, we need to find the points where y = 0. Substituting in zero for
Yy, we can solve for x.

(x—2)*+(0-4)* =36
(x—2)* +16 =36

(x—2)2:20
x—2:i@

X=2++/20 =2+2J5

The x intercepts of the circle are (2 + 2\/3,0) and (2 - 2\/5,0)

xample 6

In a town, Main Street runs east to west, and Meridian Road runs north to south. A
pizza store is located on Meridian 2 miles south of the intersection of Main and
Meridian. If the store advertises that it delivers within a 3 mile radius, how much of
Main Street do they deliver to?

This type of question is one in which introducing a coordinate system and drawing a
picture can help us solve the problem. We could either place the origin at the
intersection of the two streets, or place the origin at the pizza store itself. It is often
easier to work with circles centered at the origin, so we’ll place the origin at the pizza
store, though either approach would work fine.

Placing the origin at the pizza store, the delivery area o
with radius 3 miles can be described as the region inside

the circle described by x* +y? =9. Main Street,

located 2 miles north of the pizza store and running east
to west, can be described by the equationy = 2.

To find the portion of Main Street the store will deliver

to, we first find the boundary of their delivery region by
looking for where the delivery circle intersects Main
Street. To find the intersection, we look for the points

on the circle where y = 2. Substituting y = 2 into the

circle equation lets us solve for the corresponding x values.
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x*+2%=9

x?=9-4=5

X = +/5 ~ +2.236

This means the pizza store will deliver 2.236 miles down Main Street east of Meridian

and 2.236 miles down Main Street west of Meridian. We can conclude that the pizza
store delivers to a 4.472 mile segment of Main St.

In addition to finding where a vertical or horizontal line intersects the circle, we can also
find where an arbitrary line intersects a circle.

Find where the line f(x) = 4x intersects the circle (x—2)* +y* =16.

Normally, to find an intersection of two functions f(x) and g(x) we would solve for the x
value that would make the function equal by solving the equation f(x) = g(x). In the
case of a circle, it isn’t possible to represent the equation as a function, but we can
utilize the same idea. The output value of the line determines the y value:

y = f(x) = 4x. We want the y value of the circle to equal the y value of the line, which
is the output value of the function. To do this, we can substitute the expression for y
from the line into the circle equation.

(x—2)* +y* =16 we replace y with the line formula: y = 4x

(x—2)% +(4x)* =16 expand

x> —4x+4+16x* =16  and simplify

17x* —4x+4=16 since this equation is quadratic, we arrange one side to be 0

17x? —4x-12=0

Since this quadratic doesn’t appear to be easily factorable, we can use the quadratic
formula to solve for x:

(4 £(-4)? -4(1T)(-12) 4+B32
- 2(17) Y

X , or approximately x = 0.966 or -0.731

From these x values we can use either equation to find the corresponding y values.
Since the line equation is easier to evaluate, we might choose to use it:
y = f(0.966) = 4(0.966) = 3.864

y = f(~0.731) = 4(-0.731) = —2.923

The line intersects the circle at the points (0.966, 3.864) and (-0.731, -2.923).
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3. A small radio transmitter broadcasts in a 50 mile radius. If you drive along a straight
line from a city 60 miles north of the transmitter to a second city 70 miles east of the
transmitter, during how much of the drive will you pick up a signal from the
transmitter?

Important Topics of This Section
Distance formula

Equation of a Circle

Finding the x coordinate of a point on the circle given the y coordinate or vice versa
Finding the intersection of a circle and a line

Try it Now Answers
1. 55

2. (x=4)*+(y+2)*=36

2
x? +(60—%x) =507 gives x = 14 or x = 45.29, corresponding to points (14, 48)and
(45.29, 21.18), resulting in a distance of 41.21 miles.
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Section 1.1 Exercises

1.
2
3
4.
5
6
7
8

9.

10.

11.
12.
13.

14.

15.

16.

17.

18.

Find the distance between the points (5,3) and (-1,-5).
Find the distance between the points (3,3) and (-3,-2).

. Write an equation of the circle centered at (8 , -10) with radius 8.

Write an equation of the circle centered at (-9, 9) with radius 16.

. Write an equation of the circle centered at (7, -2) that passes through (-10, 0).
. Write an equation of the circle centered at (3, -7) that passes through (15, 13).
. Write an equation for a circle where the points (2, 6) and (8, 10) lie along a diameter.

. Write an equation for a circle where the points (-3, 3) and (5, 7) lie along a diameter.

Sketch a graph of (x—2)2 +(y+3)2 =9.

Sketch a graph of (x+1)° +(y—2)" =16.

Find the y intercept(s) of the circle with center (2, 3) with radius 3.
Find the x intercept(s) of the circle with center (2, 3) with radius 4.

At what point in the first quadrant does the line with equation y=2x+5 intersect a
circle with radius 3 and center (0, 5)?

At what point in the first quadrant does the line with equation y=x+2 intersect the
circle with radius 6 and center (0, 2)?

At what point in the second quadrant does the line with equation y=2x+5 intersect a
circle with radius 3 and center (-2, 0)?

At what point in the first quadrant does the line with equation y=x+2 intersect the
circle with radius 6 and center (-1,0)?

A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight
line from a city 70 miles north of the transmitter to a second city 74 miles east of the
transmitter, during how much of the drive will you pick up a signal from the
transmitter?

A small radio transmitter broadcasts in a 44 mile radius. If you drive along a straight
line from a city 56 miles south of the transmitter to a second city 53 miles west of the
transmitter, during how much of the drive will you pick up a signal from the
transmitter?



14 Chapter 1

19. A tunnel connecting two portions of a space
station has a circular cross-section of radius 15

feet. Two walkway decks are constructed in the Deck A
tunnel. Deck A is along a horizontal diameter and - - > x-axis
another parallel Deck B is 2 feet below Deck A.

Because the space station is in a weightless . 131 Deck B

environment, you can walk vertically upright
along Deck A, or vertically upside down along ‘
Deck B. You have been assigned to paint “safety
stripes” on each deck level, so that a 6 foot

person can safely walk upright along either deck. /"N Deck A
Determine the width of the “safe walk zone” on i < _>
each deck. [UW] N

(a) Cross-section of tunnel.

Y l:l — Safe walk zone ¥
(b) Walk zones.

20. A crawling tractor sprinkler is

located as pictured here, 100 feet N
south of a sidewalk. Once the water hose

is turned on, the sprinkler waters a
circular disc of radius 20 feet and W E
moves north along the hose at the
rate of %2 inch/second. The hose is
perpendicular to the 10 ft. wide “
sidewalk. Assume there is grass on , |
both sides of the sidewalk. [UW] sidewalk

a) Impose a coordinate system. 7N .
Describe the initial coordinates ‘l\ . /!‘ tractor sprinkler
of the sprinkler and find o
equations of the lines forming and find equations of the lines forming the north
and south boundaries of the sidewalk.
b) When will the water first strike the sidewalk?
c) When will the water from the sprinkler fall completely north of the sidewalk?
d) Find the total amount of time water from the sprinkler falls on the sidewalk.
e) Sketch a picture of the situation after 33 minutes. Draw an accurate picture of the
watered portion of the sidewalk.
f) Find the area of grass watered after one hour.
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21. Erik’s disabled sailboat is floating anchored 3 miles East and 2 miles north of
Kingston. A ferry leaves Kingston heading toward Edmonds at 12 mph. Edmonds is
6 miles due east of Kingston*. After 20 minutes the ferry turns, heading due south.
Ballard is 8 miles south and 1 mile west of Edmonds. Impose coordinates with
Ballard as the origin. [UW]

sailboat —
° /

/[ / /
/ Kingstone, @ Edmonds

/ / North

T Ballard
® f

~ [ UDub
[ ] |

~__

a) Find equations for the lines along which the ferry is moving and draw in these
lines.

b) The sailboat has a radar scope that will detect any object within 3 miles of the
sailboat. Looking down from above, as in the picture, the radar region looks like a
circular disk. The boundary is the “edge” or circle around this disk, the interior is
everything inside of the circle, and the exterior is everything outside of the circle.
Give the mathematical description (an equation or inequality) of the boundary,
interior and exterior of the radar zone. Sketch an accurate picture of the radar
zone by determining where the line connecting Kingston and Edmonds would
cross the radar zone.

c) When does the ferry enter the radar zone?

d) Where and when does the ferry exit the radar zone?

e) How long does the ferry spend inside the radar zone?

! This is not actually true, sorry.
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22. Nora spends part of her summer driving a combine during the wheat harvest. Assume
she starts at the indicated position heading east at 10 ft/sec toward a circular wheat
field of radius 200 ft. The combine cuts a swath 20 feet wide and begins when the
corner of the machine labeled “a” is 60 feet north and 60 feet west of the western-
most edge of the field. [UW]

combine 20 ft
a¥ —

center

wheat field %

a) When does Nora’s combine first start cutting the wheat?

b) When does Nora’s combine first start cutting a swath 20 feet wide?

c) Find the total amount of time wheat is being cut during this pass across the field.
d) Estimate the area of the swath cut during this pass across the field.

23. The vertical cross-section of a drainage ditch is
pictured to the right. Here, R indicates in each
case the radius of a circle with R = 10 feet,
where all of the indicated circle centers lie along
a horizontal line 10 feet above and parallel to
the ditch bottom. Assume that water is flowing
into the ditch so that the level above the bottom
is rising at a rate of 2 inches per minute. [UW]

3D—view of ditch

20 ft ' 20 ft

a) When will the ditch be completely full?

b) Find a piecewise defined function that
models the vertical cross-section of the ditch.

c) What is the width of the filled portion of the ditch after 1 hour and 18 minutes?

d) When will the filled portion of the ditch be 42 feet wide? 50 feet wide? 73 feet
wide?

vertical cross-section
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Section 1.2 Angles

Because many applications involving circles also involve q rotation of the circle, it is
natural to introduce a measure for the rotation, or angle, between two rays (line segments)
emanating from the center of a circle. The angle measurement you are most likely
familiar with is degrees, so we’ll begin there.

Measure of an Angle

The measure of an angle is a measurement between two terminal side
intersecting lines, line segments or rays, starting at the initial side

and ending at the terminal side. It is a rotational measure not a angle
linear measure. initial side

Measuring Angles

A degree is a measurement of angle. One full rotation around the circle is equal to 360
degrees, so one degree is 1/360 of a circle.

An angle measured in degrees should always include the unit “degrees” after the
number, or include the degree symbol °. For example, 90 degrees = 90°.

Standard Position
When measuring angles on a circle, unless otherwise directed, we measure angles in
standard position: starting at the positive horizontal axis and with counter-clockwise
rotation.

Give the degree measure of the angle shown on the circle.

The vertical and horizontal lines divide the circle into quarters. / m

is 360/4 = 90° or 90 degrees.

Since one full rotation is 360 degrees=360°, each quarter rotation \

Show an angle of 30°on the circle.

An angle of 30°is 1/3 of 90°, so by dividing a quarter rotation into /

thirds, we can sketch a line at 30°.
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Going Greek
When representing angles using variables, it is traditional to use Greek letters. Here is a
list of commonly encountered Greek letters.

0 @ or ¢ a p 4
theta phi alpha beta gamma

Working with Angles in Degrees

Notice that since there are 360 degrees in one rotation, an
angle greater than 360 degrees would indicate more than 1
full rotation. Shown on a circle, the resulting direction in
which this angle’s terminal side points would be the same as
for another angle between 0 and 360 degrees. These angles
would be called coterminal.

-
N

Coterminal Angles
After completing their full rotation based on the given angle, two angles are coterminal
if they terminate in the same position, so their terminal sides coincide (point in the same
direction).

xample 3
Find an angle 4 that is coterminal with 800°, where 0° <& < 360°

Since adding or subtracting a full rotation, 360 degrees, would result in an angle with
terminal side pointing in the same direction, we can find coterminal angles by adding or
subtracting 360 degrees. An angle of 800 degrees is coterminal with an angle of 800-
360 = 440 degrees. It would also be coterminal with an angle of 440-360 = 80 degrees.

The angle @ =80°is coterminal with 800°.

By finding the coterminal angle between 0 and 360 degrees, it can be easier to see
which direction the terminal side of an angle points in.

1. Find an angle « that is coterminal with 870°, where 0° <« <360°.

On a number line a positive number is measured to the right and a negative number is
measured in the opposite direction (to the left). Similarly a positive angle is measured
counterclockwise and a negative angle is measured in the opposite direction (clockwise).
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Example 4
Show the angle —45° on the circle and find a positive angle « that is coterminal and
0°<a<360°.

Since 45 degrees is half of 90 degrees, we can start at the

positive horizontal axis and measure clockwise half of a 90 31?\
degree angle. \ _15°
| ¥

Since we can find coterminal angles by adding or subtracting a
full rotation of 360 degrees, we can find a positive coterminal
angle here by adding 360 degrees:

—45° + 360° = 315°

Try it Now
\ 2. Find an angle g coterminal with —300° where 0° < 3 < 360°.

It can be helpful to have a
familiarity with the frequently
encountered angles in one
rotation of a circle. It is common
to encounter multiples of 30, 45, 150°
60, and 90 degrees. These values
are shown to the right.
Memorizing these angles and
understanding their properties
will be very useful as we study
the properties associated with
angles

180°

210°

270°

Angles in Radians

While measuring angles in degrees may be familiar, doing so often complicates matters
since the units of measure can get in the way of calculations. For this reason, another
measure of angles is commonly used. This measure is based on the distance around a
circle.

subtended (drawn out) by an angle . It is the portion of the
circumference between the initial and terminal sides of the angle.

Arclength is the length of an arc, s, along a circle of radius r K re Y
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The length of the arc around an entire circle is called the circumference of a circle. The
circumference of a circle is C=2ar . The ratio of the circumference to the radius,
produces the constant 2z . Regardless of the radius, this ratio is always the same, just as
how the degree measure of an angle is independent of the radius.

To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.
Recall the circumference (perimeter) of a circle is C = 2ar, where r is the radius of the
circle. The smaller circle then has circumference 27(2) = 4 and the larger has

circumference 2z (3) =67 .

Drawing a 45 degree angle on the two circles, we might be
interested in the length of the arc of the circle that the angle
indicates. In both cases, the 45 degree angle draws out an arc that
is 1/8™ of the full circumference, so for the smaller circle, the

arclength = %(47[) = %7[ , and for the larger circle, the length of the
arc or arclength

1 3
:—6 = — .
8( ) 4”

Notice what happens if we find the ratio of the arclength divided by the radius of the
circle:

Smaller circle:

N
N
s

=—7
4
3
Larger circle: 4 _-,
3 4

The ratio is the same regardless of the radius of the circle — it only depends on the angle.
This property allows us to define a measure of the angle based on arclength.

The radian measure of an angle is the ratio of the length of the circular arc subtended
by the angle to the radius of the circle.

In other words, if s is the length of an arc of a circle, and r is the radius of the circle,
then

) S
radian measure = —
r

If the circle has radius 1, then the radian measure corresponds to the length of the arc.



Section 1.2 Angles 21

Because radian measure is the ratio of two lengths, it is a unitless measure. It is not
necessary to write the label “radians” after a radian measure, and if you see an angle that
is not labeled with “degrees” or the degree symbol, you should assume that it is a radian
measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1
rotation equals 360 degrees, 360°. We can also track one rotation around a circle by
finding the circumference, C =2ar, and for the unit circle C =2z . These two different
ways to rotate around a circle give us a way to convert from degrees to radians.

1 rotation = 360° =2 radians

Y rotation = 180° = s radians

Ya rotation = 90°= 7 /2radians

Find the radian measure of one third of a full rotation.

For any circle, the arclength along such a rotation would be one third of the

circumference, C = % (2ar) = %Zr The radian measure would be the arclength divided

by the radius:

Radian measure = ﬂ = 2—7[.
3r 3

Converting Between Radians and Degrees

1 degree = ”_ radians
180

or: to convert from degrees to radians, multiply by z e rle;d(;ims
1 radian = 180 degrees
T
180°

or: to convert from radians to degrees, multiply by ———
7 radians
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Convert % radians to degrees.

. . . . . 180°
Since we are given a problem in radians and we want degrees, we multiply by 80 .
T

Remember radians are a unitless measure, so we don’t need to write “radians.”
180°

T

=30 degrees.

T . T
5 radians = — -

Example 7

Convert 15 degrees to radians.

In this example we start with degrees and want radians so we use the other
conversion ﬁ so that the degree units cancel and we are left with the unitless measure
of radians.

15 degrees = 15°- dd i

180° 12

Try it Now

|

3. Convert % radians to degrees.

Just as we listed all the common
angles in degrees on a circle, we
should also list the corresponding
radian values for the common
measures of a circle
corresponding to degree
multiples of 30, 45, 60, and 90
degrees. As with the degree
measurements, it would be
advisable to commit these to
memory.

We can work with the radian
measures of an angle the same
way we work with degrees.
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Example 8

Find an angle g that is coterminal with 197” where 0< B <27

When working in degrees, we found coterminal angles by adding or subtracting 360
degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding
or subtracting full rotations of 2 radians.

197 197 8z ﬁ

= og=—R 2

4 4 4 4
11r . . i
The angleT is coterminal, but not less than 27, so we subtract another rotation.

117z 11z 87 3«

The angle 37” is coterminal with 19—”.

Try it Now

4. Find an angle ¢ that is coterminal with —17?” where 0< ¢ <27 .

Arclength and Area of a Sector
Recall that the radian measure of an angle was defined as the ratio of the arclength of a

circular arc to the radius of the circle, & =—. From this relationship, we can find
r

arclength along a circle given an angle.

Arclength on a Circle

The length of an arc, s, along a circle of radius r subtended by angle & in radians is
s=ré

Mercury orbits the sun at a distance of approximately 36 million miles. In one Earth
day, it completes 0.0114 rotation around the sun. If the orbit was perfectly circular,
what distance through space would Mercury travel in one Earth day?

To begin, we will need to convert the decimal rotation value to a radian measure. Since
one rotation = 27 radians,
0.0114 rotation = 27(0.0114) =0.0716 radians.
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Combining this with the given radius of 36 million miles, we can find the arclength:
s =(36)(0.0716) = 2.578 million miles travelled through space.

Try it Now
| 5. Find the arclength along a circle of radius 10 subtended by an angle of 215 degrees.

In addition to arclength, we can also use angles to find the area of a sector of a circle. A
sector is a portion of a circle contained between two lines from the center, like a slice of
pizza or pie.

Recall that the area of a circle with radius r can be found using the formula A= zr?. Ifa
sector is cut out by an angle of ¢, measured in radians, then the fraction of full circle that

.0 . . .
angle has cut out is o since 27 is one full rotation. Thus, the area of the sector would

T
be this fraction of the whole area:
2
Area of sector = 9 r? = Orr =1¢9r2
2 27 2

Area of a Sector
The area of a sector of a circle with radius r subtended by an angle
6, measured in radians, is

Area of sector = %m2

&

Example 10
An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees.
What is the area of the sector of grass the sprinkler waters?

First we need to convert the angle measure into radians. Since 30 degrees is one of our
common angles, you ideally should already know the equivalent radian measure, but if
not we can convert:

T T .
30 degrees = 30-—— = — radians.
9 180 6 0 ft

G

The area of the sector is then Area = %(%) (20)? =104.72 ft°
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6. In central pivot irrigation, a large irrigation 7 /
pipe on wheels rotates around a center point, as
pictured here®. A farmer has a central pivot
system with a radius of 400 meters. If water
restrictions only allow her to water 150
thousand square meters a day, what angle
should she set the system to cover?

Linear and Angular Velocity

When your car drives down a road, it makes sense to describe its speed in terms of miles
per hour or meters per second. These are measures of speed along a line, also called
linear velocity. When a point on a circle rotates, we would describe its angular velocity,
or rotational speed, in radians per second, rotations per minute, or degrees per hour.

Angular and Linear Velocity
As a point moves along a circle of radius r, its angular velocity, o, can be found as the
angular rotation @ per unit time, t.

0
w=—
t

The linear velocity, v, of the point can be found as the distance travelled, arclength s,
per unit time, t.

S
V==
t

Example 11
A water wheel completes 1 rotation every 5 seconds. Find the ‘
angular velocity in radians per second.’ i

The wheel completes 1 rotation = 2z radians in 5 seconds, so the

angular velocity would be o = 2?” ~1.257 radians per second. Fﬂ\\

Combining the definitions above with the arclength equation, s=ré&, we can find a
relationship between angular and linear velocities. The angular velocity equation can be
solved for 4, giving &=t . Substituting this into the arclength equation gives
S=ré=rot.

2 http://commons.wikimedia.org/wiki/File:Pivot otech 002.JPG CC-BY-SA
% http://en.wikipedia.org/wiki/File:R%C3%B6mische S%C3%A4gem%C3%BChle.svg CC-BY



http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG
http://en.wikipedia.org/wiki/File:R%C3%B6mische_S%C3%A4gem%C3%BChle.svg
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Substituting this into the linear velocity equation gives

t t

Relationship Between Linear and Angular Velocity
When the angular velocity is measured in radians per unit time, linear velocity and
angular velocity are related by the equation
V=rm

xample 12

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are
rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is travelling
down the road.

Here we have an angular velocity and need to find the corresponding linear velocity,
since the linear speed of the outside of the tires is the speed at which the bicycle travels
down the road.

We begin by converting from rotations per minute to radians per minute. It can be
helpful to utilize the units to make this conversion

180 rotations . 27 radians 360 radians

minute  rotation minute

Using the formula from above along with the radius of the wheels, we can find the
linear velocity

v = (14 inches) (3607; Inches

minute

radians

minute

j =50407

You may be wondering where the “radians” went in this last equation. Remember that
radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear velocity into a more familiar measurement,
like miles per hour.
5040 inches 1 feet 1 mile 60 minutes

d minute '12 inches ' 5280 feet . 1 hour

=14.99 miles per hour (mph).

7. A satellite is rotating around the earth at 27,359 kilometers per hour at an altitude of
242 km above the earth. If the radius of the earth is 6378 kilometers, find the angular
velocity of the satellite.
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[Important Topics of This Section

Degree measure of angle

Radian measure of angle

Conversion between degrees and radians
Common angles in degrees and radians
Coterminal angles

Arclength

Avrea of a sector

Linear and angular velocity

1. o =150°
2. p=60°
3. 126°
4 17
6
2157

o1

~ 37.525

6. 107.43°
7. 4.1328 radians per hour
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Section 1.2 Exercises

1. Indicate each angle on a circle: 30°, 300°, -135°, 70°, 2?” , 77”

2. Indicate each angle on a circle: 30°, 315°, -135°, 80°, %[ , 377[

3. Convert the angle 180° to radians.

4. Convert the angle 30° to radians.

5. Convert the angle 5{ from radians to degrees.

6. Convert the angle MT” from radians to degrees.

7. Find the angle between 0° and 360° that is coterminal with a 685° angle.
8. Find the angle between 0° and 360° that is coterminal with a 451° angle.
9. Find the angle between 0° and 360° that is coterminal with a -1746° angle.

10. Find the angle between 0° and 360° that is coterminal with a -1400° angle.

11. Find the angle between 0 and 27 in radians that is coterminal with the angle 2677[ .

12. Find the angle between 0 and 27 in radians that is coterminal with the angle NTE .

13. Find the angle between 0 and 2= in radians that is coterminal with the angle —37”.

14. Find the angle between 0 and 2n in radians that is coterminal with the angle —% .

15. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of
5 radians.

16. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1
radian.



17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
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On a circle of radius 12 cm, find the length of the arc that subtends a central angle of
120 degrees.

On a circle of radius 9 miles, find the length of the arc that subtends a central angle of
800 degrees.

Find the distance along an arc on the surface of the Earth that subtends a central angle
of 5 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.

Find the distance along an arc on the surface of the Earth that subtends a central angle
of 7 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.

On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3
feet?

On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2
feet?

A sector of a circle has a central angle of 45°. Find the area of the sector if the radius
of the circle is 6 cm.

A sector of a circle has a central angle of 30°. Find the area of the sector if the radius
of the circle is 20 cm.

A truck with 32-in.-diameter wheels is traveling at 60 mi/h. Find the angular speed of
the wheels in rad/min. How many revolutions per minute do the wheels make?

A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h. Find the angular speed
of the wheels in rad/min. How many revolutions per minute do the wheels make?

A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed v, the angular
speed in RPM, and the angular speed in rad/sec?

A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed v, the angular
speed in RPM, and the angular speed in deg/sec?

A CD has diameter of 120 millimeters. When playing audio, the angular speed varies
to keep the linear speed constant where the disc is being read. When reading along
the outer edge of the disc, the angular speed is about 200 RPM (revolutions per
minute). Find the linear speed.

When being burned in a writable CD-R drive, the angular speed of a CD is often
much faster than when playing audio, but the angular speed still varies to keep the
linear speed constant where the disc is being written. When writing along the outer
edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per
minute). Find the linear speed.
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31. You are standing on the equator of the Earth (radius 3960 miles). What is your linear
and angular speed?

32. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution per
hour. [UW]
a) Through how many radians does it turn in 100 minutes?
b) How long does it take the restaurant to rotate through 4 radians?
c) How far does a person sitting by the window move in 100 minutes if the radius of
the restaurant is 21 meters?
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Section 1.3 Points on Circles Using Sine and Cosine

While it is convenient to describe the location of a point on a circle using an angle or a
distance along the circle, relating this information to the x and y coordinates and the circle
equation we explored in Section 5.1 is an important application of trigonometry.

A distress signal is sent from a sailboat during a storm, but the transmission is unclear
and the rescue boat sitting at the marina cannot determine the sailboat’s location. Using
high powered radar, they determine the distress signal is coming from a distance of 20
miles at an angle of 225 degrees from the marina. How many miles east/west and
north/south of the rescue boat is the stranded sailboat?

In a general sense, to investigate this, we begin by
drawing a circle centered at the origin with radius r, (x,y)
and marking the point on the circle indicated by some
angle 6. This point has coordinates (X, y). r

If we drop a line segment vertically down from this 0|
point to the x axis, we would form a right triangle
inside of the circle.

No matter which quadrant our angle & puts us in we

can draw a triangle by dropping a perpendicular line

segment to the x axis, keeping in mind that the values

of x and y may be positive or negative, depending on the quadrant.

Additionally, if the angle 8 puts us on an axis, we simply measure the radius as the x or y
with the other value being 0, again ensuring we have appropriate signs on the coordinates
based on the quadrant.

Triangles obtained from different radii will all be similar triangles, meaning
corresponding sides scale proportionally. While the lengths of the sides may change, the
ratios of the side lengths will always remain constant for any given angle.

To be able to refer to these ratios more easily, we will give them names. Since the ratios
depend on the angle, we will write them as functions of the angle 6.

For the point (x, y) on a circle of radius r at an angle of 8, we
can define two important functions as the ratios of the sides of - (X, y)
the corresponding triangle:

The sine function: sin(8) = Y y
r

The cosine function: cos(8) = X X |
r
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In this chapter, we will explore these functions using both circles and right triangles. In

the next chapter we will take a closer look at the behavior and characteristics of the sine
and cosine functions.

xample 1
The point (3, 4) is on the circle of radius 5 at some angle 6. Find cos(&) and sin( &) .

Knowing the radius of the circle and coordinates of the point, we can evaluate the
cosine and sine functions as the ratio of the sides.

cos(0) =% =2 sin(o) =¥ =2

There are a few cosine and sine values which we can determine fairly easily because the
corresponding point on the circle falls on the x or y axis.

Example 2
Find cos(90°) and sin(90°)

0, 1)

On any circle, the terminal side of a 90 degree angle
points straight up, so the coordinates of the r .
corresponding point on the circle would be (0, ). 90

Using our definitions of cosine and sine,

m«%%:fzgzo

-_

sin(90°) =Y =L 1
r r

1. Find cosine and sine of the angle .

Notice that the definitions above can also be stated as:

Coordinates of the Point on a Circle at a Given Angle

On acircle of radius r at an angle of &, we can find the coordinates of the point (X, y)
at that angle using

X =rcos(0)
y = rsin(6)

On a unit circle, a circle with radius 1, x = cos(€) and y =sin(6).
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Utilizing the basic equation for a circle centered at the origin, x* +y* =r?, combined
with the relationships above, we can establish a new identity.

x> +y?=r? substituting the relations above,
(rcos(0))? + (rsin(8))* =r? simplifying,

r?(cos(€))? +r*(sin(@))> =r? dividing by r?

(cos(0))? + (sin(0))* =1 or using shorthand notation

cos®(0) +sin?(0) =1

Here cos?(#) is a commonly used shorthand notation for (cos(#))?. Be aware that many
calculators and computers do not understand the shorthand notation.

In Section 5.1 we related the Pythagorean Theorem a” +b? = ¢ to the basic equation of
acircle x* +y® =r?, which we have now used to arrive at the Pythagorean Identity.

Pythagorean ldentity

” The Pythagorean ldentity. For any angle 6, cos®(6) +sin’(60) =1.

One use of this identity is that it helps us to find a cosine value of an angle if we know
the sine value of that angle or vice versa. However, since the equation will yield two
possible values, we will need to utilize additional knowledge of the angle to help us find

the desired value.

Example 3

If sin(&) =$ and @ is in the second quadrant, find cos(6) .

Substituting the known value for sine into the Pythagorean identity,
2
cos’(8) + Gj =1

9
cos’ () +—=1
©) 49

cos?®(0) = 0

cos(8) = \/7 710

Since the angle is in the second quadrant, we know the x value of the point would be
negative, so the cosine value should also be negative. Using this additional information,

2J_

we can conclude that cos(d) =—————
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Values for Sine and Cosine
At this point, you may have noticed that we haven’t found any cosine or sine values from
angles not on an axis. To do this, we will need to utilize our knowledge of triangles.

. . . . T —
Fir nsider int on a circle at an angle of 4 r r—. -
st, consider a point on a circle at an angle of 45 degrees, o M X, y) = (X, )
At this angle, the x and y coordinates of the corresponding point
on the circle will be equal because 45 degrees divides the first ! y
quadrant in half. Since the x and y values will be the same, the 45°
sine and cosine values will also be equal. Utilizing the X |
Pythagorean ldentity,
cosz(%} +sin 2(%) =1 since the sine and cosine are equal, we can
substitute sine with cosine
cos?| Z |+ cos?[ Z | =1 add like terms
4 4
Zcosz(zj =1 divide
4
Cosz(%j = % since the x value is positive, we’ll keep the positive root
cos(%j = % often this value is written with a rationalized denominator

Remember, to rationalize the denominator we multiply by a term equivalent to 1 to get
rid of the radical in the denominator.

Since the sine and cosine are equal, sin (%j = g as well.

The (x, y) coordinates for a point on a circle of radius 1 at an angle of 45 degrees are
V2 A2
22 )
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Example 4

Find the coordinates of the point on a circle of radius 6 at an angle of %

Using our new knowledge that sin (%) = g and cos(%j = % , along with our

relationships that stated x = rcos(¢) and y = rsin(#), we can find the coordinates of
the point desired:

X= 6COS(%) = 6(%} =32

y =6sin (%) = 6(%} =32

2. Find the coordinates of the point on a circle of radius 3 at an angle of 90°.

Next, we will find the cosine and sine at an angle of

T . . .
30 degrees, or s To do this, we will first draw a (X, y)

triangle inside a circle with one side at an angle of 30 r
degrees, and another at an angle of -30 degrees. If the 30°
resulting two right triangles are combined into one
large triangle, notice that all three angles of this larger
triangle will be 60 degrees.

Since all the angles are equal, the sides will all be equal as well. The vertical line has
: . r .
length 2y, and since the sides are all equal we can conclude that 2y =r, or y = 7" Using

this, we can find the sine value:

r
Sin E :X:_Zzi.lzl
6 r r 2r 2
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Using the Pythagorean Identity, we can find the cosine value:

cos?| Z | +sin Z(Zj =1
6 6
2
cos?[ Z]+[ L) =1
6 2
cos? % = 3 since the y value is positive, we’ll keep the positive root

4
ofs)- -2

The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are
V31
2 '2)
By drawing a the triangle inside the unit circle with a 30 degree angle and reflecting it

over the line y = x, we can find the cosine and sine for 60 degrees, or % without any

additional work.

Y =X
I,,l E
30° 2
V3
2

By this symmetry, we can see the coordinates of the point on the unit circle at an angle of

60 degrees will be [%g} giving

cos(zj = 1 and sin (EJ = ﬁ
3 2 3

2

We have now found the cosine and sine values for all of the commonly encountered
angles in the first quadrant of the unit circle.

Angl
ngle 0 z,or 30° z,or45° Z,or 60° Z,or 90°
6 4 3 2
Cosine 1 \/g \/5 E 0
2 2 2
Sine 0 1 \/5 Jg 1
2 2 2




Section 1.3 Points on Circles Using Sine and Cosine 37

For any given angle in the first quadrant, there will be an angle in another quadrant with
the same sine value, and yet another angle in yet another quadrant with the same cosine
value. Since the sine value is the y coordinate on the unit circle, the other angle with the
same sine will share the same y value, but have the opposite x value. Likewise, the angle
with the same cosine will share the same x value, but have the opposite y value.

As shown here, angle a has the same sine value as angle #; the cosine values would be
opposites. The angle $ has the same cosine value as the angle; the sine values would be
opposites.

sin(@) =sin(«) and cos(#) = —cos(«) sin(@) = —sin(B) and cos(#) = cos(p)

=™

It is important to notice the relationship between the angles. If, from the angle, you
measured the smallest angle to the horizontal axis, all would have the same measure in
absolute value. We say that all these angles have a reference angle of 6.

Reference Angle
An angle’s reference angle is the size of the
smallest angle to the horizontal axis.

A reference angle is always an angle between 0

and 90 degrees, or 0 and % radians.

Angles share the same cosine and sine values as
their reference angles, except for signs (positive or
negative) which can be determined from the
quadrant of the angle.
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Example 5
Find the reference angle of 150 degrees. Use it to find cos(150°)and sin(150°).

150 degrees is located in the second quadrant. It is 30 degrees short of the horizontal
axis at 180 degrees, so the reference angle is 30 degrees.

This tells us that 150 degrees has the same sine and cosine values as 30 degrees, except

for sign. We know that sin(30°) =% and cos(30°) = g Since 150 degrees is in the

second quadrant, the x coordinate of the point on the circle would be negative, so the
cosine value will be negative. The y coordinate is positive, so the sine value will be
positive.

sin(150°) :% and cos(150°) = —g
The (x, y) coordinates for the point on a unit circle at an angle of 150° are — 5

Using symmetry and reference angles, we can fill in cosine and sine values at the rest of
the special angles on the unit circle. Take time to learn the (X, y) coordinates of all of the
major angles in the first quadrant!

T
90°, =, (0,1
1200,2_”(_3 ﬁj 7 (0 60071(1 3]

2" 2
135° 3_” _ﬁ ﬁ ﬁ ﬁ
42 2 2
150° 5—7[ (——3 1 300,£ [_3 lj
6 22 ] el
°0, (1
180°, 77, (-1,0) 0°,0,(1,0)
360°, 27, (1,0)
1z (B 1
2100'7_”'(_£,_1 330 ?'[7'_Ej
6 2 2
2050 2% —ﬁ _Ne 3150,7—”,(£,_£J
a2 4\ 2 2

sz (1 3
4 1 3 o I et
2400, =, [——, ——\/_J 270°, —3: (0,-1)  300% = ( ! j
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Example 6

Find the coordinates of the point on a circle of radius 12 at an angle of %r :

Note that this angle is in the third quadrant, where both x and y are negative. Keeping
this in mind can help you check your signs of the sine and cosine function.

x=12 cos(%rj = 12(_—;@) - 63

y =12sin (7—7[) = 12(_—1j =—6
6 2

The coordinates of the point are (—6J§ ,—6) .

3. Find the coordinates of the point on a circle of radius 5 at an angle of 5?” .

Example 7
We now have the tools to return to the sailboat question posed at the beginning of this
section.

A distress signal is sent from a sailboat during a N
storm, but the transmission is unclear and the rescue
boat sitting at the marina cannot determine the
sailboat’s location. Using high powered radar, they
determine the distress signal is coming from a
distance of 20 miles at an angle of 225 degrees from
the marina. How many miles east/west and
north/south of the rescue boat is the stranded sailboat?

We can now answer the question by finding the
coordinates of the point on a circle with a radius of 20
miles at an angle of 225 degrees.

-2
2

X = 20c08(225°) = 20( j ~ —14.142 miles

y =20sin(225°) = 20(%} ~ —14.142 miles

The sailboat is located 14.142 miles west and 14.142 miles south of the marina.
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The special values of sine and cosine in the first quadrant are very useful to know, since
knowing them allows you to quickly evaluate the sine and cosine of very common angles
without needing to look at a reference or use your calculator. However, scenarios do
come up where we need to know the sine and cosine of other angles.

To find the cosine and sine of any other angle, we turn to a computer or calculator. Be
aware: most calculators can be set into “degree” or “radian” mode, which tells the
calculator the units for the input value. When you evaluate “cos(30)” on your calculator,
it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the
cosine of 30 radians if the calculator is in radian mode. Most computer software with
cosine and sine functions only operates in radian mode.

Evaluate the cosine of 20 degrees using a calculator or computer.

On a calculator that can be put in degree mode, you can evaluate this directly to be
approximately 0.939693.

On a computer or calculator without degree mode, you would first need to convert the

180

angle to radians, or equivalently evaluate the expression cos(zo ij

Important Topics of This Section
The sine function
The cosine function

Pythagorean Identity

Unit Circle values

Reference angles

Using technology to find points on a circle

Try it Now Answers

1. cos(z)=-1 sin(z)=0

x=3cos(%j:3~0:0

2.
y =3$in(% -3.1=3

2 2

[ﬁﬂ
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Section 1.3 Exercises

1. Find the quadrant in which the terminal point determined by t lies if
a. sin(t) <0 and cos(t) <0 b. sin(t) >0 and cos(t) <0

2. Find the quadrant in which the terminal point determined by t lies if
a. sin(t) <0 and cos(t) >0 b. sin(t) >0 and cos(t) >0

3. The point P is on the unit circle. If the y-coordinate of P is % and P is in quadrant II,

find the x coordinate.

4. The point P is on the unit circle. If the x-coordinate of P is % and P is in quadrant

IV, find the y coordinate.

5. If cos(@):% and ¢ is in the 4™ quadrant, find sin(6).
6. If cos(@):é and @ is in the 1% quadrant, find sin(0).
7. If sin(6) :g and 4 is in the 2" quadrant, find cos(#).

8. If sin(9)= —% and @ is in the 3 quadrant, find cos(@).

9. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
a. 225° b. 300° c. 135° d. 210°

10. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
a. 120° b. 315° c. 250° d. 150°

11. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
51 i 51 3r
a. — b. — c. — d —
4 6 3 4

12. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
A 2 51 i
a. — b. — c. — d —
3 3 6 4
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13. Give exact values for sin (&) and cos(@) for each of these angles.
3r 237 z

a —— b. — C. —— d. 57
4 6 2

14. Give exact values for sin (&) and cos(@) for each of these angles.

a. —2—7[ b. 17—” C. _z d. 10z
3 4 6

15. Find an angle & with 0 <@ <360° or 0< @ < 2z that has the same sine value as:

a. b. 80° c. 140° d. iz e. 305°

w|N

16. Find an angle & with 0 <@ <360° or 0< @ <2z that has the same sine value as:

a =~ b. 15° c. 160° d ' e. 340°

4
17. Find an angle 8 with 0 <@ <360° or 0< & < 2z that has the same cosine value as:

a. % b. 80° c. 140° d. A e. 305°

18. Find an angle 8 with 0 <@ <360° or 0< & < 2z that has the same cosine value as:
a, % b. 15° c. 160° d 1z e. 340°

19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle
of 220°.

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle
of 280°.

21. Marla is running clockwise around a circular track. She runs at a constant speed of 3
meters per second. She takes 46 seconds to complete one lap of the track. From her
starting point, it takes her 12 seconds to reach the northernmost point of the track. Impose
a coordinate system with the center of the track at the origin, and the northernmost point
on the positive y-axis. [UW]

a) Give Marla’s coordinates at her starting point.

b) Give Marla’s coordinates when she has been running for 10 seconds.

c) Give Marla’s coordinates when she has been running for 901.3 seconds.
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Section 1.4 The Other Trigonometric Functions

In the previous section, we defined the sine and cosine functions as ratios of the sides of a
right triangle in a circle. Since the triangle has 3 sides there are 6 possible combinations
of ratios. While the sine and cosine are the two prominent ratios that can be formed,
there are four others, and together they define the 6 trigonometric functions.

Tangent, Secant, Cosecant, and Cotangent Functions

For the point (X, y) on a circle of radius r at an angle of 8, we
can define four additional important functions as the ratios of the — (X, y)
sides of the corresponding triangle: ’
The tangent function: tan(8) = Y ’ y
X
0
The secant function: sec(d) = % X ]

The cosecant function: csc(d) = r
y

The cotangent function: cot(0) = X
y

Geometrically, notice that the definition of tangent corresponds with the slope of the line
segment between the origin (0, 0) and the point (x, y). This relationship can be very
helpful in thinking about tangent values.

You may also notice that the ratios defining the secant, cosecant, and cotangent are the
reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.
Additionally, notice that using our results from the last section,
rsin(@d) sin(@
tan(H):X: (0) _ sin(0)
X rcos(8) cos(@)

Applying this concept to the other trig functions we can state the other reciprocal
identities.

Identities

The other four trigonometric functions can be related back to the sine and cosine
functions using these basic relationships:

sin(6) sec(e):L csc(&):_L cot(0) = 1 _cos(0)

tan(@) = = =—
cos(6) cos(6) sin( 8) tan(@) sin(0)
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These relationships are called identities. Identities are statements that are true for all
values of the input on which they are defined. Identities are usually something that can
be derived from definitions and relationships we already know, similar to how the
identities above were derived from the circle relationships of the six trig functions. The
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and
the definitions of sine and cosine. We will discuss the role of identities more after an
example.

Evaluate tan(45°) and sec[%}.

Since we know the sine and cosine values for these angles, it makes sense to relate the
tangent and secant values back to the sine and cosine values.

tan(45°) = sin(45°) = \/54 =1
cos(45°) /2 4

Notice this result is consistent with our interpretation of the tangent value as the slope
of the line passing through the origin at the given angle: a line at 45 degrees would
indeed have a slope of 1.

—Z . which could also be written as

Sec(s_nj: 11 -2 —2J§_
6 cos(sﬂj _‘/54 £ 3

6

1. Evaluate csc[%[] .

Just as we often need to simplify algebraic expressions, it is often also necessary or
helpful to simplify trigonometric expressions. To do so, we utilize the definitions and
identities we have established.
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Example 2

Simplify :;f—gg.

We can simplify this by rewriting both functions in terms of sine and cosine

sec(0) %

_ (0;5(«9)
tan(¢) sin éos(e)
1

To divide the fractions we could invert and multiply

= C_OS(H cancelling the cosines,
cos(@) sin(9)
= sinl(e) = csc(e) simplifying and using the identity

By showing that sec(0) can be simplified to csc(@), we have, in fact, established a new

tan(6)
identity: that sec(0) =csc(6).
tan(6)

Occasionally a question may ask you to “prove the identity” or “establish the identity.”
This is the same idea as when an algebra book asks a question like “show that

(x—=1)* =x* —2x+1.” In this type of question we must show the algebraic
manipulations that demonstrate that the left and right side of the equation are in fact
equal. You can think of a “prove the identity” problem as a simplification problem where
you know the answer: you know what the end goal of the simplification should be, and
just need to show the steps to get there.

To prove an identity, in most cases you will start with the expression on one side of the
identity and manipulate it using algebra and trigonometric identities until you have
simplified it to the expression on the other side of the equation. Do not treat the identity
like an equation to solve — it isn’t! The proofis establishing if the two expressions are
equal, so we must take care to work with one side at a time rather than applying

an operation simultaneously to both sides of the equation.

Example 3

1+cot(x)

Prove the identity
sc(a)

=sin(a) +cos(«) .

Since the left side seems a bit more complicated, we will start there and simplify the
expression until we obtain the right side. We can use the right side as a guide for what
might be good steps to make. In this case, the left side involves a fraction while the
right side doesn’t, which suggests we should look to see if the fraction can be reduced.
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Additionally, since the right side involves sine and cosine and the left does not, it
suggests that rewriting the cotangent and cosecant using sine and cosine might be a
good idea.

1+ cot(x)
csc(ar)

14 cs)s(a)

- —5|ln(a) To divide the fractions, we invert and multiply

sin(«)

Rewriting the cotangent and cosecant

( cos(a)jsm(a) Distributing,

sin(a) 1
sin(a) cos(a) sin(a)
1 sm(a)' 1
=sin(«a) + cos(cr) Establishing the identity.

=1

Simplifying the fractions,

cos(a)
sin(a)
inverting and multiplying. It is very common when proving or simplifying identities for
there to be more than one way to obtain the same result.

Notice that in the second step, we could have combined the 1 and before

We can also utilize identities we have previously learned, like the Pythagorean Identity,
while simplifying or proving identities.

Example 4

Establish the |dent|ty cos*(0) _ 1-sin(6).
1+sin(0)

Since the left side of the identity is more complicated, it makes sense to start there. To
simplify this, we will have to reduce the fraction, which would require the numerator to
have a factor in common with the denominator. Additionally, we notice that the right
side only involves sine. Both of these suggest that we need to convert the cosine into
something involving sine.

Recall the Pythagorean Identity told us cos?(8) +sin?(6) =1. By moving one of the
trig functions to the other side, we can establish:

sin®(0) =1-cos® () and cos®(0) =1-sin*(0)

Utilizing this, we now can establish the identity. We start on one side and manipulate:
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2
M Utilizing the Pythagorean Identity
1+sin(9)
2
:M Factoring the numerator
1+sin(9)
= (1—5|n (0))_(1+ >IN (0)) Cancelling the like factors
1+sin(9)
=1-sin(0) Establishing the identity

We can also build new identities from previously established identities. For example, if
we divide both sides of the Pythagorean Identity by cosine squared (which is allowed
since we’ve already shown the identity is true),

cos’(9) +sin®(0) 1

5 . Splitting the fraction on the left,
cos“(0) cos“(0)

2 o
0052 () 2 2(0) = 1 Simplifying and using the definitions of tan and sec
cos“(f) cos“(8) cos“(0)

1+ tan®(8) =sec’(0) .

Try it Now

’ 2. Use a similar approach to establish that cot?(€) +1=csc?(6).

Alternate forms of the Pythagorean Identity
1+ tan® (&) =sec®(0)
cot?(8) +1=csc? (6)

Example 5

If tan(6) =§ and @ is in the 3" quadrant, find cos(6).

There are two approaches to this problem, both of which work equally well.

Approach 1
Since tan(6) :% and the angle is in the third quadrant, we can imagine a triangle in a

circle of some radius so that the point on the circle is (-7, -2). Using the Pythagorean
Theorem, we can find the radius of the circle: (=7)2 +(-2)% =r?,s0 r =+/53.
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Now we can find the cosine value:

X =7
cos(f)=—=—=
) " Ts
Approach 2

Using the 1+ tan®(#) =sec®(#) form of the Pythagorean ldentity with the known
tangent value,
1+ tan®(8) =sec®(0)

1+ Gj =sec®(0)

53 )
— =sec” (0
2 9)

9
sec(d) = iwfg = i—ﬁ
49 7

Since the angle is in the third quadrant, the cosine value will be negative so the secant
value will also be negative. Keeping the negative result, and using definition of secant,

sec(d) = —@
1 __ V53 Inverting both sides
cos(60) 7
COS(@) = _L = _@
53 53

3. If sec(p) = —% and %<¢<7r , find tan(¢) and sin(g).

Important Topics of This Section

6 Trigonometric Functions:
Sine
Cosine
Tangent
Cosecant
Secant
Cotangent
Trig identities
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Try it Now Answers
1.-2
2.
cos’(0) +sin*(0) _
sin’@

1

cos’(6) N sin?(9) 1
sin?(0)  sin?(0) sin?(0)

cot?(8) +1=csc?(6)

J40

3. sin(¢)=7 tan(¢) = 4

-3

5
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Section 1.4 Exercises

10.

11.

12.

13.

14.

If 0 :% , find exact values for sec(8),csc(8), tan(8), cot(8) .
If 6= 77” , find exact values for sec(8),csc(8), tan(8), cot(8) .
If 6= 5?” , find exact values for sec(6),csc(8), tan(8), cot(0) .
If 6 :% , find exact values for sec(6),csc(8), tan(8), cot(6).
If 6= 2?” , find exact values for sec(6),csc(8), tan(8), cot(8) .

If 6= 4?” , find exact values for sec(8),csc(8), tan (@), cot(0).

Evaluate: a. sec(135°) b. csc(210°) c. tan(60°) d. cot(225°)

Evaluate: a. sec(30°) b. csc(315°) c. tan(135°) d. cot(150°)

If sin(9)=%, and @ is in quadrant 11, find cos(6), sec(#),csc(8), tan(8), cot(8).
If sin(@):é, and @ is in quadrant 11, find cos(6), sec(®),csc(), tan(6), cot ().

If cos(@):—% ,and @ is in quadrant 111, find
sin(@), sec(8),csc(8), tan(8), cot(8).

If cos(9)=%, and @ is in quadrant I, find sin(&), sec(@),csc(8), tan(0), cot ().
If tan(e):%, and 0s9<%,find sin(6), cos(0),sec(8), csc(0), cot(6).

If tan () =4, and 0£0<%,find sin(6), cos(0),sec(0), csc(0), cot(6).
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15. Use a calculator to find sine, cosine, and tangent of the following values:

a. 0.15 b. 4 c. 70° d. 283°
16. Use a calculator to find sine, cosine, and tangent of the following values:
a.0.5 b.5.2 c. 10° d. 195°

Simplify each of the following to an expression involving a single trig function with no
fractions.

17. csc(t)tan (t)

18. cos(t)csc(t)

19. ——=

20.

21.

22.

23.

24,

25.
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Prove the identities.
sin(0)
" 1+cos(6)

=1-cos(0)

1
28. tan?(t)= —— -1
an™(t) cos’(t)

29. sec(a)—cos(a)=sin(a)tan(a)

30, 1+tan®(b)

=csc’(b)

31.

=cos(x)cot(x)

csc(x)+sin(x)
sin(0)-cos(6) .
32. sec(0)—cso(0) =sin(@)cos(9)
csc (@)=t +sin(a
3 CSCZ(a)—CSC(a)_l ()

34. 1+cot(x) = cos(x)(sec(x)+csc(x))

1+cos(u)  sin(u)

3> sin(u)  1-cos(u)

) 1-sin(t) 1
36 2566 (1) =" i

sin () —cos*(7)

sin(y)—cos(y)
N (1+cos(A))(1-cos(A))
sin(A)

37. =sin(y)+cos(y)

=sin(A)
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Section 1.5 Right Triangle Trigonometry

In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of
a triangle drawn inside a circle, and spent the rest of that section discussing the role of
those functions in finding points on the circle. In this section, we return to the triangle,
and explore the applications of the trigonometric functions to right triangles where circles
may not be involved.

Recall that we defined sine and cosine as — (X, y)
sin(9) = Y

r r

X y
cos(f) = — 0

r S }

Separating the triangle from the circle, we can make equivalent but more general
definitions of the sine, cosine, and tangent on a right triangle. On the right triangle, we
will label the hypotenuse as well as the side opposite the angle and the side adjacent (next
to) the angle.

Right Triangle Relationships

Given a right triangle with an angle of &

sin(0) = opposite
hypotenuse hypotenuse

cos(6) = adjacent opposite
hypotenuse 0
opposite

tan(d) = —— :

(9) adjacent adjacent

A common mnemonic for remembering these relationships is SohCahToa, formed from
the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse,
Tangent is opposite over adjacent.”

Example 1

Given the triangle shown, find the value for cos(«).

The side adjacent to the angle is 15, and the 17
hypotenuse of the triangle is 17, so 8
adjacent 15

hypotenuse T17

cos(a) =

15
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When working with general right triangles, the same rules apply regardless of the
orientation of the triangle. In fact, we can evaluate the sine and cosine of either of the
two acute angles in the triangle.

Adjacent to
Opposite a

Adjacent to o
Opposite f3

Hypotenuse

Example 2

Using the triangle shown, evaluate cos(«),

sin(«), cos(p), and sin(f).

adjacenttoa _ 3

cos(a)=————— =
hypotenuse 5
sin( ) = opposite « _ 4
hypotenuse 5
cos(p) = w = i

hypotenuse 5

. opposite 3
sin(f)=———=—
n(A) hypotenuse 5

1. Arright triangle is drawn with angle « opposite a side with length 33, angle g

opposite a side with length 56, and hypotenuse 65. Find the sine and cosine of «
and 5.

You may have noticed that in the above example that cos(a) = sin(8) and
cos(f) =sin(«). This makes sense since the side opposite « is also adjacent to 5. Since
the three angles in a triangle need to add to m, or 180 degrees, then the other two angles

must add to % or 90 degrees, so S = % —a,and a = %—ﬂ . Since cos(a) =sin( f),

then cos(a) =sin (% - aj :
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Cofunction Identities
The cofunction identities for sine and cosine

. T . T
cos(@) =sin (E - 9j sin(@) = cos(E - 6’)

In the previous examples we evaluated the sine and cosine on triangles where we knew
all three sides of the triangle. Right triangle trigonometry becomes powerful when we
start looking at triangles in which we know an angle but don’t know all the sides.

Example 3
Find the unknown sides of the triangle pictured here.

Since sin(#) = _Opposite ;
hypotenuse
: 7
sSin(30°) = —
(30°) .
From this, we can solve for the side b.
bsin(30°) =7
-
sin(30°)
To obtain a value, we can evaluate the sine and simplify
b= T’ 14

)

To find the value for side a, we could use the cosine, or simply apply the Pythagorean
Theorem:

a’+7%=b’
a’+7?=14°
a=+147

Notice that if we know at least one of the non-right angles of a right triangle and one side,
we can find the rest of the sides and angles.

2. Arright triangle has one angle of % and a hypotenuse of 20. Find the unknown

sides and angles of the triangle.
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Example 4

To find the height of a tree, a person walks to a point 30 feet from the base of the tree,
and measures the angle from the ground to the top of the tree to be 57 degrees. Find the
height of the tree.

We can introduce a variable, h, to represent the height

of the tree. The two sides of the triangle that are most

important to us are the side opposite the angle, the

height of the tree we are looking for, and the adjacent

side, the side we are told is 30 feet long. 57°

The trigonometric function which relates the side 30 feet
opposite of the angle and the side adjacent to the angle
is the tangent.

tan(57°) = Oppﬂ = h Solving for h,
adjacent 30
h =30 tan(57°) Using technology we can approximate a value

h =30tan(57°) ~ 46.2 feet

The tree is approximately 46 feet tall.

xample 5

A person standing on the roof of a 100 foot building is looking towards a skyscraper a

few blocks away, wondering how tall it is. She measures the angle of declination from
the roof of the building to the base of the skyscraper to be 20 degrees and the angle of

inclination to the top of the skyscraper to be 42 degrees.

To approach this problem, it would be
good to start with a picture. Although
we are interested in the height, h, of the
skyscraper, it can be helpful to also label

other unknown quantities in the picture — a
in this case the horizontal distance x h
between the buildings and a, the height 42° “
of the skyscraper above the person. Ty L
. . . 100 ft 100 ft
To start solving this problem, notice we

have two right triangles. In the top
triangle, we know one angle is 42
degrees, but we don’t know any of the sides of the triangle, so we don’t yet know
enough to work with this triangle.
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In the lower right triangle, we know one angle is 20 degrees, and we know the vertical
height measurement of 100 ft. Since we know these two pieces of information, we can
solve for the unknown distance x.

tan(20°) = opposne = 100 Solving for x
adjacent X
x tan(20°) =100
100
X =
tan(20°)

Now that we have found the distance x, we know enough information to solve the top
right triangle.

tan(42°) = OZPOS'tet e
adjacent  x fan(20%)
tan(42°) atan(20°)
100

100 tan(42°) = atan(20°)
100 tan(42°) a
tan(20°)

Approximating a value,
o= 1001N(42%) 47 4 feet
tan(20°)

Adding the height of the first building, we determine that the skyscraper is about 347
feet tall.

Important Topics of This Section
SOH CAH TOA
Cofunction identities
Applications with right triangles

Try it Now Answers

1. sin(«) :g cos(x) :g sin(f) :g cos(p) :g

2. cos(zj _ adpcent _ Ad so, adjacent = 20 cos(z} = 20(1
3 hypoteuse 20 3 2

sin(zj: Opposite__ Opp so, opposite = 20sin Z1=20 ﬁ =10+/3
3 hypoteuse 20 3 2

10

Missing angle = 30 degrees or %
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Section 1.5 Exercises
Note: pictures may not be drawn to scale.

In each of the triangles below, find sin(A),cos(A),tan(A),sec(A),csc(A),cot(A).

10 4

10

In each of the following triangles, solve for the unknown sides and angles.

3. 4,
B C 10 a
7
A o
30° 60
b C
5. 6.
10 a
B c
A 62° ! S
b
7. 8.
LB 12
a
10°
b

9. A 33-ft ladder leans against a building so that the angle between the ground and the
ladder is 80°. How high does the ladder reach up the side of the building?

10. A 23-ft ladder leans against a building so that the angle between the ground and the
ladder is 80°. How high does the ladder reach up the side of the building?



11.

12.

13.

14.

15.

16.

17.

18.

19.
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The angle of elevation to the top of a building in New York is found to be 9 degrees
from the ground at a distance of 1 mile from the base of the building. Using this
information, find the height of the building.

The angle of elevation to the top of a building in Seattle is found to be 2 degrees from
the ground at a distance of 2 miles from the base of the building. Using this
information, find the height of the building.

A radio tower is located 400 feet from a building. From a window in the building, a
person determines that the angle of elevation to the top of the tower is 36° and that
the angle of depression to the bottom of the tower is 23°. How tall is the tower?

A radio tower is located 325 feet from a building. From a window in the building, a
person determines that the angle of elevation to the top of the tower is 43° and that
the angle of depression to the bottom of the tower is 31°. How tall is the tower?

A 200 foot tall monument is located in the distance. From a window in a building, a
person determines that the angle of elevation to the top of the monument is 15° and
that the angle of depression to the bottom of the tower is 2°. How far is the person
from the monument?

A 400 foot tall monument is located in the distance. From a window in a building, a
person determines that the angle of elevation to the top of the monument is 18° and
that the angle of depression to the bottom of the tower is 3°. How far is the person
from the monument?

There is an antenna on the top of a building. From a location 300 feet from the base
of the building, the angle of elevation to the top of the building is measured to be 40°.
From the same location, the angle of elevation to the top of the antenna is measured
to be 43°. Find the height of the antenna.

There is lightning rod on the top of a building. From a location 500 feet from the
base of the building, the angle of elevation to the top of the building is measured to be
36°. From the same location, the angle of elevation to the top of the lightning rod is
measured to be 38°. Find the height of the lightning rod.

Find the length x. 20. Find the length x.

[e]
N

-
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21.

23.

24,

Chapter 1

Find the length x. 22. Find the length x.

115 119

56O 35° 700 260
le— x ———> |« X >

A plane is flying 2000 feet above sea level
toward a mountain. The pilot observes the top of
the mountain to be 18° above the horizontal, then p
immediately flies the plane at an angle of 20° 20000 / ™
above horizontal. The airspeed of the plane is /

100 mph. After 5 minutes, the plane is directly S, -secalevel _ \
above the top of the mountain. How high is the
plane above the top of the mountain (when it passes over)? What is the height of the
mountain? [UW]

Three airplanes depart SeaTac Airport. A Northwest flight is heading in a direction
50° counterclockwise from east, an Alaska flight is heading 115° counterclockwise
from east and a Delta flight is heading 20° clockwise from east. Find the location of
the Northwest flight when it is 20 miles north of SeaTac. Find the location of the
Alaska flight when it is 50 miles west of SeaTac. Find the location of the Delta flight
when it is 30 miles east of SeaTac. [UW]

North x = 30

Alaska

Alaska Northwest
o®

1
1
: Northwest
1
1

West

w - — E

SeaTac

South Delta

(@) The flight paths of three (b) Modeling the paths of each
airplanes. flight.




25.

26.
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The crew of a helicopter needs to

land temporarily in a forest and spot a | = ?_

flat piece of ground (a clearing in the 100 feet /y

forest) as a potential landing site, but A

are uncertain whether it is wide A
enough. They make two
measurements from A (see picture) c CE
finding o = 25° and p = 54°. They | |
rise vertically 100 feet to B and

measure y = 47°. Determine the width of the clearing to the nearest foot. [UW]

‘:‘\1*,3; D

]

clearing

A Forest Service helicopter needs to determine -

the width of a deep canyon. While hovering, s B \

they measure the angle y = 48° at position B iEO;tFEAY

(see picture), then descend 400 feet to position Rt

A and make two measurements: a = 13° (the B g :
measure of £ EAD), = 53° (the measure of C ~E cany{qnf;D
/ CAD). Determine the width of the canyon

to the nearest foot. [UW]
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Chapter 2: Periodic Functions

In the previous chapter, the trigonometric functions were introduced as ratios of sides of a
right triangle, and related to points on a circle. We noticed how the x and y values of the
points did not change with repeated revolutions around the circle by finding coterminal
angles. In this chapter, we will take a closer look at the important characteristics and
applications of these types of functions, and begin solving equations involving them.

Section 2.1 SiNUSOIdal GraphS .........ccviieiieiice e 63
Section 2.2 Graphs of the Other Trig FUNCLIONS ............cooiiiiiiinieicec e 79
Section 2.3 INVerse Trig FUNCHIONS .......c.cciveiiiie e 89
Section 2.4 Solving Trig EQUALIONS ..........coiiiiieieieieiesiese e 97
Section 2.5 Modeling with Trigonometric FUNCLIONS .........ccccveveiieiicc e 107

Section 2.1 Sinusoidal Graphs

The London Eye’ is a huge Ferris wheel with diameter
135 meters (443 feet) in London, England, which
completes one rotation every 30 minutes. When we
look at the behavior of this Ferris wheel it is clear that it
completes 1 cycle, or 1 revolution, and then repeats this
revolution over and over again.

This is an example of a periodic function, because the
Ferris wheel repeats its revolution or one cycle every 30
minutes, and so we say it has a period of 30 minutes.

In this section, we will work to sketch a graph of a
rider’s height above the ground over time and express
this height as a function of time.

Periodic Functions
A periodic function is a function for which a specific horizontal shift, P, results in the
original function: f(x+ P)= f(x) for all values of x. When this occurs we call the

smallest such horizontal shift with P > 0 the period of the function.

You might immediately guess that there is a connection here to finding points on a circle,
since the height above ground would correspond to the y value of a point on the circle.
We can determine the y value by using the sine function. To get a better sense of this
function’s behavior, we can create a table of values we know, and use them to sketch a
graph of the sine and cosine functions.

! London Eye photo by authors, 2010, CC-BY

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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Listing some of the values for sine and cosine on a unit circle,

0 0 Jz |z Jz |z |2z |3 57 |7
6 4 3 2 3 4 6
cos 1 [y [v2 ]2 o | 1 2 | Bl
2 |2 |2 2 | 2 | 2
sn 101 12 [ [T |48 [J2 L]0
2 |2 2 |2 |2

Here you can see how for each angle, we use the y value of the point on the circle to
determine the output value of the sine function.

f(9) = sin(0)
________________ _]f.._-_________

Plotting more points gives the full shape of the sine and cosine functions.

| f(6) = sin(6)

| | | | | | I/ 0

I | |
b 72 72 I

Notice how the sine values are positive between 0 and r, which correspond to the values
of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between =
and 2, corresponding to quadrants 3 and 4.
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g(0) = cos(0)

] ] ] ] | | 0
I l l
32 g 27

Like the sine function we can track the value of the cosine function through the 4
quadrants of the unit circle as we place it on a graph.

Both of these functions are defined for all real numbers, since we can evaluate the sine
and cosine of any angle. By thinking of sine and cosine as coordinates of points on a unit
circle, it becomes clear that the range of both functions must be the interval [-1,1].

Domain and Range of Sine and Cosine
The domain of sine and cosine is all real numbers, (—o,).

The range of sine and cosine is the interval [-1, 1].

Both these graphs are called sinusoidal graphs.

In both graphs, the shape of the graph begins repeating after 2z. Indeed, since any
coterminal angles will have the same sine and cosine values, we could conclude that
sin(@ + 2x) =sin(@) and cos(@ + 2x) = cos(F) .

In other words, if you were to shift either graph horizontally by 2x, the resulting shape
would be identical to the original function. Sinusoidal functions are a specific type of
periodic function.

Period of Sine and Cosine
The periods of the sine and cosine functions are both 2.

Looking at these functions on a domain centered at the vertical axis helps reveal
symmetries.
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sine cosine

The sine function is symmetric about the origin, the same symmetry the cubic function
has, making it an odd function. The cosine function is clearly symmetric about the y axis,
the same symmetry as the quadratic function, making it an even function.

Negative Angle Identities
The sine is an odd function, symmetric about the origin, so sin(—-8) = —sin(6).

The cosine is an even function, symmetric about the y-axis, so cos(—8) = cos(6).

These identities can be used, among other purposes, for helping with simplification and
proving identities.

You may recall the cofunction identity from last chapter; sin( 8) = cos[% - Bj.

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of
each other. We can prove this by using the cofunction identity and the negative angle
identity for cosine.

sin(@) = cos(z — 49} = cos(— 0+ fj = cos(— (6’ — ED = cos(e — Zj
2 2 2 2

Now we can clearly see that if we horizontally shift the cosine function to the right by n/2
we get the sine function.

Remember this shift is not representing the period of the function. It only shows that the
cosine and sine function are transformations of each other.

Example 1

simplify SNC=9).
tan(é)
sin(-0) Using the even/odd identity
tan(@)
—sin(6) Rewriting the tangent
tan(9)
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—sin(9) . o
e, Inverting and multiplying
cos(60)
—sin(9) - CS)S(Q) Simplifying we get
sin( 0)
—cos(6)

Transforming Sine and Cosine

A point rotates around a circle of radius 3. 3l
Sketch a graph of the y coordinate of the
point.

Recall that for a point on a circle of radius r,
the y coordinate of the point is y = rsin(9),
so in this case, we get the

equation y(8) = 3sin(9).

I

3+
The constant 3 causes a vertical stretch of the y values of the function by a factor of 3.

Notice that the period of the function does not change.

Since the outputs of the graph will now oscillate between -3 and 3, we say that the
amplitude of the sine wave is 3.

1. What is the amplitude of the function f (8) = 7cos(€) ? Sketch a graph of this
function.

Example 3

A circle with radius 3 feet is mounted with its center 4
feet off the ground. The point closest to the ground is
labeled P. Sketch a graph of the height above ground of
the point P as the circle is rotated, then find a function
that gives the height in terms of the angle of rotation.
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Sketching the height, we note that it will
start 1 foot above the ground, then increase
up to 7 feet above the ground, and continue
to oscillate 3 feet above and below the
center value of 4 feet.

i I N B

b

Although we could use a transformation of \F
either the sine or cosine function, we start by

looking for characteristics that would make
one function easier to use than the other. G

We decide to use a cosine function because it starts at the highest or lowest value, while
a sine function starts at the middle value. A standard cosine starts at the highest value,
and this graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic
cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in
the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically
shifted up by 4. Putting these transformations together,

h(8) = —3cos(f) + 4

The center value of a sinusoidal function, the value that the function oscillates above
and below, is called the midline of the function, corresponding to a vertical shift.

The function f (8) =cos(€)+k has midline aty = k.

2. What is the midline of the function f (8) = 3cos(¢) —4 ? Sketch a graph of the
function.

To answer the Ferris wheel problem at the beginning of the section, we need to be able to
express our sine and cosine functions at inputs of time. To do so, we will utilize
composition. Since the sine function takes an input of an angle, we will look for a
function that takes time as an input and outputs an angle. If we can find a suitable

@(t) function, then we can compose this with our f (¢) = cos(€) function to obtain a

sinusoidal function of time: f(t) = cos(€(t)).
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Example 4
A point completes 1 revolution every 2 minutes around a circle of radius 5. Find the x
coordinate of the point as a function of time, if it starts at (5, 0).

Normally, we would express the x coordinate of a point on a unit circle
using x = r cos(#) , here we write the function x(8) =5cos(6) .

The rotation rate of 1 revolution every 2 minutes is an angular velocity. We can use this
rate to find a formula for the angle as a function of time. The point begins at an angle
of 0. Since the point rotates 1 revolution 5
. s . x(6)
= 2n radians every 2 minutes, it rotates m 4
radians every minute. After t minutes, it
will have rotated:
@(t) = xt radians

— kg e

Composing this with the cosine function,
we obtain a function of time.
X(t) =5cos(O(t)) = 5cos(xt)

P

Notice that this composition has the effect of a horizontal compression, changing the
period of the function.

To see how the period relates to the stretch or compression coefficient B in the equation
f)= sin(Bt), note that the period will be the time it takes to complete one full
revolution of a circle. If a point takes P minutes to complete 1 revolution, then the

angular velocity is w. Then 6(t) = %Tt . Composing with a sine function,

P minutes

f (t) =sin(4(t)) =sin (%tj

From this, we can determine the relationship between the coefficient B and the period:
2 . . -
B= ?ﬂ Notice that the stretch or compression coefficient B is a ratio of the “normal

period of a sinusoidal function” to the “new period.” If we know the stretch or

i - . 2r
compression coefficient B, we can solve for the “new period”: P = B
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Example 5

What is the period of the function f (t) = sin (%tj ?

Using the relationship above, the stretch/compression factor is B = % so the period

2z _27 _

will be P = 27;-2:12.
B T

7
6

While it is common to compose sine or cosine with functions involving time, the
composition can be done so that the input represents any reasonable quantity.

Example 6

A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked
in red. The wheel then begins rolling down the street. Write a formula for the height
above ground of the red point after the bicycle has travelled x inches.

The height of the point begins at the lowest value, 0, Starting
increases to the highest value of 28 inches, and
continues to oscillate above and below a center height
of 14 inches. In terms of the angle of rotation, 0:

h(6) = —14 cos(f) + 14

In this case, x is representing a linear distance the Rotated by 6
wheel has travelled, corresponding to an arclength

along the circle. Since arclength and angle can be \
related by s=r@, in this case we can write x =146,

which allows us to express the angle in terms of x:

0(x) = ﬁ

Composing this with our cosine-based function from above,
X 1
h(x) = h(@(x)) = -14cos| — |[+14 = -14cos| — X |+14
(x) = h(8(x)) (14) [14 j

The period of this function would be P = %r = ZTﬂ =2x-14 = 287, the circumference

14
of the circle. This makes sense — the wheel completes one full revolution after the
bicycle has travelled a distance equivalent to the circumference of the wheel.
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Summarizing our transformations so far:

Transformations of Sine and Cosine

Given an equation in the form f (t) = Asin(Bt)+k or f(t) = Acos(Bt)+k

A is the vertical stretch, and is the amplitude of the function.

B is the horizontal stretch/compression, and is related to the period, P, by P = %z

k is the vertical shift and determines the midline of the function.

Example 7

Determine the midline, amplitude, and period of the function f (t) = 3sin(2t)+1.

The amplitude is 3
The period is P=2—”=2—ﬂ-=72'
B 2

The midlineisat y=1

Amplitude, midline, and period, when combined with vertical flips, allow us to write
equations for a variety of sinusoidal situations.

If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2,
and a period of 4, write a formula for the function.

3.
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Example 8

Find a formula for the sinusoidal function 41
graphed here.

The graph oscillates from a low of -1 to a
high of 3, putting the midlineaty =1,
halfway between.

7 5 2 1 [ 2 ¥ 4 5 6 7
The amplitude will be 2, the distance from _ v

the midline to the highest value (or lowest
value) of the graph. 24

The period of the graph is 8. We can measure this from the first peak at x = -2 to the
second at x = 6. Since the period is 8, the stretch/compression factor we will use will be
2t 2 &

P 8 4

At x =0, the graph is at the midline value, which tells us the graph can most easily be
represented as a sine function. Since the graph then decreases, this must be a vertical
reflection of the sine function. Putting this all together,

f(t) = —Zsin(%tj+l

With these transformations, we are ready to answer the Ferris wheel problem from the
beginning of the section.

Example 9

The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in London,
England, which completes one rotation every 30 minutes. Riders board from a platform
2 meters above the ground. Express a rider’s height above ground as a function of time
in minutes.

With a diameter of 135 meters, the wheel has a radius of 67.5 meters. The height will
oscillate with amplitude of 67.5 meters above and below the center.

Passengers board 2 meters above ground level, so the center of the wheel must be
located 67.5 + 2 = 69.5 meters above ground level. The midline of the oscillation will
be at 69.5 meters.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with
period of 30 minutes.

Lastly, since the rider boards at the lowest point, the height will start at the smallest
value and increase, following the shape of a flipped cosine curve.
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Putting these together:
Amplitude: 67.5
Midline: 69.5

2r 7

Period: 30,s0 B =
30

15
Shape: -cos

An equation for the rider’s height would be
h(t) =-67.5 cos(ﬁtJ +69.5
15

. The Ferris wheel at the Puyallup Fair® has a diameter of about 70
feet and takes 3 minutes to complete a full rotation. Passengers
board from a platform 10 feet above the ground. Write an
equation for a rider’s height above ground over time.

While these transformations are sufficient to represent many situations, occasionally we
encounter a sinusoidal function that does not have a vertical intercept at the lowest point,
highest point, or midline. In these cases, we need to use horizontal shifts. Recall that
when the inside of the function is factored, it reveals the horizontal shift.

Horizontal Shifts of Sine and Cosine
Given an equation in the form f (t) = Asin(B(t —h))+k or f(t) = Acos(B(t—h))+k
h is the horizontal shift of the function

Example 10

Sketch a graph of f(t) =3sin (%t — %)

To reveal the horizontal shift, we first need to factor inside the function:

. T
f(t) =3sin (Z (t —1))

2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY



http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/
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This graph will have the shape of a sine function, starting at the midline and increasing,

with an amplitude of 3. The period of the graph will be P = %T = 2 =2r- 4 =8.

4 z
4
Finally, the graph will be shifted to the right by 1.

4..
31
2__
74
/; 3 3 4 6 7 & i

rat
ot
S NS

In some physics and mathematics books, you will hear the horizontal shift referred to as
phase shift. In other physics and mathematics books, they would say the phase shift of

the equation above is % the value in the unfactored form. Because of this ambiguity, we

will not use the term phase shift any further, and will only talk about the horizontal shift.

Example 11
Find a formula for the function graphed here.
2_

With highest value at 1 and lowest value at -5, H
the midline will be halfway between at -2. —

The distance from the midline to the highest or
lowest value gives an amplitude of 3.

The period of the graph is 6, which can be
measured from the peak at x = 1 to the next peak

at x = 7, or from the distance between the lowest points. This gives B = 2?” =—-=

For the shape and shift, we have more than one option. We could either write this as:
A cosine shifted 1 to the right

A negative cosine shifted 2 to the left

A sine shifted % to the left

A negative sine shifted 2.5 to the right
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While any of these would be fine, the cosine shifts are easier to work with than the sine
shifts in this case, because they involve integer values. Writing these:

y(x) = 3C0$(%(X—1))—2 or

y(x) = —3cos(% (x+ 2)) -2

Again, these functions are equivalent, so both yield the same graph.

Try it Now
5. Write a formula for the function graphed
here.

9
&
4]
5
4
K
2
y

;}éjiﬁéiﬁgjb:}:ﬁ

[Important Topics of This Section
Periodic functions
Sine and cosine function from the unit circle
Domain and range of sine and cosine functions
Sinusoidal functions
Negative angle identity
Simplifying expressions
Transformations
Amplitude
Midline
Period
Horizontal shifts

Try it Now Answers

1.7
2.-4

3. T(x) :Zsin(%x)+3

4. h(t)= —BSCOS[%tj +45

5. Two possibilities: f(x):4cos(%(x—3.S)J+4 or f(x):4sin(%(x—1)j+4
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Section 2.1 Exercises

1. Sketch a graph of f (x)=-3sin(x).
2. Sketch a graph of f (x)=4sin(x).
3. Sketch a graph of f (x)=2cos(x).
4. Sketch a graph of f(x)=—-4cos(x).

For the graphs below, determine the amplitude, midline, and period, then find a formula
for the function.

| /2 x \
T \2.1/ I 4 2

o o
'-Id'l-li.'-lul\d'*--

EEEEETRERERE:
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For each of the following equations, find the amplitude, period, horizontal shift, and
midline.

11. y=3sin(8(x+4))+5
12. y= 4sin(%(x—3)j+7

13. y=2sin(3x—-21)+4

14. y=5sin(bx+20)-2

15. y:sin(%x+7z]—3

16. y:8sin(7—”x+7—”)+6
6 2

Find a formula for each of the functions graphed below.

I3 12 A1 10 g 8 -

17.
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19.

20.

21.

22.

23.

24,

Chapter 2
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Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 50 degrees at midnight and the high and low
temperature during the day are 57 and 43 degrees, respectively. Assuming t is the
number of hours since midnight, find a function for the temperature, D, in terms of t.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 68 degrees at midnight and the high and low
temperature during the day are 80 and 56 degrees, respectively. Assuming t is the
number of hours since midnight, find a function for the temperature, D, in terms of t.

A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 10 minutes. The function
h(t) gives your height in meters above the ground t minutes after the wheel begins to

turn.
a. Find the amplitude, midline, and period of h(t).

b. Find a formula for the height function h(t).
c. How high are you off the ground after 5 minutes?

A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 8 minutes. The function
h(t) gives your height in meters above the ground t minutes after the wheel begins to

turn.
a. Find the amplitude, midline, and period of h(t).
b. Find a formula for the height function h(t).
c. How high are you off the ground after 4 minutes?
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Section 2.2 Graphs of the Other Trig Functions

In this section, we will explore the graphs of the other four trigonometric functions.
We’ll begin with the tangent function. Recall that in Chapter 5 we defined tangent as y/x
or sine/cosine, so you can think of the tangent as the slope of a line through the origin
making the given angle with the positive x axis. At an angle of 0, the line would be
horizontal with a slope of zero. As the angle increases towards /2, the slope increases
more and more. At an angle of n/2, the line would be vertical and the slope would be
undefined. Immediately past /2, the line would have a steep negative slope, giving a
large negative tangent value. There is a break in the function at /2, where the tangent
value jumps from large positive to large negative.
| 44 |
We can use these ideas along with the definition of | 31 |
tangent to sketch a graph. Since tangent is defined '
as sine/cosine, we can determine that tangent will ; ;
be zero when sine is zero: at -x, 0, &, and so on. : 4 :
Likewise, tangent will be undefined when cosine is ; ; /
zero: at -m/2, n/2, and so on. /—n 2 2
! :

2_.

o

The tangent is positive from 0 to n/2 and = to 37/2,
corresponding to quadrants 1 and 3 of the unit :
circle. T

i 41
Using technology, we can obtain a graph of tangent on a standard grid.

24

Notice that the graph appears to repeat itself. For
any angle on the circle, there is a second angle with
the same slope and tangent value halfway around the
circle, so the graph repeats itself with a period of 7;
we can see one continuous cycle from - /2 to /2,

by b e s

before it jumps and repeats itself.

The graph has vertical asymptotes and the tangent is
undefined wherever a line at that angle would be
vertical: at n/2, 3w/2, and so on. While the domain
of the function is limited in this way, the range of the
function is all real numbers.

Features of the Graph of Tangent

The graph of the tangent function m(8) = tan(9)
The period of the tangent function is 7t

The domain of the tangent function is 0 # %+ k7 , where k is an integer

The range of the tangent function is all real numbers, (—oo,)
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With the tangent function, like the sine and cosine functions, horizontal
stretches/compressions are distinct from vertical stretches/compressions. The horizontal
stretch can typically be determined from the period of the graph. With tangent graphs, it
is often necessary to determine a vertical stretch using a point on the graph.

Example 1
Find a formula for the function graphed
here.

The graph has the shape of a tangent
function, however the period appears to
be 8. We can see one full continuous

cycle from -4 to 4, suggesting a 8 45 4 ;3 2 4 5 3
horizontal stretch. To stretch « to 8, the 24
input values would have to be

multiplied byﬁ. Since the constant k
T

P

in f(0)=atan(k@)is the reciprocal of

the horizontal stretch g, the equation must have form
T

Vi
f(0) = atan(ge).

We can also think of this the same way we did with sine and cosine. The period of the
tangent function is 7 but it has been transformed and now it is 8; remember the ratio of

the “normal period” to the “new period” is gand so this becomes the value on the

inside of the function that tells us how it was horizontally stretched.

To find the vertical stretch a, we can use a point on the graph. Using the point (2, 2)
2= atan(Z : 2) = atan(zj . Since tan(zj =1, a=2
8 4 4

This function would have a formula f (6) = 2tan(% ej.

1. Sketch a graph of f(0) = 3tan[% 6’} :
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1
cos(8)
Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote
in the graph at /2, 3w/2, etc. Since the cosine is always no more than one in absolute
value, the secant, being the reciprocal, will always be no less than one in absolute value.
Using technology, we can generate the graph. The graph of the cosine is shown dashed
S0 you can see the relationship.

£ (0) = sec(d) = %w)

For the graph of secant, we remember the reciprocal identity where sec(f) =

The graph of cosecant is similar. In fact, since sin(8) = cos(% - 9), it follows that

csc(f) = sec(% - 9) , suggesting the cosecant graph is a horizontal shift of the secant

graph. This graph will be undefined where sine is 0. Recall from the unit circle that this
occurs at 0, «, 2w, etc. The graph of sine is shown dashed along with the graph of the
cosecant.

f (9) = CSC(@) = ﬁ
44

fl
—-d
!

I 2 54 5 47

&




82 Chapter 2

Features of the Graph of Secant and Cosecant

The secant and cosecant graphs have period 2x like the sine and cosine functions.
Secant has domain 6 # %+ kz , where Kk is an integer

Cosecant has domain & = kzr, where k is an integer
Both secant and cosecant have range of (—o0,—1] U[1, )

Example 2
Sketch a graph of f (@) = 2CSC(% 6’] +1. What is the domain and range of this

function?

The basic cosecant graph has vertical asymptotes at the integer multiples of 7. Because

of the factor % inside the cosecant, the graph will be compressed by g, so the vertical
T

asymptotes will be compressed to 6 = 2, kz = 2k . In other words, the graph will have
T

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly
be 8= 2k, where k is an integer.

The basic sine graph has a range of [-1, 1]. The vertical stretch by 2 will stretch this to
[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3].

The basic cosecant graph has a range of (—0,—1] U[1,%0). The vertical stretch by 2 will
stretch this to (—0,—2] U[2,), and the vertical shift up 1 will shift the range of this
function to (—o0,—1] U[3,) .

Sketching a graph,

ﬁ_.

51

ISR

Ft P P

2 ; * + y
-
;

b
I

R ' I 2+3-4 3

4 t t
I N
/\ /-gn

Notice how the graph of the transformed cosecant relates to the graph of

f(6) = 2sin (% 9} +1 shown dashed.




Section 2.2 Graphs of the Other Trig Functions 83

Try it Now
2. Given the graph of 61

5
f(0) = 2cos( 0} +1 shown, sketch

the graph of g(0) = Zsec( +1 on \ /\ /

the same axes. AN VEE

I'ur-..
h

N
'
|

4

Finally, we’ll look at the graph of cotangent. Based on its definition as the ratio of cosine
to sine, it will be undefined when the sine is zero: at at 0, &, 27, etc. The resulting graph
is similar to that of the tangent. In fact, it is a horizontal flip and shift of the tangent
function, as we’ll see shortly in Example 3.

B 1 cos(0)
1(0) = co(6) = tan(¢)  sin(6)
4 4

31

Features of the Graph of Cotangent
The cotangent graph has period
Cotangent has domain @ =k, where Kk is an integer
Cotangent has range of all real numbers, (-0, )

In Section 6.1 we determined that the sine function was an odd function and the cosine
was an even function by observing the graph and establishing the negative angle
identities for cosine and sine. Similarly, you may notice from its graph that the tangent
function appears to be odd. We can verify this using the negative angle identities for sine
and cosine:

tan(~ )= " (-6) -sin(9)

cos(—6)  cos(6) =-tan(0)

The secant, like the cosine it is based on, is an even function, while the cosecant, like the
sine, is an odd function.
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Negative Angle Identities Tangent, Cotangent, Secant and Cosecant
tan(- 8) = —tan(9) cot(— ) = —cot(6)

sec(— ) = sec(0) cse(— ) = —csc(6)

Prove that tan(@) = — cot(e - %}

tan(6) Using the definition of tangent
_3n ('9) Using the cofunction identities
cos(6)
cos(” - 0)
2

=— = 27 Using the definition of cotangent

z
2
%— 0) Factoring a negative from the inside

= cot(— (9 - %D Using the negative angle identity for cot

Important Topics of This Section

The tangent and cotangent functions
Period
Domain
Range

The secant and cosecant functions
Period
Domain
Range

Transformations

Negative Angle identities
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Try it Now Answers

o B T
——

(S
}

/5-5-#-3-,"3-'1 I i 438 7
e

2. 44
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Section 2.2 Exercises

Match each trigonometric function with one of the graphs.
1. f(x)=tan(x) 2. f(x)=sec(x)

3. f(x)=csc(x) 4. f(x)=cot(x)

; =
: U :
]I ]I

==

I 2 43

1Y 3458

Find the period and horizontal shift of each of the following functions.
5. f(x)=2tan(4x—-32)

6. g(x)=23tan(6x+42)
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11. Sketch a graph of #7 above.
12. Sketch a graph of #8 above.
13. Sketch a graph of #9 above.
14. Sketch a graph of #10 above.

15. Sketch a graph of j(x)=tan (% x).

16. Sketch a graph of p(t)=2tan (t —%j :

Find a formula for each function graphed below

U J
i

84
T+
é. =+
54
4’-.
By
_'j =+
I -+

B BB

B e
' '

[N VAR

17.

:
=1
ST § 2§ & 35 ¢ 7 N
-3+ A4
| it
B4 54
- o _ﬁ -
- + -t
-4+ 20. 54

19.
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21.
22.
23.
24,
25.
26.

Chapter 2

If tanx=—-1.5, find tan(-x).
If tanx =3, find tan(-x).

If secx =2, find sec(-x).

If secx=—4, find sec(-x).
If cscx=-5, find csc(-x).

If cscx=2, find csc(-x).

Simplify each of the following expressions completely.

217.
28.

cot(—x)cos(—x)+sin(—x)
cos(—x)+tan(—x)sin(—x)
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Section 2.3 Inverse Trig Functions

In previous sections we have evaluated the trigonometric functions at various angles, but
at times we need to know what angle would yield a specific sine, cosine, or tangent value.
For this, we need inverse functions. Recall that for a one-to-one function, if f(a)=b,

then an inverse function would satisfy f *(b) =a.

You probably are already recognizing an issue — that the sine, cosine, and tangent
functions are not one-to-one functions. To define an inverse of these functions, we will
need to restrict the domain of these functions to yield a new function that is one-to-one.
We choose a domain for each function that includes the angle zero.

Sine, limited to [—%%} Cosine, limited to [0, 7] Tangent, limited to (—%%)
J_.
11 1 4
34
24
ey
-2 /2 /. v"If -2 /2
1 pa

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse
tangent functions.

nverse Sine, Cosine, and Tangent Functions

For angles in the interval —%%} if sin(0)=a, then sin *(a)=6

For angles in the interval [0, z], if cos(9)=a, then cos™(a)= @

For angles in the interval —%%) if tan(¢)=a, then tan*(a)=@

sinfl(x) has domain [-1, 1] and range {—%%}

cos™*(x) has domain [-1, 1] and range [0, 7]

tan™ (x) has domain of all real numbers and range (—%%)
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The sin™(x) is sometimes called the arcsine function, and notated arcsin(a).
The cos™(x) is sometimes called the arccosine function, and notated arccos(a).

The tan™(x) is sometimes called the arctangent function, and notated arctan(a).

The graphs of the inverse functions are shown here:

sin™(x) L cos™(x) tan™(x) )

—=f } 5o -d 2 2 3435
I+
dt -1

24 i 2

Notice that the output of each of these inverse functions is an angle.

xample 1
Evaluate

a) sin 1(%) b) sin 1(— g} c) cosl[— ?j d) tan (1)

. . 1). . . 1
a) Evaluating sin 1(;) is the same as asking what angle would have a sine value of >
In other words, what angle 8 would satisfy sin (0) = %? There are multiple angles that
would satisfy this relationship, such as % and 5{ , but we know we need the angle in

the interval [—%%} , so the answer will be sin ‘1(%) = % Remember that the

inverse is a function so for each input, we will get exactly one output.
. . 2 5 i .
b) Evaluating sin | we know that 7 and e both have a sine value of

—g , but neither is in the interval {—%%} . For that, we need the negative angle

coterminal with 777[ sin —1(_ g} 7

==
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c) Evaluating cos‘{— 73} we are looking for an angle in the interval [0, 7z] with a

J3

cosine value of — ? . The angle that satisfies this is cos‘l(— ?j = ST

5

d) Evaluating tan (1), we are looking for an angle in the interval (—%%) with a

tangent value of 1. The correct angle is tan (1) = % .

1. Evaluate

a) sin *(~1) b) tan~(-1) c) cos*(-1) d) cos‘l(%j

Example 2

Evaluate sin *(0.97) using your calculator.

Since the output of the inverse function is an angle, your calculator will give you a
degree value if in degree mode, and a radian value if in radian mode.

In radian mode, sin™(0.97) ~1.3252 In degree mode, sin*(0.97) ~ 75.93°

2. Evaluate cos (- 0.4) using your calculator.

In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a
triangle given one side and an additional angle. Using the inverse trig functions, we can
solve for the angles of a right triangle given two sides.

Example 3

Solve the triangle for the angle 6.

Since we know the hypotenuse and the side adjacent 12
to the angle, it makes sense for us to use the cosine 9
function. 9
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cos(9) = % Using the definition of the inverse,

0 = cos ‘{%) Evaluating

0 = 0.7227 , or about 41.4096°

There are times when we need to compose a trigonometric function with an inverse
trigonometric function. In these cases, we can find exact values for the resulting
expressions

Example 4

Evaluate sin ‘{cos(l%zjj .

a) Here, we can directly evaluate the inside of the composition.

13z \/§

0S| — |[=—
6 2

Now, we can evaluate the inverse function as we did earlier.

1(\@] b
sin| — [==
2 3

3. Evaluate cos‘l(sin (— HTED

Example 5
Find an exact value for sin (cos‘l(gn.

Beginning with the inside, we can say there is some angle so 6 = cos‘l(gj , which

means cos(f) = g and we are looking for sin(6). We can use the Pythagorean identity

to do this.
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sin?(@)+cos?(9) =1 Using our known value for cosine
sin?(@) + (gjz = Solving for sine
16
sin?(@)=1- >
sin(6) =+ 29—5 :J_rg
Since we know that the inverse cosine always gives an angle on the interval [0, z], we
know that the sine of that angle must be positive, so sin (cos‘l (gn =sin(o) :g

Example 6

Find an exact value for sin (tan ‘{%D

While we could use a similar technique as in the last example, we
will demonstrate a different technique here. From the inside, we

know there is an angle so tan(@) = % . We can envision this as the

opposite and adjacent sides on a right triangle. 0

Using the Pythagorean Theorem, we can find the hypotenuse of
this triangle:

4% +7° = hypotenuse®
hypotenuse= J65

Now, we can evaluate the sine of the angle as opposite side divided by hypotenuse

sin(0) = %

This gives us our desired composition

. a7 _ 7
sm(tan (ZD_sm(e)_\/@.

4. Evaluate cos[sin ‘{%B .
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We can also find compositions involving algebraic expressions.

xample 7

Find a simplified expression for cos(sin ‘1( D for —-3<x<3.

w | x

We know there is an angle 6 so that sin ()= % Using the Pythagorean Theorem,

sin?(6)+cos*(9) =1 Using our known expression for sine
2
(gj +cos’(9)=1 Solving for cosine
X2
cos?(@)=1- 5
2 2
cos(6) = + 9‘9X =iV9;X

Since we know that the inverse sine must give an angle on the interval {—%%} , We

can deduce that the cosine of that angle must be positive. This gives us

. _{xj 9-x°
cos| sin| = | =
3 3

5. Find a simplified expression for sin (tan‘1(4x)), for —% <x< %

Important Topics of This Section
Inverse trig functions: arcsine, arccosine and arctangent
Domain restrictions
Evaluating inverses using unit circle values and the calculator
Simplifying numerical expressions involving the inverse trig functions
Simplifying algebraic expressions involving the inverse trig functions
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Try it Now Answers
T

Loa) -2 b)—% 0) 7 d)%

2.1.9823 or 113.578°

3. 37
4
5 42

9
4x

V16x% +1

5.
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Section 2.3 Exercises

Evaluate the following expressions.

1. sin{%} 2. sin{?j 3. sinl(—%j 4, sinl(—\/E
5. cos‘l[%j 6. cos‘{%] 7. cos‘l(—g] 8. cos‘{—@

9. tan~ (1) 10. tan™*(+/3) 11. tan”(—3) 12. tan"*(-1)
Use your calculator to evaluate each expression.

13. cos (- 0.4) 14. cos™(0.8) 15. sin *(~0.8) 16. tan*(6)
Find the angle 6.

10

17. 18. 19

Evaluate the following expressions.

19. sin ‘1(cos ZD 20. cos‘l(sin ZD
4 6

21. sin ‘l(cos 4—”}) 22. cos‘l(sin 5—”)}
3 4

23. cos(sin -+ ED 24. sin (cos‘1

7

9
25. cos(tan*1(4)) 26. tan(sin = %D

Find a simplified expression for each of the following.

27. sin (cos‘l(gn, for -5<x<5 28. tan(cos‘l(gn, for —2<x<2

29. sin (tan(3x)) 30. cos(tan *(4x))
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Section 2.4 Solving Trig Equations

In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could

be determined by the equation h(t) = —67.5cos(%tj +69.5.

If we wanted to know length of time during which the rider is more than 100 meters
above ground, we would need to solve equations involving trig functions.

Solving using known values
In the last chapter, we learned sine and cosine values at commonly encountered angles.
We can use these to solve sine and cosine equations involving these common angles.

Solve sin(t)= %for all possible values of t.

Notice this is asking us to identify all angles, t, that have a sine value of t = > While
evaluating a function always produces one result, solving for an input can yield multiple

solutions. Two solutions should immediately jump to mind from the last chapter: t =%

5 L
and t = % because they are the common angles on the unit circle.

Looking at a graph confirms that there are more than these two solutions. While eight
are seen on this graph, there are an infinite number of solutions!

MR RPNV I I SR N
g1

Remember that any coterminal angle will also have the same sine value, so any angle
coterminal with these two is also a solution. Coterminal angles can be found by adding
full rotations of 2w, so we end up with a set of solutions:

t= % + 27K where k is an integer, and t = %Z + 27K where k is an integer
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Example 2

A circle of radius 5+/2 intersects the line x = -5 at two points. Find the angles & on the
interval 0 <@ < 27, where the circle and line intersect.

The x coordinate of a point on a circle can be found as x = rcos(@), so the x coordinate

of points on this circle would be x =5+2 cos(#). To find where the line x = -5
intersects the circle, we can solve for where the x value on the circle would be -5

~5="5+2cos(0) Isolating the cosine
— =cos(9) Recall that —~ = -2 , S0 we are solving
V2 J2oo2

cos(@)

_-V2 -
2

We can recognize this as one of our special cosine values %1%
from our unit circle, and it corresponds with angles

9:3—” and 49:5—ﬂ
4 4
Try it Now

’ 1. Solve tan(t)=1 for all possible values of t.

Example 3
The depth of water at a dock rises and falls with the tide, following the equation

f(t) =4sin (%tj + 7, where t is measured in hours after midnight. A boat requires a

depth of 9 feet to tie up at the dock. Between what times will the depth be 9 feet?

To find when the depth is 9 feet, we need to solve f(t) = 9.

4sin(%tj+7 =9 Isolating the sine
4sm(—t} =2 Dividing by 4
12
sin[ Zt|=1 We know sin(@):1 when =% or 9="F
12 2 2 6 6

. . 1 .
While we know what angles have a sine value of > because of the horizontal

stretch/compression, it is less clear how to proceed.
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To deal with this, we can make a substitution, defining a new temporary variable u to be

T .
u= Et , SO our equation becomes

. 1
sin(u)==
From earlier, we saw the solutions to this equation were
u= %+ 27k where k is an integer, and

u= 5{ + 27Kk where K is an integer

Undoing our substitution, we can replace the u in the solutions with u = %t and solve

for t.

2t =" 1 27k wherekisan integer, and Zi= >z + 27K where k is an integer.
12 6 12 6

Dividing by /12, we obtain solutions
t =2+ 24k where k is an integer, and 124

t =10 + 24k where k is an integer. 101

be able to approach the dock between 2am
and 10am.

=1
The depth will be 9 feet and the boat will /
4.

24
Notice how in both scenarios, the 24k
shows how every 24 hours the cycle will
be repeated.

2 4 6 & 10 12 14 16 18 20 22 24

In the previous example, looking back at the original simplified equation sin [%tj = % :

we can use the ratio of the “normal period” to the stretch factor to find the period.
27 = ZH(EJ = 24 ; notice that the sine function has a period of 24, which is reflected
T T

"

in the solutions: there were two unique solutions on one full cycle of the sine function,
and additional solutions were found by adding multiples of a full period.

2. Solve 4sin(5t)—1=1 for all possible values of t.
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Solving using the inverse trig functions
The solutions to sin (0) =0.3 do not involve any of the “special” values of the trig

functions to we have learned. To find the solutions, we need to use the inverse sine
function.

Example 4

Use the inverse sine function to find one solution to sin(6)=0.8.

Since this is not a known unit circle value, calculating the inverse, 8 =sin *(0.8). This
requires a calculator and we must approximate a value for this angle. If your calculator
is in degree mode, your calculator will give you an angle in degrees as the output. If
your calculator is in radian mode, your calculator will give you an angle in radians. In

radians, @ =sin *(0.8)~0.927 , or in degrees, 6 =sin"*(0.8) ~53.130°.

If you are working with a composed trig function and you are not solving for an angle,
you will want to ensure that you are working in radians. In calculus, we will almost
always want to work with radians since they are unit-less.

Notice that the inverse trig functions do exactly what you would expect of any function —
for each input they give exactly one output. While this is necessary for these to be a
function, it means that to find all the solutions to an equation like sin(@)=0.8, we need
to do more than just evaluate the inverse function.

Example 5
Find all solutions tosin(#)=0.8.

We would expect two unique angles on one cycle to have ey
this sine value. In the previous example, we found one 9
solution to be @ =sin *(0.8)~ 0.927 . To find the other, we 0.929

need to answer the question “what other angle has the same
sine value as an angle of 0.927?” On a unit circle, we
would recognize that the second angle would have the same
reference angle and reside in the second quadrant. This
second angle would be located at 8 = 7 —sin *(0.8) or
approximate|y 0~m7—0.927 =2.214

To find more solutions we recall that angles coterminal with these two would have the
same sine value, so we can add full cycles of 2.

0 =sin (0.8) + 27k and @ = 7 —sin (0.8) + 27k where k is an integer,
or approximately, 8 =0.927 + 27k and 8 =2.214 + 27K where K is an integer.
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Example 6

Find all solutions to sin(x) = —% on the interval 0° < x < 360°.

First we will turn our calculator to degree mode. Using the inverse, we can find one
solution x =sin 1(— 5} ~ —62.734°. While this angle satisfies the equation, it does not

lie in the domain we are looking for. To find the angles in the desired domain, we start
looking for additional solutions.

First, an angle coterminal with —62.734°will have the same sine. By adding a full
rotation, we can find an angle in the desired domain with the same sine.
X =—62.734° + 360° = 297.266°

There is a second angle in the desired domain that lies in the third quadrant. Notice that
62.734° is the reference angle for all solutions, so this second solution would be
62.734° past 180°

X =62.734°+180° = 242.734°

The two solutions on 0° < X <360° are x = 297.266°and x = 242.734°

Example 7
Find all solutions to tan(x)=3 on 0< X< 2r.

Using the inverse tangent function, we can find one solution x = tan™(3)~1.249 .

Unlike the sine and cosine, the tangent function only attains any output value once per
cycle, so there is no second solution in any one cycle.

By adding =, a full period of tangent function, we can find
a second angle with the same tangent value. If additional 1.249
solutions were desired, we could continue to add multiples /
of , so all solutions would take on the form 1
x =1.249 + kz, however we are only interested in 4.391
0<x<2r.

x=1.249 + 7 =4.391

The two solutions on 0 < X <27 are x = 1.249 and x = 4.391.

3. Find all solutions to tan(x)=0.7 on 0° < x < 360°.
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Example 8
Solve 3cos(t)+4 = 2 for all solutions on one cycle, 0<t <2z

3cos(t)+4 =2 Isolating the cosine
3cos(t) = -2
cos(t) = —% Using the inverse, we can find one solution

t= cosl[— gj ~2.301

2.301
Thinking back to the circle, a second angle with the same 2
cosine would be located in the third quadrant. Notice that g
the location of this angle could be represented as

t =-2.301. To represent this as a positive angle we could
find a coterminal angle by adding a full cycle.

t=-2.301+27 =3.982

%

N\

<2.301
or 3.982

The equation has two solutions between 0 and 2z, at t = 2.301 and t = 3.982.

Example 9

Solve cos(3t)=0.2 for all solutions on two cycles, 0 <t < 4?”

As before, with a horizontal compression it can be helpful to make a substitution,
u =3t. Making this substitution simplifies the equation to a form we have already
solved.

cos(u)=0.2

u=cos (0.2)~1.369

A second solution on one cycle would be located in the fourth quadrant with the same
reference angle.
u=2r-1.369 =4.914

In this case, we need all solutions on two cycles, so we need to find the solutions on the
second cycle. We can do this by adding a full rotation to the previous two solutions.
u=21.369 + 27 =7.653

u=4.914 + 2~ =11.197

Undoing the substitution, we obtain our four solutions:
3t =1.369, so t = 0.456

3t=4.914s0t=1.638

3t=7.653,s0t=2.551

3t=11.197,s0t=3.732




Section 2.4 Solving Trig Equations 103

Example 10

Solve 3sin(zt)=-2 for all solutions.

3sin(zt)=-2 Isolating the sine
sin(zt)= —% We make the substitution u =t
sin(u)= —% Using the inverse, we find one solution

u =sin ‘1[— %) ~-0.730

This angle is in the fourth quadrant. A second angle with the same sine would be in the
third quadrant with 0.730 as a reference angle:
u=7+0.730 =3.871

. . . . 2
We can write all solutions to the equation sin (u) = -5

u=-0.730 + 27k where k is an integer, or
u=3.871+27k

Undoing our substitution, we can replace u in our solutions with u =zt and solve for t
zt=-0.730 +27zk or 7wt =3.871+27k Divide by
t=-0.232 + 2k or t=1.232 + 2k

4. Solve 5sin (%t} +3 =0 for all solutions on one cycle, 0<t<2r.

1) Isolate the trig function on one side of the equation

2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig
function)

3) Use inverse trig functions to find one solution

4) Use symmetries to find a second solution on one cycle (when a second exists)

5) Find additional solutions if needed by adding full periods

6) Undo the substitution

We now can return to the question we began the section with.
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Example 11

The height of a rider on the London Eye Ferris wheel can be determined by the equation
h(t) = —67.5005(%t] +69.5. How long is the rider more than 100 meters above

ground?

To find how long the rider is above 100 meters, we first find the times at which the rider
is at a height of 100 meters by solving h(t) = 100.

100 = —67.5003(%t] +69.5 Isolating the cosine

30.5=-675 cos(ﬂtJ
15

305 _ cos| -t We make the substitution u = ——t
—-67.5 15 15

30.5 . . . .
e cos(u) Using the inverse, we find one solution

u= cos‘l( 305 j ~ 2.040
67.5

This angle is in the second quadrant. A second angle with
the same cosine would be symmetric in the third quadrant.

This angle could be represented as u = -2.040, but we need a
coterminal positive angle, so we add 2m:

U=27—-2.040 = 4.244

Now we can undo the substitution to solve for t

%t = 2.040 sot=9.740 minutes after the start of the ride

%t =4.244 sot=20.264 minutes after the start of the ride

A rider will be at 100 meters after 9.740 minutes, and again after 20.264. From the
behavior of the height graph, we know the rider will be above 100 meters between these
times. A rider will be above 100 meters for 20.265-9.740 = 10.523 minutes of the ride.

Important Topics of This Section
Solving trig equations using known values
Using substitution to solve equations
Finding answers in one cycle or period vs. finding all possible solutions
Method for solving trig equations
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Try it Now Answers

1. £+7rk
4

2 1= L2 =TTy
30 5 6 5
3. x=34.992° or x=180°+34.99° = 214.992°

4. t=3.590 or t=2.410
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Section 2.4 Exercises

Find all solutions on the interval 0<8<2rx.
1. 25in(6’):—\/§ 2. 2sin(6 =3 3. 2cos(6)=1
5. sin(0)=1 6. sin(6)=0 7. cos(0)=0

Find all solutions.
9. 2005(49):\/5 10. 2cos(0)=-1 11. 2sin(0) =

Find all solutions.

13. 2sin(30) =1 14. 2sin(26)=+/3
16. 2sin(30)=-1 17. 2cos(20)=1
19. 2co0s(30) =—/2 20. 2c0s(20) = -1
22. sm( j: 23. 2sin(#0) =1.

Find all solutions on the interval 0< x < 2r.

4. 2cos(0) = 2

8. cos(6)=-1

-1 12. 2sin(6)=—3

18. 2c0s(20)=+/3

21. cos( Hj:
4

24. ZCOS(E 6] = J§

15. 2sin(30) = 2
-1

25. sin(x)=0.27 26. sin(x)=0.48 27. sin(x)=-0.58  28. sin(x)=-0.34

29. cos(x)=-0.55  30. sin(x)=0.28 31. cos(x)=0.

Find the first two positive solutions.

33. 7sin(6x)=2  34. 7sin(5x)=6 35. 5c0s(3x) =

j 1 40. ?,cos(z jz—
2

oolél

37.33in(%xj=2 38.7sin(%xj=6 39. 5cos(

71 32. cos(x)=-0.07

-3 36. 3003 =
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Section 2.5 Modeling with Trigonometric Functions

Solving right triangles for angles

In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle
given one side and an additional angle. Using the inverse trig functions, we can solve for
the angles of a right triangle given two sides.

Example 1

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its
current location. At what heading should the airplane fly? In other words, if we ignore
air resistance or wind speed, how many degrees north of east should the airplane fly?

We might begin by drawing a picture and labeling all of

the known information. Drawing a triangle, we see we

are looking for the angle a. In this triangle, the side 200
opposite the angle a is 200 miles and the side adjacent
is 300 miles. Since we know the values for the 300
opposite and adjacent sides, it makes sense to use the

tangent function.

tan(e) = % Using the inverse,

o = tan 1[%} ~ 0.588 , or equivalently about 33.7 degrees.

The airplane needs to fly at a heading of 33.7 degrees north of east.

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall
for every 4 feet of ladder length®. Find the angle such a ladder forms with the ground.

For any length of ladder, the base needs to be one quarter of the distance
the foot of the ladder is away from the wall. Equivalently, if the base is a

feet from the wall, the ladder can be 4a feet long. Since a is the side 4a

adjacent to the angle and 4a is the hypotenuse, we use the cosine function.

cos(0) = a1 Using the inverse L]
da 4 a

0 = cos ‘{%) ~ 75.52 degrees

The ladder forms a 75.52 degree angle with the ground.

® http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html



108 Chapter 2

Try it Now
1. One of the cables that anchor the center of the London Eye Ferris wheel to the
ground must be replaced. The center of the Ferris wheel is 69.5 meters above the
ground and the second anchor on the ground is 23 meters from the base of the Ferris
wheel. What is the angle of elevation (from ground up to the center of the Ferris
wheel) and how long is the cable?

Example 3

In a video game design, a map shows the location of other characters relative to the
player, who is situated at the origin, and the direction they are facing. A character
currently shows on the map at coordinates (-3, 5). If the player rotates
counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate
20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it
as a point on a circle, and we will change the angle of
the point by 20 degrees. To do so, we first need to find
the radius of this circle and the original angle.

the radius using the Pythagorean Theorem:
(-3)° +52 =r?

r=9+25=1/34

To find the angle, we need to decide first if we are going to find the acute angle of the
triangle, the reference angle, or if we are going to find the angle measured in standard
position. While either approach will work, in this case we will do the latter. Since for
any point on a circle we know x = r cos(é) , using our given information we get

—3=/3 cos(0)

Drawing a right triangle inside the circle, we can find @

-3
—— =cos(@
Tz o)
-3
6 =cos | —= |~ 120.964°
(\/34j

While there are two angles that have this cosine value, the angle of 120.964 degrees is
in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to
100.964 degrees. We can then evaluate the coordinates of the rotated point

x = /34 c0s(100.964°) ~ —1.109
y = /34 5in(100.964°) ~ 5.725

The coordinates of the character on the rotated map will be (-1.109, 5.725).
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Modeling with sinusoidal functions

Many modeling situations involve functions that are periodic. Previously we learned that
sinusoidal functions are a special type of periodic function. Problems that involve
quantities that oscillate can often be modeled by a sine or cosine function and once we
create a suitable model for the problem we can use that model to answer various
questions.

Example 4

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of
16 hours in July*. When should you plant a garden if you want to do it during a month
where there are 14 hours of daylight?

To model this, we first note that the hours of daylight oscillate with a period of 12
months. With a low of 8.5 and a high of 16, the midline will be halfway between these
16 +8.5

values, at =12.25. The amplitude will be half the difference between the

-85

highest and lowest values: 16 = 3.75, or equivalently the distance from the

midline to the high or low value, 16-12.25=3.75. Letting January be t = 0, the graph
starts at the lowest value, so it can be modeled as a flipped cosine graph. Putting this
together, we get a model:

T 61

h(t) =-3.75 COS[—I) +12.25 1t

6 Iy

101

-cos(t) represents the flipped cosine, ez

3.75 is the amplitude, oT

12.25 is the midline, T

21 7 . 1
26 corresponds to the horizontal stretch, VRN RN YT Y

found by using the ratio of the “original period / new period”
h(t) is our model for hours of day light t months after January.

To find when there will be 14 hours of daylight, we solve h(t) = 14.

14 =-3.75 cos(%tj +12.25 Isolating the cosine
1.75=-3.75 cos(%t) Subtracting 12.25 and dividing by -3.75
_in = cos| Zt Using the inverse

3.75 6

* http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html
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Zt=cos™ _in ~ 2.0563 multiplying by the reciprocal

6 3.75

t = 2.0563 8 =3.927 t=3.927 months past January
T

There will be 14 hours of daylight 3.927 months into the year, or near the end of April.

While there would be a second time in the year when there are 14 hours of daylight,
since we are planting a garden, we would want to know the first solution, in spring, so
we do not need to find the second solution in this case.

Try it Now

2. The author’s 160

monthly gas usage 140 -

(in therms) is shown 120 H 1 [

here. Find a S i

function to model 6044 I < | i

the data. a0 HH H H :r _’: a
200 — H — —| |—|—|—| I— —

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Example 6

An object is connected to the wall with a spring that has a

natural length of 20 cm. The object is pulled back 8 cm past W
the natural length and released. The object oscillates 3 times

per second. Find an equation for the horizontal position of the

object ignoring the effects of friction. How much time during each cycle is the object
more than 27 cm from the wall?

If we use the distance from the wall, x, as the desired output, then the object will
oscillate equally on either side of the spring’s natural length of 20, putting the midline
of the function at 20 cm.

If we release the object 8 cm past the natural length, the amplitude of the oscillation will
be 8 cm.

We are beginning at the largest value and so this function can most easily be modeled
using a cosine function.

Since the object oscillates 3 times per second, it has a frequency of 3 and the period of
one oscillation is 1/3 of second. Using this we find the horizontal compression using the

ratios of the periods: 27 =6r.
1/3
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Using all this, we can build our model:
X(t) = 8cos(67t)+ 20

To find when the object is 27 cm from the wall, we can solve x(t) = 27
27 =8cos(67t)+ 20 Isolating the cosine

7 =8cos(67t)

g = cos(67rt) Using the inverse

67t = cosl(gj ~ 0.505

~0.505
67

t =0.0268

Based on the shape of the graph, we can
conclude that the object will spend the first
0.0268 seconds more than 27 cm from the
wall. Based on the symmetry of the function,
the object will spend another 0.0268 seconds
more than 27 cm from the wall at the end of
the cycle. Altogether, the object spends
0.0536 seconds each cycle at a distance 1
greater than 27 cm from the wall. 10+

or 02 03 04 05 06 0.7 0.8 09 ]

In some problems, we can use trigonometric functions to model behaviors more
complicated than the basic sinusoidal function.

Example 7

A rigid rod with length 10 cm is attached
to a circle of radius 4cm at point A as
shown here. The point B is able to freely

move along the horizontal axis, driving a /40 10cm
piston®. If the wheel rotates 0
counterclockwise at 5 revolutions per

second, find the location of point B as a
function of time. When will the point B
be 12 cm from the center of the circle?

A

_lw

To find the position of point B, we can begin by finding the coordinates of point A.
Since it is a point on a circle with radius 4, we can express its coordinates as
(4cos(0),4sin( 8)) , where @ is the angle shown.

® For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/enginel.gif



http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif
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The angular velocity is 5 revolutions per second, or equivalently 10m radians per
second. After t seconds, the wheel will rotate by 6 =107t radians. Substituting this,

we can find the coordinates of A in terms of t.
(4cos(10xt),4sin(10t))

Notice that this is the same value we would have obtained by observing that the period
of the rotation is 1/5 of a second and calculating the stretch/compression factor:

“original” 2z _
new %

Now that we have the coordinates of the point
A, we can relate this to the point B. By A

drawing a vertical line segment from A to the 10 cm
horizontal axis, we can form a right triangle. B

The height of the triangle is the y coordinate b
of the point A: 4sin(10xt). Using the
Pythagorean Theorem, we can find the base

length of the triangle:

(4sin(107t))" +b* =102
b? =100-16sin”(10xt)
b = /100 -16sin?(107t)

10z

Looking at the x coordinate of the point A, we can see that the triangle we drew is
shifted to the right of the y axis by 4cos(10xt). Combining this offset with the length

of the base of the triangle gives the x coordinate of the point B:
X(t) = 4c0s(107t) + /100 —165in? (107zt)

To solve for when the point B will be 12 cm from the center of the circle, we need to
solve x(t) = 12.

12 =4cos(10xt) + \/100 —16sin®(107t) Isolate the square root
12— 4cos(107t) = {100 —16sin? (107t) Square both sides
(12 — 4(:os(1O7rt))2 =100-16sin’(107t) Expand the left side

144 —96 cos(10xt) +16 cos® (107t) =100 —16sin®(10zt)  Move all terms to the left
44 —96cos(107t) +16 cos’ (107t) +16sin®(107t) =0 Factor out 16
4496 cos(107rt) +16( cos® (107t) +sin® (107t) ) = 0

At this point, we can utilize the Pythagorean Identity, which tells us that
cos’ (107t) +sin®(107t) =1.
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Using this identity, our equation simplifies to

44 —-96c0s(107t)+16=0 Combine the constants and move to the right side
—96 cos(10xt) =—60 Divide
cos(10zt) = % Make a substitution

cos(u) = %

u= cos‘l(g—O] ~ 0.896 By symmetry we can find a second solution

u=27-0.896 =5.388 Undoing the substitution
107t =0.896, so t = 0.0285

107t =5.388,s0t=0.1715

The point B will be 12 cm from the center of the circle 0.0285 seconds after the process
begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of
those values.

Important Topics of This Section

Modeling with trig equations
Modeling with sinusoidal functions
Solving right triangles for angles in degrees and radians

Try it Now Answers
1. Angle of elevation for the cable is 71.69 degrees and the cable is 73.21 m long

2. Approximately G(t) = 66cos(%(t—l)j+87
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Section 2.5 Exercises

In each of the following triangles, solve for the unknown side and angles.

1. 2. B

a 7

Find a possible formula for the trigonometric function whose values are in the following
tables.

5.

7. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature for the day is 63 degrees and the low
temperature of 37 degrees occurs at 5 AM. Assuming t is the number of hours since
midnight, find an equation for the temperature, D, in terms of t.

8. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature for the day is 92 degrees and the low
temperature of 78 degrees occurs at 4 AM. Assuming t is the number of hours since
midnight, find an equation for the temperature, D, in terms of t.

9. A population of rabbits oscillates 25 above and below an average of 129 during the
year, hitting the lowest value in January (t = 0).
a. Find an equation for the population, P, in terms of the months since January, t.
b. What if the lowest value of the rabbit population occurred in April instead?



10.

11.

12.

13.

14.

15.

16.

17.

18.
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A population of elk oscillates 150 above and below an average of 720 during the year,
hitting the lowest value in January (t = 0).
a. Find an equation for the population, P, in terms of the months since January, t.
b. What if the lowest value of the rabbit population occurred in March instead?

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature of 105 degrees occurs at 5 PM and the
average temperature for the day is 85 degrees. Find the temperature, to the nearest
degree, at 9 AM.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature of 84 degrees occurs at 6 PM and the
average temperature for the day is 70 degrees. Find the temperature, to the nearest
degree, at 7 AM.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature varies between 47 and 63 degrees during the day
and the average daily temperature first occurs at 10 AM. How many hours after
midnight does the temperature first reach 51 degrees?

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature varies between 64 and 86 degrees during the day
and the average daily temperature first occurs at 12 AM. How many hours after
midnight does the temperature first reach 70 degrees?

A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 6 minutes. How many
minutes of the ride are spent higher than 13 meters above the ground?

A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 10 minutes. How many
minutes of the ride are spent higher than 27 meters above the ground?

The sea ice area around the North Pole fluctuates between about 6 million square
kilometers in September to 14 million square kilometers in March. Assuming
sinusoidal fluctuation, during how many months are there less than 9 million square
kilometers of sea ice?

The sea ice area around the South Pole fluctuates between about 18 million square
kilometers in September to 3 million square kilometers in March. Assuming
sinusoidal fluctuation, during how many months are there more than 15 million
square kilometers of sea ice?
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19.

20.

21.

A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per
breath to increase and decrease in a sinusoidal manner, as a function of time. For one
particular patient with this condition, a machine begins recording a plot of volume per
breath versus time (in seconds). Let b(t) be a function of time t that tells us the
volume (in liters) of a breath that starts at time t. During the test, the smallest volume
per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the
test. The largest volume per breath is 1.8 liters and this first occurs for a breath
beginning 55 seconds into the test. [UW]

a. Find a formula for the function b(t) whose graph will model the test data for this

patient.
b. If the patient begins a breath every 5 seconds, what are the breath volumes during
the first minute of the test?

Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the
water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides.
Suppose there are two high tides and two low tides every day and the height of the
tide varies sinusoidally. [UW]

a. Find a formula for the function y=h(t) that computes the height of the tide above

low tide at time t. (In other words, y = 0 corresponds to low tide.)
b. What is the tide height at 11:00 a.m.?

A communications satellite orbits the earth t
miles above the surface. Assume the radius
of the earth is 3,960 miles. The satellite can Earth
only “see” a portion of the earth’s surface,

bounded by what is called a horizon circle.

This leads to a two-dimensional cross- horizon circle
sectional picture we can use to study the size
of the horizon slice: [UW]

satellite

center of Earthy

satellite

a. Find a formula for o in terms of t. Earth

b. 1f t =30,000 miles, what is a? What
percentage of the circumference of the <
earth is covered by the satellite? What | t
would be the minimum number of such CROSS-SECTION
satellites required to cover the circumference?

c. Ift=1,000 miles, what is a? What percentage of the circumference of the earth is
covered by the satellite? What would be the minimum number of such satellites
required to cover the circumference?

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference
is covered by the satellite. What is the required distance t?
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket
filled with nitrous oxide. According to her design, if the atmospheric pressure exerted
on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket

will explode. Tiff worked from a formula p =14.7e "™ pounds/sq.in. for the

atmospheric pressure h miles above sea level. Assume that the rocket is launched at
an angle of o above level ground at sea level with an initial speed of 1400 feet/sec.
Also, assume the height (in feet) of the rocket at time t seconds is given by the

equation y(t)=-16t*+1400sin(a)t. [UW]

a. At what altitude will the rocket explode?

b. If the angle of launch is o = 12°, determine the minimum atmospheric pressure
exerted on the rocket during its flight. Will the rocket explode in midair?

c. If the angle of launch is o = 82°, determine the minimum atmospheric pressure
exerted on the rocket during its flight. Will the rocket explode in midair?

d. Find the largest launch angle a so that the rocket will not explode.
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Chapter 3: Trigonometric Equations and Identities

In the last two chapters we have used basic definitions and relationships to simplify
trigonometric expressions and solve trigonometric equations. In this chapter we will look
at more complex relationships. By conducting a deeper study of trigonometric identities
we can learn to simplify complicated expressions, allowing us to solve more interesting
applications.

Section 3.1 Solving Trigonometric Equations with Identities..........c.ccoovviiinnnnnne 119
Section 3.2 Addition and Subtraction 1dentities ............ccocvvviiiniiiiene e 127
Section 3.3 Double Angle 1dentities ..........ccooveiiiiici e 141
Section 3.4 Modeling Changing Amplitude and Midline..........c.ccccooviveiieeiecininenee. 152
Section 3.5 Polar COOMINALES........c.civeieiieieeie e es 161

Section 3.1 Solving Trigonometric Equations with Identities

In the last chapter, we solved basic trigonometric equations. In this section, we explore
the techniques needed to solve more complicated trig equations.

Building from what we already know makes this a much easier task.
Consider the function f (x) = 2x* +x. If you were asked to solve f (x) =0, it require
simple algebra:

2x2+x=0 Factor
X(2x+1) =0 Giving solutions
x=0 or x= —l

2

Similarly, for g(t) =sin(t), if we asked you to solve g(t) =0, you can solve this using

unit circle values:
sin(t) =0 for t =0, 7, 2z and so on.

Using these same concepts, we consider the composition of these two functions:
f (g(t)) = 2(sin(t))? + (sin(t)) = 2sin *(t) + sin(t)

This creates an equation that is a polynomial trig function. With these types of functions,
we use algebraic techniques like factoring and the quadratic formula, along with
trigonometric identities and techniques, to solve equations.

As a reminder, here are some of the essential trigonometric identities that we have
learned so far:

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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\dentities |

Pythagorean Identities
cos® (t) +sin?(t) =1 1+ cot?(t) = csc? (t) 1+ tan?(t) = sec’(t)

Negative Angle Identities
sin(—t) = —sin(t) cos(—t) = cos(t) tan(—t) = —tan(t)
csc(—t) = —csc(t) sec(—t) =sec(t) cot(—t) = —cot(t)

Reciprocal Identities

Solve 2sin?(t) +sin(t) = 0 for all solutions with 0 <t < 2.

This equation kind of looks like a quadratic equation, but with sin(t) in place of an
algebraic variable (we often call such an equation “quadratic in sine”). As with all
quadratic equations, we can use factoring techniques or the quadratic formula. This
expression factors nicely, so we proceed by factoring out the common factor of sin(t):

sin(t)(2sin(t) +1)=0

Using the zero product theorem, we know that the product on the left will equal zero if
either factor is zero, allowing us to break this equation into two cases:
sin(t)y=0 or 2sin(t)+1=0

We can solve each of these equations independently

sin(t) =0 From our knowledge of special angles
t=0ort=mn
2sin(t)+1=0
sin(t) = —% Again from our knowledge of special angles
t= _ﬂ. ort= 11_7[

6

Altogether, this gives us four solutions to the equation on 0 <t <27 :
Iz 1lx

t=0,7[,_,_ 34
6 6 ;

24
We could check these
answers are reasonable by Iy
graphing the function and

comparing the zeros. w6 w3 w2 2m3 Salé T Tafé 43 3m2 Smf3 1lnf6 2
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Example 2

Solve 3sec’(t) —5sec(t) —2 =0 for all solutions with 0 <t < 2.

Since the left side of this equation is quadratic in secant, we can try to factor it, and
hope it factors nicely.

If it is easier to for you to consider factoring without the trig function present, consider
using a substitutionu = sec(t) , resulting in 3u® —5u—2 =0, and then try to factor:

3u’-5u-2=Bu+)u-2)

Undoing the substitution,
(3sec(t) +1)(sec(t)—2) =0

Since we have a product equal to zero, we break it into the two cases and solve each
separately.

3sec(t)+1=0 Isolate the secant
1 . .
sec(t) = 3 Rewrite as a cosine
! = 1 Invert both sides
cos(t) 3
cos(t) =-3

Since the cosine has a range of [-1, 1], the cosine will never take on an output of -3.
There are no solutions to this case.

Continuing with the second case,

sec(t)—2=0 Isolate the secant
sec(t) =2 Rewrite as a cosine

! = Invert both sides
cos(t)

1 .. .
cos(t) = 5 This gives two solutions
1= ort=2

3 3

20+

These are the only two solutions on the interval.

By utilizing technology to graph 104

f (t) =3sec?®(t) —5sec(t) — 2, a look at a graph s
confirms there are only two zeros for this function o
on the interval [0, 27), which assures us that we NN

didn’t miss anything. ST
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Try it Now

’ 1. Solve 2sin?(t) +3sin(t) +1= 0 for all solutions with 0 <t <27 .

When solving some trigonometric equations, it becomes necessary to first rewrite the
equation using trigonometric identities. One of the most common is the Pythagorean

Identity, sin? (&) + cos*(#) =1which allows you to rewrite sin*(8) in terms of cos®(0)
or vice versa,

sin®(0) =1—cos*(0)

cos®(0) =1-sin’(6)

This identity becomes very useful whenever an equation involves a combination of sine
and cosine functions.

Solve 2sin?(t) —cos(t) =1 for all solutions with 0<t < 27.

Since this equation has a mix of sine and cosine functions, it becomes more complicated
to solve. It is usually easier to work with an equation involving only one trig function.
This is where we can use the Pythagorean Identity.

2sin % (t) —cos(t) =1 Using sin?(8) =1-cos*(0)
2(1—c052(t))—cos(t) =1 Distributing the 2
2 —2cos”(t) —cos(t) =1

Since this is now quadratic in cosine, we rearrange the equation so one side is zero and
factor.

—2c0s?(t) —cos(t) +1=0 Multiply by -1 to simplify the factoring
2cos”(t) +cos(t)—1=0 Factor
(2cos(t) —1)cos(t) +1) =0

This product will be zero if either factor is zero, so we can break this into two separate
cases and solve each independently.
2cos(t)—1=0 or cos(t)+1=0

cos(t) = % or cos(t) = -1
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Try it Now

’ 2. Solve 2sin?(t) = 3cos(t) for all solutions with 0<t < 27.

In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant,
cosecant, and cotangent as part of solving an equation.

Solve tan(x) = 3sin(x) for all solutions with 0 < x < 2r.

With a combination of tangent and sine, we might try rewriting tangent
tan(x) = 3sin( x)

sin( )
cos(x)

= 3sin(x) Multiplying both sides by cosine

sin( x) = 3sin( x) cos(x)

At this point, you may be tempted to divide both sides of the equation by sin(x). Resist
the urge. When we divide both sides of an equation by a quantity, we are assuming the
quantity is never zero. In this case, when sin(x) = 0 the equation is satisfied, so we’d
lose those solutions if we divided by the sine.

To avoid this problem, we can rearrange the equation so that one side is zero®.
sin( x) —3sin(x)cos(x) =0 Factoring out sin(x) from both parts
sin(x)(1—3cos(x)) =0

From here, we can see we get solutions when sin(x) =0 or 1-3cos(x) =0.
Using our knowledge of the special angles of the unit circle

sin(x) =0 whenx=0orx=m.

For the second equation, we will need the inverse cosine.

1-3cos(x) =0
cos(x) = % Using our calculator or technology
X = cosl[%j ~1.231 Using symmetry to find a second solution

X=27—-1.231=5.052

We have four solutionson 0< x < 2x:
x=0,1.231,x, 5.052

! You technically can divide by sin(x) as long as you separately consider the case where sin(x) = 0. Since it
is easy to forget this step, the factoring approach used in the example is recommended.
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Try it Now
\ 3. Solve sec(8) = 2cos() to find the first four positive solutions.

Example 5
Solve 4 +3cos(¢9) = 2cot(49)tan (0) for all solutions with 0<9< 2.

sec’(6)
+3cos(@)=2cot(O)tan(O Using the reciprocal identities
gy 308 0)=2c0t(0)tan(0) g the recip
Acos?(0) +3cos(0) = 2—=—tan(6)  Simplifying
tan(0)

4cos” (6)+3cos(6) Subtracting 2 from each side

=2
4cos” (6)+3cos(8)-2=0

This does not appear to factor nicely so we use the quadratic formula, remembering that
we are solving for cos(6).

cos(0) = —3£y3" -4(4)(-2) _-3+/41

2(4) 8

Using the negative square root first,

—3-41
8

cos(@) = =-1.175

This has no solutions, since the cosine can’t be less than -1.

Using the positive square root,

—3+4/41
8

cos(@) = =0.425

6 =cos™ (0.425) =1.131 By symmetry, a second solution can be found
0=27r-1.131=5.152

Important Topics of This Section
Review of Trig Identities
Solving Trig Equations
By Factoring
Using the Quadratic Formula
Utilizing Trig Identities to simplify
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Try it Now Answers
1 t=17 37 Uz

6 2 6
2 1=Z %

3 3
3_9=£,3_”,5_,7_”

4 4 4 4
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Section 3.1 Exercises

Find all solutions on the interval 0<@< 2.
1. 2sin(0)=-1 2. 2sin(9)=+3 3. 2cos(0)=1 4. 2c0s(6) =—/2

Find all solutions.

5. 25in[%xj =1 6. Zsin(%szﬁ 7. Zcos(Zt):—\/? 8. 2cos(3t)=-1

9.3cos[%xj:2 10.8cos(%xj=6 11. 7sin(3t)=-2  12. 4sin(4t)=1

Find all solutions on the interval [0,27).

13. 10sin(x)cos(x) =6cos(x) 14. -3sin(t) =15cos(t)sin(t)
15. csc(2x)—-9=0 16. sec(20)=3
17. sec(x)sin(x)—2sin(x)=0 18. tan(x)sin(x)—sin(x)=0
19. sin? x=2 20. cos? 0 =

4 2
21. sec’x=7 22. csc’t=3
23. 2sin®w+3sinw+1=0 24. 8sin’ x+6sin(x)+1=0
25. 2cos’t+cos(t)=1 26. 8cos® (0)=3-2cos(0)
27. 4cos®(x) -4 =15co0s(x) 28. 9sin(w)—2=4sin’*(w)
29. 12sin”(t)+cos(t)-6=0 30. 6cos?(x)+7sin(x)-8=0
31. cos® ¢ =—6sing 32. sin’t = cost
33. tan®(x) =3tan(x) 34. cos®(t) =—cos(t)
35. tan®(x) =tan(x) 36. tan®(x)—9tan(x)=0
37. 4sin(x)cos(x)+2sin(x)—2cos(x)-1=0

)cos

38. 2sin(x)cos(x)—sin(x)+2cos(x)-1=0

39. tan(x)—3sin(x)=0 40. 3cos(x)=cot(x)

41. 2tan®(t) =3sec(t) 42. 1-2tan(w) = tan’ (w)
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Section 3.2 Addition and Subtraction Identities
In this section, we begin expanding our repertoire of trigonometric identities.

Identities

The sum and difference identities

cos(a — ) = cos(a) cos( ) + sin( ) sin( )
cos(a + ) = cos(e) cos( ) —sin( ) sin( )
sin(a + ) = sin( ) cos( ) + cos(ea) sin( )
sin(a — B) =sin(a) cos(f) — cos(ar) sin( )

We will prove the difference of angles identity for cosine. The rest of the identities can
be derived from this one.

Proof of the difference of angles identity for cosine
Consider two points on a unit circle:
P at an angle of o from the positive x axis
with coordinates (cos(c),sin( )
Q at an angle of B with coordinates P

(cos(B),sin( B))

Notice the measure of angle POQ is a — .
Label two more points:

C at an angle of a — 3, with coordinates
(cos(a - B).sin(a— 3)),

D at the point (1, 0).

Notice that the distance from C to D is the
same as the distance from P to Q because
triangle COD is a rotation of triangle POQ.

Using the distance formula to find the distance from P to Q yields

J(cos(a) —cos(B))’ +(sin(a) —sin( 5))’

Expanding this
\/cosz () — 2cos(ex) cos(B) + cos®(B) +sin * (&) — 2sin( e) sin( ) +sin > (5)

Applying the Pythagorean Identity and simplifying
\J2—2cos(a) cos() — 2sin(a)sin( B)
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Similarly, using the distance formula to find the distance from C to D

J(cos(a — £) 1) +(sin(e ~ ) - OF

Expanding this
Jeos? (o — B) —2cos(ar — B) +1+sin?(a — )

Applying the Pythagorean Identity and simplifying
J—2cos(a — fB) +2

Since the two distances are the same we set these two formulas equal to each other and
simplify

\J2—2cos(a) cos(B) — 2sin(a)sin( B) = /- 2cos(a — B) +2

2—2cos(a)cos(f) — 2sin(«)sin( B) = -2cos(ax — B) + 2

cos(a) cos( ) + sin( ) sin( B) = cos(ax — )

Establishing the identity.

1. By writing cos(a + f3) as cos(a —(— £3)), show the sum of angles identity for cosine
follows from the difference of angles identity proven above.

The sum and difference of angles identities are often used to rewrite expressions in other
forms, or to rewrite an angle in terms of simpler angles.

Example 1

Find the exact value of cos(75°).
Since 75° =30°+45°, we can evaluate cos(75°) as
cos(75°) = cos(30° + 45°) Apply the cosine sum of angles identity
= €0s(30°) cos(45°) —sin(30°) sin( 45°) Evaluate
2 2 2 2
62
4

2. Find the exact value of sin (%)
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Example 2

Rewrite sin (x - %} in terms of sin(x) and cos(x).

sin (x — %j Use the difference of angles identity for sine

=sin (x)cos(%) —cos(x)sin (%) Evaluate the cosine and sine and rearrange

Additionally, these identities can be used to simplify expressions or prove new identities

Example 3

sin(a+b) tan(a) + tan(b)

Prove — = .
sinfa—b) tan(a)—tan(b)

As with any identity, we need to first decide which side to begin with. Since the left
side involves sum and difference of angles, we might start there

sin(a+Db)
sin(a—b)
_sin(a) cos(b) + cos(a)sin(b)
~ sin(a) cos(b) — cos(a)sin(b)

Apply the sum and difference of angle identities

Since it is not immediately obvious how to proceed, we might start on the other side,
and see if the path is more apparent.
tan(a) + tan(b)

Rewriting the tangents using the tangent identit
tan(a) — tan(b) J J J J y

sin(a) N sin(b)
cos(a) cos(b)
~sin(a)  sin(b)
cos(a) - cos(b)

Multiplying the top and bottom by cos(a)cos(b)

(sin( a)  sin( E) Jcos(a) cos(b)

_ Lcos(a) _ cos(b) Distributing and simplifying
sin(a) _ sin(b) 1 . (a) cos(b)
cos(a) cos(b)
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_sin(a)cos(a) +sin(b) cos(b)
- sin(a) cos(a) —sin(b) cos(b)

From above, we recognize this

_sin(a+b)

== Establishing the identity
sin(a—b)

These identities can also be used to solve equations.

Example 4

Solve sin( x)sin(2x) + cos(x) cos(2x) = g .

By recognizing the left side of the equation as the result of the difference of angles
identity for cosine, we can simplify the equation

sin( x) sin( 2x) + cos(x) cos(2x) = ? Apply the difference of angles identity
cos(x —2x) = %

cos(—x) = ? Use the negative angle identity

cos(x) = %

Since this is a special cosine value we recognize from the unit circle, we can quickly
write the answers:

x =" 127k
fl , Where k is an integer
X = ?ﬂ- + 27Zk

Combining Waves of Equal Period
A sinusoidal function of the form f (x) = Asin(Bx + C) can be rewritten using the sum of
angles identity.

Rewrite f (x) =4sin (Sx + %) as a sum of sine and cosine.
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Using the sum of angles identity
4sin (3X + zj
3
= 4[sin (SX)COS(%j +cos(3x)sin (%D Evaluate the sine and cosine
= 4{sin (3x)- % +c0s(3x)- %J Distribute and simplify
= 25in (3x) + 2+/3 cos(3x)

Notice that the result is a stretch of the sine added to a different stretch of the cosine, but
both have the same horizontal compression, which results in the same period.

We might ask now whether this process can be reversed — can a combination of a sine
and cosine of the same period be written as a single sinusoidal function? To explore this,
we will look in general at the procedure used in the example above.

f(x) = Asin(Bx +C) Use the sum of angles identity
= A(sin( Bx) cos(C) + cos(Bx)sin(C)) Distribute the A
= Asin(Bx) cos(C) + Acos(Bx)sin(C) Rearrange the terms a bit

= Acos(C)sin( Bx) + Asin( C) cos(Bx)

Based on this result, if we have an expression of the form msin( Bx) + ncos(Bx) , we

could rewrite it as a single sinusoidal function if we can find values A and C so that

msin( Bx) + ncos(Bx) = Acos(C)sin(Bx) + Asin(C) cos(Bx), which will require that:
m

m=Acos(C) _ 5 = cos(C)

_ Asin(C which can be rewritten as
n=Asin(C) " _sin(C)

A

To find A,
m? +n? = (Acos(C))* + (Asin(C))’
= A%cos?(C) + A%sin?(C)
= A’ (cosz(C) +sin 2(C)) Apply the Pythagorean Identity and simplify
= A2

Rewriting a Sum of Sine and Cosine as a Single Sine

To rewrite msin(Bx) + ncos(Bx) as Asin(Bx + C)

A? =m? +n?, cos(C) :m, and sin(C) _n
A A
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We can use either of the last two equations to solve for possible values of C. Since there
will usually be two possible solutions, we will need to look at both to determine which
quadrant C is in and determine which solution for C satisfies both equations.

Rewrite 4\/§sin( 2X) —4cos(2x) as a single sinusoidal function.

Using the formulas above, A? = (4J§)2 +(-4)* =16-3+16 =64,50 A= 8.
Solving for C,

cos(C)=¥:£,50C:% orC:ll?”.

However, since sin(C) = _?4 = —%, the angle that works for both is C = 11?”

Combining these results gives us the expression

8sin (ZX + 11—7[}
6
3. Rewrite —3v/25sin(5x) +3v2 cos(5x) as a single sinusoidal function.

Rewriting a combination of sine and cosine of equal periods as a single sinusoidal
function provides an approach for solving some equations.

Example 7

Solve 3sin(2x) +4cos(2x) =1 to find two positive solutions.

To approach this, since the sine and cosine have the same period, we can rewrite them
as a single sinusoidal function.

A? =(3) +(4)° =25,50 A=5
cos(C) = g ,50 C = cos‘l(g) ~0.927 or C =27 —-0.927 =5.356

Since sin(C) = g , a positive value, we need the angle in the first quadrant, C = 0.927.

Using this, our equation becomes
5sin(2x+0.927)=1 Divide by 5

sin(2x +0.927) = % Make the substitution u = 2x + 0.927
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1

sin(u) = : The inverse gives a first solution
u =sin 1(%) ~ 0.201 By symmetry, the second solution is
u=7-0.201=2940 A third solution is

u=2r+0.201 =6.485

Undoing the substitution, we can find two positive solutions for x.

2x+0.927 =0.201 or 2x+0.927 =2.940 or 2x+0.927 = 6.485
2x =-0.726 2x =2.013 2x =5.558

x =-0.363 x =1.007 X =2.779

Since the first of these is negative, we eliminate it and keep the two positive solutions,
x=1.007 and x=2.779 .

The Product-to-Sum and Sum-to-Product Identities

Identites ]
The Product-to-Sum ldentities

sin( r) cos(B) = %(sin(a + B)+sin(a— B))
sin(a)sin( ) = %(cos(a — p)—cos(a + B))

cos(a) cos(f) = %(cos(a + ) +cos(a — B3))

We will prove the first of these, using the sum and difference of angles identities from the
beginning of the section. The proofs of the other two identities are similar and are left as
an exercise.

Proof of the product-to-sum identity for sin(a)cos(s)

Recall the sum and difference of angles identities from earlier
sin(a + ) = sin( ) cos( ) + cos(e) sin( )

sin(a — B) =sin(a) cos(f) — cos(a) sin( )

Adding these two equations, we obtain
sin(a + ) +sin(a — B) = 2sin(«a) cos( )

Dividing by 2, we establish the identity
sin( &) cos(B) = %(sin(a + B)+sin(a - B))



134 Chapter 3

Example 8
Write sin(2t)sin(4t) as a sum or difference.

Using the product -to-sum identity for a product of sines

S|n(2t)5|n(4t)_2(cos(2t 4t) — cos(2t + 4t))

= %(cos(—Zt) —cos(6t)) If desired, apply the negative angle identity

= %(cos(Zt) —cos(6t)) Distribute

1 1
= —cos(2t) — —cos(6t
5 (2t) 5 (6t)

Try it Now

4. Evaluate cos ll coS z
12 12

Identities |
The Sum-to-Product Identities

sin(u)+sin(v)= Zsm( er Jcos(uj
sin(u)—sin(v) = 2sin (%) cos[u—zvj

cos(u)+cos(v) = Zcos(quVjco

COS(U)—COS(V)z—Zsin( Js.n(u Vj

2

We will again prove one of these and leave the rest as an exercise.

Proof of the sum-to-product identity for sine functions
We begin with the product-to-sum identity

sin( &) cos(fB) = = (sm(a+,8)+sm(a 3)

We define two new variables:
u=a+p

v=a-p
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Adding these equations yields u+v =2«, giving o = urv

Subtracting the equations yields u—v=24,0or g = u-v

Substituting these expressions into the product-to-sum identity above,

sin(u ;Vjcos(u ;V) = %(sin (u)+sin(v)) Multiply by 2 on both sides

25in ( - er VJ cos( ! ; Vj =sin(u)+sin(v) Establishing the identity

Example 9
Evaluate cos(15°) —cos(75°) .

Using the sum-to-product identity for the difference of cosines,
c0s(15°) — cos(75°)

:—23in(15 75 jsin(l5 —75 j Simplify
2 2
= —2sin(45°)sin (- 30°) Evaluate
_, N2 -1 2
2 2 2

Example 10

Prove the identity cos(4t) — cos(2t) _ —tan(t).

sin( 4t) + sin( 2t)

Since the left side seems more complicated, we can start there and simplify.
cos(4t) — cos(2t)

sin( 4t) + sin( 2t)

) (4t+2tj ) (4t—2t}
—2sin Sin
3 2 2

Using the sum-to-product identities

o (4t+2t) (4t—2tJ Simplify
2sin cos
2 2
S 2_9"” (3t)sin(t) Simplify further
2sin (3t)cos(t)
_ s ®) Rewrite as a tangent
cos(t)

= —tan(t) Establishing the identity
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Try it Now
5. Notice that, using the negative angle identity, sin(u)—sin(v)=sin(u)+sin(-v). Use
this along with the sum of sines identity to prove the sum-to-product identity for

sin(u)—sin(v).

xample 11

Solve sin(zt)+sin(3zt)=cos(xzt) for all solutions with 0 <t < 2.

In an equation like this, it is not immediately obvious how to proceed. One option
would be to combine the two sine functions on the left side of the equation. Another
would be to move the cosine to the left side of the equation, and combine it with one of
the sines. For no particularly good reason, we’ll begin by combining the sines on the
left side of the equation and see how things work out.

sin(7t)+sin(37t) = cos(rt) Apply the sum to product identity on the left
2sin (ﬁt +237rt)cos(”t _237rtj =cos(zt) Simplify

2sin(2zxt)cos(-xt) = cos(xt) Apply the negative angle identity
2sin(2xt)cos(zt) = cos(xt) Rearrange the equation to be 0 on one side
2sin(2xt)cos(zt)—cos(zt) =0 Factor out the cosine
cos(7t)(2sin(27t)-1)=0

Using the Zero Product Theorem we know that at least one of the two factors must be
zero. The first factor, cos(zt), has period P = 27y , S0 the solution interval of
T

0 <t < 2 represents one full cycle of this function.

cos(zt)=0 Substitute u =zt
cos(u)=0 On one cycle, this has solutions
u :% oru= 377[ Undo the substitution

The second factor, 2sin(2xt)-1, has period of P = 2—” =1, so the solution interval
/2

0 <t <2 contains two complete cycles of this function.
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2sin(27t)-1=0 Isolate the sine

sin(Zﬂt):% u=2srt

sin(u) = % On one cycle, this has solutions

u= % oru= % On the second cycle, the solutions are

u=2rxr +% = 13?” or u=2r+ 5{ = 17?” Undo the substitution

27zt:£,80t:i
6

12
27rt=5—7r,80t=i
6 12
27zt:13—7[,sot:E
6 12

_Liz

2t 5 ,sot—17 -+

12

Altogether, we found six solutions on 0 /\
0 <t <2, which we can confirm by ' '
looking at the graph.
t_15113317
12'12'2'127° 212

Important Topics of This Section
The sum and difference identities
Combining waves of equal periods
Product-to-sum identities
Sum-to-product identities
Completing proofs

Try it Now Answers
cos(a + ) =cos(a — (—4))
cos(ar) cos(—p) +sin( @) sin(—f)
cos(a) cos(f) + sin(e)(—sin( )
cos(er) cos(f) —sin( ) sin( 5)
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, J6-+2
' 4
3. 6sin (5x + 3—”)
4
4 Z2° E
4
5. sin(u) —sin(v) Use negative angle identity for sine
sin(u) +sin(-v) Use sum-to-product identity for sine
2sin (Mj COS(M}
2 2 Eliminate the parenthesis
. (u — vj (u + v)
2sin cos
2 2 Establishing the identity
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Section 3.2 Exercises

Find an exact value for each of the following.
1. sin(75°) 2. sin(195°) 3. cos(165°) 4. cos(345°)

5. cos(zj 6. cos(£] 7. sin(S—ﬂj 8. sin(&]
12 12 12 12

Rewrite in terms of sin(x) and cos(x).
9. sin x+& 10. sin x—3—” 1. cos x—5—” 12. cos x+2—ﬂ
6 4 6 3
13. csc z—t 14. sec Z—W 15. cot Z—x 16. tan z—x
2 2 2 2

Simplify each expression.
Rewrite the product as a sum.

-

17. 16sin(16x)sin(11x) 18. 20cos(36t)cos(6t)
19. 2sin(5x)cos(3x) 20. 10cos(5x)sin (10x)
Rewrite the sum as a product.

21. cos(6t)+cos(4t) 22. cos(6u)+cos(4u)
23. sin(3x)+sin(7x) 24. sin(h)+sin(3h)

25. Given sin(a):§ and cos(b):—%, with a and b both in the interval {%;;J

a. Find sin(a+b) b. Find cos(a—b)

26. Given sin(a) :g and cos(b) :%, with a and b both in the interval [O%)

a. Find sin(a—b) b. Find cos(a+b)

Solve each equation for all solutions.

27. sin(3x)cos(6x)—cos(3x)sin(6x)=—0.9

28. sin(6x)cos(11x)—cos(6x)sin(11x)=-0.1

29. cos(2x)cos(x)+sin(2x)sin(x)=1
(

B3

(2x)
30. cos(5x)cos 3x)—sin(5x)sin(3x)=7
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Solve each equation for all solutions.
31. cos(5x)=—cos(2x)

32. sin(5x) =sin(3x)
33. cos(66)—cos(20) =sin(40)
34. cos(86)—cos(260) =sin(56)

Rewrite as a single function of the form Asin(Bx+C).

35. 4sin(x)—6cos(x) 36. —sin(x)—5cos(x)
37. 5sin(3x)+2cos(3x) 38. —3sin(5x)+4cos(5x)
Solve for the first two positive solutions.
39. —5sin(x)+3cos(x)=1 40. 3sin(x)+cos(x)=2
41. 3sin(2x)—5cos(2x)=3 42. —3sin(4x)—2cos(4x)=1
Simplify.
sin(7t)+sin(5t) 14 sin(9t)—sin(3t)
* cos(7t)+cos(5t) " cos(9t)+cos(3t)

Prove the identity.
tan(x)+1
44, tan(x+%}=L

1—-tan(x)
7 1-tan(t)
® tan[z_t] 1+tan(t)
46. cos(a+b)+cos(a—b)=2cos(a)cos(b)
cos(a+b) 1-tan(a)tan(b)
47. cos(a—b) 1+tan(a)tan(b)
18 Ian a+b) sin(a)cos(a)+sin(b)cos(b)

(
(a—b) sin(a)cos(a)-sin(b)cos(b)
49. 2sin(a+b)sin(a—b)=cos(2b)-cos(2a)
(

sin(x)+sin(y) anl Lixs
0. COS(X)+COS(y)_t (2( y)]

_©05(a+b) ) n(a)tan
>l cos(a)cos(b) 1-tan(a)tan(b)

52. cos(X+Y)cos(x—y)=cos’x—sin’y



Section 3.3 Double Angle Identities 141

Section 3.3 Double Angle Identities

Two special cases of the sum of angles identities arise often enough that we choose to
state these identities separately.

The double angle identities
sin(2a) = 2sin( ) cos(x)

cos(2a) = cos’(a)—sin?(a)
= 1-2sin’(a)
= 2cos’(a)-1

These identities follow from the sum of angles identities.

Proof of the sine double angle identity

sin( 2«)

=sin(a +a) Apply the sum of angles identity
= sin( a) cos(ex) + cos(a) sin( ) Simplify

= 2sin( &) cos(«x) Establishing the identity

1. Show cos(2a) = cos®(a) —sin *(«) by using the sum of angles identity for cosine.

For the cosine double angle identity, there are three forms of the identity stated because

the basic form, cos(2a) = cos®(ar) —sin? (), can be rewritten using the Pythagorean
Identity. Rearranging the Pythagorean Identity results in the

equality cos® () =1—sin*(«), and by substituting this into the basic double angle
identity, we obtain the second form of the double angle identity.

cos(2a) = cos® (ar) —sin () Substituting using the Pythagorean identity
cos(2a) =1—-sin?(a) —sin * () Simplifying
cos(2a) =1-2sin? ()
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Example 1

If sin(9) = g and @4 is in the second quadrant, find exact values for sin(26) and

cos(20) .

To evaluate cos(20) , since we know the value for sin(@) , we can use the version of the
double angle that only involves sine.

3

2
cos(20):1—23in2(9):1—2(gj =1- 18 _7

25 25
Since the double angle for sine involves both sine and cosine, we’ll need to first find

cos(8) , which we can do using the Pythagorean Identity.
sin?(0) +cos? () =1

(gj +cos’(0) =1

9
cos’(9) =1-—
) o

cos(d) = iJE = J_rﬂ
25 5

Since @ is in the second quadrant, we know that cos(d) <0, so
4
cos(f) =——
(9) c

Now we can evaluate the sine double angle

: . 3y 4 24
sin(26) = 2sin( @) cos(0) = Z(gj[— gj =0

Example 2

Simplify the expressions
a) 2cos?(12°)-1 b) 8sin(3x)cos(3x)

a) Notice that the expression is in the same form as one version of the double angle
identity for cosine: cos(26) = 2cos?(6) —1. Using this,
200s°(12°)—1 = cos(2-12°) = cos(24°)

b) This expression looks similar to the result of the double angle identity for sine.
8sin (3x)cos(3x) Factoring a 4 out of the original expression
4-2sin(3x)cos(3x) Applying the double angle identity

4sin(6x)
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We can use the double angle identities to simplify expressions and prove identities.

o cos(2t)
Simphity cos(t) —sin(t)

With three choices for how to rewrite the double angle, we need to consider which will
be the most useful. To simplify this expression, it would be great if the denominator
would cancel with something in the numerator, which would require a factor of

cos(t) —sin(t) in the numerator, which is most likely to occur if we rewrite the

numerator with a mix of sine and cosine.

cos(2t)
cos(t) —sin(t)
_cos?*(t) —sin > (t)
- cos(t) —sin(t)
= (cos(t) — sin(t))(cgs(t) hl sin(t)) Cancelling the common factor
cos(t) —sin(t)
= cos(t) + sin(t) Resulting in the most simplified form

Apply the double angle identity

Factor the numerator

Example 3
sec’(a)

Prove sec(2ar) = ————.
2-sec”(a)

Since the right side seems a bit more complicated than the left side, we begin there.
sec’ (o)
2 —sec’(a)
1
_ cos?(a)
1
 cos?(a)

Rewrite the secants in terms of cosine

At this point, we could rewrite the bottom with common denominators, subtract the
terms, invert and multiply, then simplify. Alternatively, we can multiple both the top

and bottom by cos?(«), the common denominator:

— = .cos’(a)
cos’ (@) -
= Distribute on the bottom

1 2
(2 - cosz(a)j -€cos° ()
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cos’ ()
2
cos”(@) Simplify
2cos’(a) - COSZ(OC) :
cos”(a)
= + Rewrite the denominator as a double angle
2c0s“(a) -1
= L Rewrite as a secant
cos(2a)
=sec(2a) Establishing the identity

2. Use an identity to find the exact value of cos®(75°)—sin?(75°).

As with other identities, we can also use the double angle identities for solving equations.

Solve cos(2t) = cos(t) for all solutions with 0<t <2r.

In general when solving trig equations, it makes things more complicated when we have
a mix of sines and cosines and when we have a mix of functions with different periods.
In this case, we can use a double angle identity to rewrite the cos(2t). When choosing
which form of the double angle identity to use, we notice that we have a cosine on the
right side of the equation. We try to limit our equation to one trig function, which we
can do by choosing the version of the double angle formula for cosine that only
involves cosine.

cos(2t) = cos(t) Apply the double angle identity

2cos” (t) —1 = cos(t) This is quadratic in cosine, so make one side 0
2cos” (t) —cos(t) —1=0 Factor

(2cos(t) +1)cos(t) —1) =0 Break this apart to solve each part separately
2cos(t)+1=0 or cos(t)-1=0 f

cos(t) = —% or cos(t) =1

tzz—ﬂort:4—” or t=0
3 3

Looking at a graph of cos(2t) and cos(t) shown
together, we can verify that these three solutions on [0, 27) seem reasonable.
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Example 5

A cannonball is fired with velocity of 100 meters per second. If it is launched at an
angle of 6, the vertical component of the velocity will be 100 sin(#) and the horizontal

component will be 100 cos(€) . Ignoring wind resistance, the height of the cannonball
will follow the equation h(t) = —4.9t* +100sin( &)t and horizontal position will follow

the equation x(t) =100 cos(€)t. If you want to hit a target 900 meters away, at what
angle should you aim the cannon?

To hit the target 900 meters away, we want x(t) = 900 at the time when the cannonball
hits the ground, when h(t) =0. To solve this problem, we will first solve for the time,
t, when the cannonball hits the ground. Our answer will depend upon the angle 6.

h(t)=0
—4.9t* +100sin(A)t =0 Factor
t(—4.9t +100sin(#)) =0 Break this apart to find two solutions
t=0or
—4.9t+100sin(8) =0 Solve for t
— 4.9t =-100sin(#)
[ 100 sin( &)
49

This shows that the height is O twice, once at t = 0 when the cannonball is fired, and
again when the cannonball hits the ground after flying through the air. This second
value of t gives the time when the ball hits the ground in terms of the angle 6. We
want the horizontal distance x(t) to be 900 when the ball hits the ground, in other words
100 sin( 0)

49

when t =

Since the target is 900 m away we start with

x(t) = 900 Use the formula for x(t)
100 cos(8)t = 900 Substitute the desired time, t from above
100 cos(6) 2225(9) _ g9 Simplify
1002 . : :

29 cos(0)sin(&) =900 Isolate the cosine and sine product
cos(d)sin( ) = 900(4.9)

1002
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The left side of this equation almost looks like the result of the double angle identity for
sine: sin(26) = 2sin(0)cos(#).

By dividing both sides of the double angle identity by 2, we get

%sin( 2a) =sin(a)cos(a) . Applying this to the equation above,

1. 900(4.9) .
—sin(20) = Multiply by 2
SSin(20) == ply by
sin(20) = w Use the inverse sine
100
20 =sin ‘{Mj ~1.080 Divide by 2
100
~1.080

0 — - 0.540, or about 30.94 degrees

Power Reduction and Half Angle Identities
Another use of the cosine double angle identities is to use them in reverse to rewrite a

squared sine or cosine in terms of the double angle. Starting with one form of the cosine
double angle identity:

cos(2a) = 2cos? (ar) -1 Isolate the cosine squared term

cos(2a) +1=2cos’(a) Add 1

cos?(a) = % Divide by 2

cos’ (o) = cos(2a)+1 This is called a power reduction identity

2

3. Use another form of the cosine double angle identity to prove the identity
1-cos(2a)
—

sin?(a) =
Example 6

Rewrite cos*(x) without any powers.

Since cos*(x) = (cos,2 (x))z, we can use the formula we found above

cos*(x) = (cos2 (x))2
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2
= [%j Square the numerator and denominator
cos(2x) +1)°

= % Expand the numerator

2
_ Cos™(2x) +icos(2x) 1 Split apart the fraction

2
_ &8 4(2)() + ZCOZ(ZX) +% Apply the formula above to cos®(2x)

c0s?(2x) = cos(2-2x)+1
2
(cos(4x) +1j
_L 2 ) eces(2) 1 Simplify
4 4 4

_ cos(dx) RE cos(2x) + 1 Combine the constants

8 8 2 4
= cos(4x) + %cos(Zx) +§

The cosine double angle identities can also be used in reverse for evaluating angles that

cos(2a) +1

are half of a common angle. Building from our formula cos”(a) = , if we let

0] = cos(6) +1 . Taking the square

0 =2a,then « :g this identity becomes cosz(z

root, we obtain

cos(gj =1, /%‘M , Where the sign is determined by the quadrant.

This is called a half-angle identity.

4. Use your results from the last Try it Now to prove the identity

NOMN=c)
2 2

Find an exact value for cos(15°).

Since 15 degrees is half of 30 degrees, we can use our result from above:
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cos(15°) = cos(3g j —+ %O)Jrl

We can evaluate the cosine. Since 15 degrees is in the first quadrant, we need the
positive result.

\/§ 1
cos(30°)+1 .| 2 *
2 2

NER
= _ 4 —
2

4

Identities
Half-Angle Identities

cos(gjzi [cos(0) +1 sin(gJ:i [1—cos(6)
2 2 2 2

Power Reduction ldentities
cos(22a) +1 sin?(ar) = 1- cozs(Za)

cos? (o) =

Since these identities are easy to derive from the double-angle identities, the power
reduction and half-angle identities are not ones you should need to memorize separately.

[Important Topics of This Section
Double angle identity
Power reduction identity
Half angle identity
Using identities
Simplify equations
Prove identities
Solve equations

Try it Now Answers

cos(2a) = cos(a + )
1. cos(a)cos(a)—sin(«)sin( @)
cos® (a) —sin* ()



cos(150°) = é

1-cos(2c)

2
1—(cos’ (@) —sin* () )
2

1—cos’ (a) +sin*(a)
2
sin’(a) +sin®(a)
2
2sin’(a)
2

=sin’(a)

1-cos(2c)
2

. __ [1-cos(2a)
sin(@) = i‘/—z

sin?(a) =
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Section 3.3 Exercises

1.1f sin (x) :% and x is in quadrant I, then find exact values for (without solving for x):

a.sin(2x)  b.cos(2x) c. tan(2x)

2. If cos(x) =§ and x is in quadrant I, then find exact values for (without solving for x):

a.sin(2x)  b. cos(2x) c. tan(2x)

Simplify each expression.

3. cos®(28°)—sin?(28°) 4. 2cos?(37°)-1

5. 1-2sin*(17°) 6. cos®(37°)—sin*(37°)
7. cos’ (9x)—sin?(9x) 8. cos’ (6x)—sin®(6x)
9. 4sin(8x)cos(8x) 10. 6sin(5x)cos(5x)

Solve for all solutions on the interval [0,27).

11. 6sin(2t)+9sin(t)=0 12. 2sin(2t)+3cos(t)=0

13. 9cos(26)=9cos’ (6) -4 14. 8cos(2a) =8cos” (a) -1

15. sin(2t) =cos(t) 16. cos(2t)=sin(t)

17. cos(6x)—cos(3x) =0 18. sin(4x)—sin(2x)=0

Use a double angle, half angle, or power reduction formula to rewrite without exponents.
19. cos’(5x) 20. cos’(6x)

21. sin*(8x) 22. sin*(3x)

23. cos” xsin* x 24. cos® xsin® x

25. If csc(x) =7 and 90° < x <180°, then find exact values for (without solving for x):
a. sin(ij b. cos(zj c. tan (ij
2 2 2
26. If sec(x) =4 and 90° < x <180°, then find exact values for (without solving for x):

o) el e
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Prove the identity.
27. (sint—cost)2 =1-sin(2t)
28. (sin? x—l)2 = cos(2x)+sin* x
2tan(x)
1+tan®(x)
30. tan(2x) = 25in(>z)cos(x)
2c0s”(x)-1
31. cot(x)—tan(x)=2cot(2x)
sin(20)
1+cos(20)
1-tan’(a)
1+tan’ ()
1+cos(2t) 2cos(t)
34. — = —
sin(2t)—cos(t) 2sin(t)-1
35. sin(3x)=3sin(x)cos*(x)—sin’*(x)
36. cos(3x)=cos’(x) —3sin*(x) cos(x)

29. sin(2x) =

32. =tan(6)

33. cos(2a) =
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Section 3.4 Modeling Changing Amplitude and Midline

While sinusoidal functions can model a variety of behaviors, it is often necessary to
combine sinusoidal functions with linear and exponential curves to model real
applications and behaviors. We begin this section by looking at changes to the midline of
a sinusoidal function. Recall that the midline describes the middle, or average value, of
the sinusoidal function.

Changing Midlines

A population of elk currently averages 2000 elk, and that average has been growing by
4% each year. Due to seasonal fluctuation, the population oscillates from 50 below
average in the winter up to 50 above average in the summer. Find a function that
models the number of elk after t years.

There are two components to the behavior of the elk population: the changing average,
and the oscillation. The average is an exponential growth, starting at 2000 and growing
by 4% each year. Writing a formula for this:

average = initial (L+r)' = 2000(1+0.04)'

For the oscillation, since the population oscillates 50 above and below average, the
amplitude will be 50. Since it takes one year for the population to cycle, the period is 1.
original period 27

new period 1
Additionally, since we weren’t told when t was first measured we will have to decide if
t = 0 corresponds to winter, or summer. If we choose winter then the shape of the
function would be a negative cosine, since it starts at the lowest value.

We find the value of the horizontal stretch coefficient B = =2r.

Putting it all together, the equation would be:
P(t) =-50cos(2~t) + midline

Since the midline represents the average population, we substitute in the exponential
function into the population equation to find our final equation:

P(t) = -50cos(27t) +2000(1+0.04)'

This is an example of changing midline — in this case an exponentially changing midline.

Changing Midline
A function of the form f (t) = Asin( Bt) + g(t) will oscillate above and below the
average given by the function g(t).
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Changing midlines can be exponential, linear, or any other type of function. Here are
some examples:

Linear midline Exponential midline Quadratic midline

4 \ a4+ ; \.\ 7 I
31 /\ A 7t 5y ‘ 61 [j
N e 61 \,\ T '

5 N ' T+
L 4

o

I / \
- g .
5 4. %70 2 3 40s fﬂf Ly 21 f/
% 2l vy AV
2" I\A]N[\/ —————+— S 'f?f—— R
41 76 -3 4 -3 2 -I_ 1 12 34 567 a2l
f(t)= Asin(Bt)+(mt+b)  f(t)=Asin(Bt)+(ab') f (t) = Asin(Bt) + (at?)

Find a function with linear midline of the form f (t) = Asin (%tj +mt +b that will pass

through the points given below.

t 0 1 2 3
f) |5 10 |9 8

Since we are given the value of the horizontal compression coefficient we can calculate

the period of this function: new period = original period _ 27 _ 4.

5%

Since the sine function is at the midline at the beginning of a cycle and halfway through
a cycle, we would expect this function to be at the midlineatt=0and t = 2, since 2 is
half the full period of 4. Based on this, we expect the points (0, 5) and (2, 9) to be
points on the midline. We can clearly see that this is not a constant function and so we
use the two points to calculate a linear function: midline =mt +b. From these two
points we can calculate a slope:

9-5 14

:—:—:2

2-0 2

Combining this with the initial value of 5, we have the midline: midline = 2t +5, giving
a full function of the form f (t) = Asin (%t} +2t+5. To find the amplitude, we can
plug in a point we haven’t already used, such as (1, 10)

10 = Asin (% (1)) +2()+5 Evaluate the sine and combine like terms

10=A+7
A=3
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A function of the form given fitting the data would be

f (t) = 3sin (%tj 4 2t+5

Alternative Approach
Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9)
into the original equation. Substituting (0, 5),

5= Asin [% (0)} +m(0)+b Evaluate the sine and simplify

5=b
Substituting (2, 9)
9= Asin (% (2)) +m(2)+5 Evaluate the sine and simplify

9=2m+5
4=2m
m = 2, as we found above. Now we can proceed to find A the same way we did before.

xample 3

The number of tourists visiting a ski and hiking resort averages 4000 people annually
and oscillates seasonally, 1000 above and below the average. Due to a marketing
campaign, the average number of tourists has been increasing by 200 each year. Write
an equation for the number of tourists after t years, beginning at the peak season.

Again there are two components to this problem: the oscillation and the average. For
the oscillation, the number of tourists oscillates 1000 above and below average, giving
an amplitude of 1000. Since the oscillation is seasonal, it has a period of 1 year. Since
we are given a starting point of “peak season”, we will model this scenario with a
cosine function.

So far, this gives an equation in the form N (t) =1000cos(2zt) + midline

The average is currently 4000, and is increasing by 60001
200 each year. This is a constant rate of change, so 5000 A [\ N
this is linear growth, average= 4000 + 200t . sﬁ T
3 4
Combining these two pieces gives a function for the 2000+

number of tourists: 1000+
N (t) = 1000 cos(2t) + 4000 + 200t

a1 2 3 4 5 6

1. Given the function g(x) = (x* —1) +8cos(x), describe the midline and amplitude
using words.
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Changing Amplitude
There are also situations in which the amplitude of a sinusoidal function does not stay
constant. Back in Chapter 6, we modeled the motion of a spring using a sinusoidal
function, but had to ignore friction in doing so. If there were friction in the system, we
would expect the amplitude of the oscillation to decrease over time. In the equation

f (t) = Asin( Bt) + k, A gives the amplitude of the oscillation, we can allow the amplitude

to change by replacing this constant A with a function A(t).

Changing Amplitude
A function of the form f (t) = A(t)sin(Bt) + k will oscillate above and below the
midline with an amplitude given by A(t).

When thinking about a spring with amplitude decreasing over time, it is tempting to use
the simplest tool for the job — a linear function. But if we attempt to model the amplitude
with a decreasing linear function, such as A(t) =10 —t, we quickly see the problem when

we graph the equation f (t) = (10 —t)sin(4t).
{’I..

mﬂﬂﬂm%ﬁﬂﬂﬂ t
=y

it

While the amplitude decreases at first as intended, the amplitude hits zero at t = 10, then
continues past the intercept, increasing in absolute value, which is not the expected
behavior. This behavior and function may model the situation on a restricted domain and
we might try to chalk the rest of it up to model breakdown, but in fact springs just don’t
behave like this.

A better model, as you will learn later in physics and calculus, would show the amplitude
decreasing by a fixed percentage each second, leading to an exponential decay model for
the amplitude.

Damped Harmonic Motion
Damped harmonic motion, exhibited by springs subject to friction, follows a model of
the form

f(t)=ab'sin(Bt)+k or f(t)=ae"sin(Bt)+k.
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Example 4

A spring with natural length of 20 inches is pulled back 6 inches and released. It
oscillates once every 2 seconds. Its amplitude decreases by 20% each second. Find a
function that models the position of the spring t seconds after being released.

Since the spring will oscillate on either side of the natural length, the midline will be at
20 inches. The oscillation has a period of 2 seconds, and so the horizontal compression
coefficient is B = . Additionally, it begins at the furthest distance from the wall,

indicating a cosine model. 0t

Meanwhile, the amplitude begins at 6 inches,
and decreases by 20% each second, giving an
amplitude function of A(t) = 6(1—0.20)".

20+
Combining this with the sinusoidal
information gives a function for the position ;5|
of the spring:
f (t) = 6(0.80)" cos(rt) + 20 I 2 3 4 5 6 7 8 9 10 11

10+

Example 5

A spring with natural length of 30 cm is pulled out 10 cm and released. It oscillates 4
times per second. After 2 seconds, the amplitude has decreased to 5 cm. Find a
function that models the position of the spring.

The oscillation has a period of % second, so B = o =8x . Since the spring will

4
oscillate on either side of the natural length, the midline will be at 30 cm. It begins at
the furthest distance from the wall, suggesting a cosine model. Together, this gives
f (t) = A(t) cos(8xt) +30.

For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases
to 5 cm after 2 seconds. This gives two points (0, 10) and (2, 5) that must be satisfied
by an exponential function: A(0) =10 and A(2) =5. Since the function is exponential,
we can use the form A(t) = ab'. Substituting the first point, 10 = ab®, so a = 10.
Substituting in the second point,

5=10b* Divide by 10
% =h? Take the square root

b:\/IzOJO?
2
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This gives an amplitude function of A(t) =10(0.707)"'. Combining this with the
oscillation,
f (t) =10(0.707)" cos(8xt) +30

Try it Now
2. A certain stock started at a high value of $7 per share and has been oscillating above
and below the average value, with the oscillation decreasing by 2% per year. However,
the average value started at $4 per share and has grown linearly by 50 cents per year.
a. Find a formula for the midline
b. Find a formula for the amplitude.
c. Find a function S(t) that models the value of the stock after t years.

xample 6

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to
transmit music or other signals by applying the to-be-transmitted signal as the amplitude
of the carrier signal. A musical note with frequency 110 Hz (Hertz = cycles per second)
is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles
per second). If the musical wave has an amplitude of 3, write a function describing the
broadcast wave.

The carrier wave, with a frequency of 2000 cycles per second, would have period ﬁ

of a second, giving an equation of the form sin(4000~t) . Our choice of a sine function
here was arbitrary — it would have worked just was well to use a cosine.

The musical tone, with a frequency of 110 cycles per second, would have a period of

% of a second. With an amplitude of 3, this would correspond to a function of the

form 3sin(220xt). Again our choice of using a sine function is arbitrary.
The musical wave is acting as the amplitude of the carrier wave, so we will multiply the

musical tone’s function by the carrier wave function, resulting in the function
f (t) =3sin(220xt) sin(4000xt)
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Important Topics of This Section

Changing midline

Changing amplitude
Linear Changes
Exponential Changes
Damped Harmonic Motion

Try it Now Answers

1. The midline follows the path of the quadratic x> —1and the amplitude is a constant
value of 8.

m(t) =4 +0.5t
A(t) =7(0.98)"

S(t)="7(0.98)" cos(%t}+4+o.5t
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Section 3.4 Exercises

Find a possible formula for the trigonometric function whose values are given in the
following tables.

1.

X0 |3 ]6]9 |12]15|18 2. |x|0[2|4 |6 10 | 12
y|-4|-112|-1]-4]-1|2 y|[5/1(-3|1]5]|1 |-3

oo

The displacement h(t), in centimeters, of a mass suspended by a spring is modeled
by the function h(t)=8sin(6xt), where t is measured in seconds. Find the
amplitude, period, and frequency of this displacement.

The displacement h(t), in centimeters, of a mass suspended by a spring is modeled
by the function h(t)=11sin(127t) , where t is measured in seconds. Find the
amplitude, period, and frequency of this displacement.

A population of rabbits oscillates 19 above and below average during the year,
reaching the lowest value in January. The average population starts at 650 rabbits and
increases by 160 each year. Find a function that models the population, P, in terms of
the months since January, t.

A population of deer oscillates 15 above and below average during the year, reaching
the lowest value in January. The average population starts at 800 deer and increases
by 110 each year. Find a function that models the population, P, in terms of the
months since January, t.

A population of muskrats oscillates 33 above and below average during the year,
reaching the lowest value in January. The average population starts at 900 muskrats
and increases by 7% each month. Find a function that models the population, P, in
terms of the months since January, t.

A population of fish oscillates 40 above and below average during the year, reaching
the lowest value in January. The average population starts at 800 fish and increases
by 4% each month. Find a function that models the population, P, in terms of the
months since January, t.

A spring is attached to the ceiling and pulled 10 cm down from equilibrium and
released. The amplitude decreases by 15% each second. The spring oscillates 18
times each second. Find a function that models the distance, D, the end of the spring
is below equilibrium in terms of seconds, t, since the spring was released.
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and
released. The amplitude decreases by 11% each second. The spring oscillates 20
times each second. Find a function that models the distance, D, the end of the spring
is below equilibrium in terms of seconds, t, since the spring was released.

11. A spring is attached to the ceiling and pulled 17 cm down from equilibrium and
released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates
14 times each second. Find a function that models the distance, D the end of the
spring is below equilibrium in terms of seconds, t, since the spring was released.

12. A spring is attached to the ceiling and pulled 19 cm down from equilibrium and
released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates
13 times each second. Find a function that models the distance, D the end of the
spring is below equilibrium in terms of seconds, t, since the spring was released.

Match each equation form with one of the graphs.

13.a. ab* +sin(5x) b. sin(5x)+mx+b
14. a. ab*sin(5x) b. (mx+b)sin(5x)
1 "I v

Find a function of the form y =ab” +csin (% xj that fits the data given.

15. | x|0]1 |2 |3 16. [x |01 |2 3
y|[6]29]96 | 379 y | 634|150 | 746

Find a function of the form y =asin (% xj +m+bx that fits the data given.

17. | x|0]1|2 |3 18. |x|0 |1]2]3
y|7]6]11]16 y|-2|/6|4|2

Find a function of the form y =ab”* cos(% xj+ c that fits the data given.

19. [x]0 [1]2]3 20. [xJo[1]2 |3
y 11313 yl4|1]11]1
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Section 3.5 Polar Coordinates

The coordinate system we are most familiar with is called the Cartesian coordinate
system, a rectangular plane divided into four quadrants by the horizontal and vertical
axes. y

In earlier chapters, we often found the Cartesian coordinates of
a point on a circle at a given angle from the positive horizontal
axis. Sometimes that angle, along with the point’s distance
from the origin, provides a more useful way of describing the
point’s location than conventional Cartesian coordinates.

Polar Coordinates
Polar coordinates of a point consist of an ordered pair, (r,8), where r is the distance

from the point to the origin, and 4 is the angle measured in standard position.

Notice that if we were to “grid” the plane for polar coordinates, it
would look like the graph to the right, with circles at incremental radii,
and rays drawn at incremental angles.

Example 1

Plot the polar point (3, %) :

This point will be a distance of 3 from the origin, at an angle of

%T. Plotting this,

Example 2

Plot the polar point (— 2%) :

Typically we use positive r values, but occasionally we run into
cases where r is negative. On a regular number line, we measure
positive values to the right and negative values to the left. We will

plot this point similarly. To start we rotate to an angle of %

Moving this direction, into the first quadrant, would be positive r
values. For negative r values, we move the opposite direction, into
the third quadrant. Plotting this:
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Note the resulting point is the same as the polar point [2%} .

1. Plot the following points given in polar coordinates and label them.

cacfeg) oe(23) ees(e)

Converting Points
To convert between polar coordinates and Cartesian coordinates, we recall the
relationships we developed back in Chapter 5.

Converting Between Polar and Cartesian Coordinates

To convert between polar (r,8)and Cartesian (X, y) coordinates,

we use the relationships ] (x,y)
X r

cos(f) = — X = rcos(9) y
r 0

sin(9) = y = rsin(6) X
r

_Y 2,2 _ 2
tan(@) = ” X +yi=r

From these relationship and our knowledge of the unit circle, if r=1and 6 = % the

polar coordinates would be (r,8) = (1, %) , and the corresponding Cartesian

coordinates (X, y) = [%g} :

Remembering your unit circle values will come in very handy as you convert between
Cartesian and polar coordinates.
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Example 3

Find the Cartesian coordinates of a point with polar coordinates (r,#) = (5, 2?”)

To find the x and y coordinates of the point,

X =rcos(0) = 5008(2—ﬂj = 5[— l) __2
3 2 2

y =rsin(8) = 55in(2§j = 5(\/5} = ?

2

The Cartesian coordinates are (—

N | ot

5.3
a

Example 4

Find the polar coordinates of the point with Cartesian coordinates (—3,—4) .

We begin by finding the distance r using the Pythagorean relationship x* + y* =r?
(=3)2 +(-4)? =r?

9+16=r?

r’=25

r=>5

Now that we know the radius, we can find the angle using any of the three trig
relationships. Keep in mind that any of the relationships will produce two solutions on
the circle, and we need to consider the quadrant to determine which solution to accept.
Using the cosine, for example:

X =3
cos(f) =—=—
) r 5
0= cosl[_?gj ~2.214 By symmetry, there is a second possibility at

0=2r—2.214 =4.069

Since the point (-3, -4) is located in the 3 quadrant, we can determine that the second
angle is the one we need. The polar coordinates of this point are (r,8) = (5,4.069).

2. Convert the following.
a. Convert polar coordinates (r,0) =(2,7) to (x,Y).

b. Convert Cartesian coordinates (x,y) =(0,-4) to (r,6).
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Polar Equations
Just as a Cartesian equation like y = x* describes a relationship between x and y values

on a Cartesian grid, a polar equation can be written describing a relationship between r
and @ values on the polar grid.

Sketch a graph of the polar equation r=6.

The equation r =@ describes all the points for which the radius r is equal to the angle.
To visualize this relationship, we can create a table of values.

0 0 /4 /2 3n/4 T Sn/4 3n/2 Tn/4 2n

r 0 /4 /2 3n/4 | = Sn/4 | 3n/2 | Tn/4 | 2¢m

We can plot these points on the plane, and then sketch a
curve that fits the points. The resulting graph is a spiral.

Notice that the resulting graph cannot be the result of a
function of the form y = f(x), as it does not pass the
vertical line test, even though it resulted from a function
giving r in terms of 6.

Although it is nice to see polar equations on polar
grids, it is more common for polar graphs to be
graphed on the Cartesian coordinate system, and so,
the remainder of the polar equations will be graphed
accordingly.

The spiral graph above on a Cartesian grid is shown
here.

xample 6
Sketch a graph of the polar equation r = 3.

Recall that when a variable does not show up in the equation, it E
is saying that it does not matter what value that variable has; ﬁ
I

the output for the equation will remain the same.

For example, the Cartesian equation y = 3 describes all the
points where y = 3, no matter what the x values are, producing 21
a horizontal line. i

wa
Likewise, this polar equation is describing all the points at a distance of 3 from the
origin, no matter what the angle is, producing the graph of a circle.
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The normal settings on graphing calculators and software graph on the Cartesian
coordinate system with y being a function of x, where the graphing utility asks for f(x), or

simply y =.

To graph polar equations, you may need to change the mode of your calculator to Polar.
You will know you have been successful in changing the mode if you now have r as a
function of 4, where the graphing utility asks for r(&), or simply r =.

Sketch a graph of the polar equation r = 4cos(#), and find an

it
interval on which it completes one cycle. 24

While we could again create a table, plot the corresponding T TV
points, and connect the dots, we can also turn to technology to B
directly graph it. Using technology, we produce the graph shown
here, a circle passing through the origin.

Since this graph appears to close a loop and repeat itself, we might ask what interval of
0 values yields the entire graph. At9=0, r =4cos(0) =4. We would then consider
the next & value when r will be 4, which would mean we are back where we started.
Solving,

4 =4cos(6)

cos(@) =1

0=0o0r0=r

This shows us at 0 radians we are at the point (0, 4), and again at z radians we are at the
point (0, 4) having finished one complete revolution.

The interval 0 < @ < zyields one complete iteration of the circle.

3. Sketch a graph of the polar equation r = 3sin(#), and find an interval on which it
completes one cycle.

The last few examples have all been circles. Next we will consider two other “named”
polar equations, limagons and roses.

Sketch a graph of the polar equation r =4sin(8) + 2. What interval of 0 values
corresponds to the inner loop?

This type of graph is called a limagon.
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Using technology, we can draw a graph. The inner loop begins &
and ends at the origin, where r = 0. We can solve for the 6
values for which r = 0.

0=4sin(0)+2
—2=4sin(0)

gmmz—%

This tells us that r = 0, or the graph passes through the origin, twice on the interval
[0, 2m).

The inner loop arises from the interval %r <0< 11?” This corresponds to where the

function r = 4sin( ) + 2 takes on negative values.

Exampleg |

Sketch a graph of the polar equation r = cos(3¢). What

interval of 6 values describes one small loop of the graph? di

This type of graph is called a 3 leaf rose.

I ]

Again we can use technology to produce a graph. The interval
[0, m) yields one cycle of this function. As with the last
problem, we can note that there is an interval on which one 1
loop of this graph begins and ends at the origin, where r = 0.
Solving for 6,
0 = cos(36) Substitute u = 36
0 =cos(u)

T 3 51
U==o0oru=—oru=—

2 2 2
Undo the substitution
0-% o 39=-L o 30-2

2 2 2

9=" or 0=" or 0= >z

6 2 6

There are 3 solutions on 0 < @ < 7z which correspond to the 3 times the graph returns to
the origin, but the first two solutions we solved for above are enough to conclude that

one loop corresponds to the interval % << % .
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If we wanted to get an idea of how the computer drew this graph, consider when 6 = 0.

r = cos(30) = cos(0) =1, so the graph starts at (1,0). As we found above, at 8 = % and

0= E, the graph is at the origin. Looking at the equation, 0 |r |[X y
2 0 |1 |1 0

notice that any angle in between % and % for example at % 0ol0 0
0=" , produces a negative r: r =cos (B-EJ =cos(rz)=-1. Tl 1 3

3 . . 3) . 3 2| 2
Notice that with a negative r value and an angle with terminal p
side in the first quadrant, the corresponding Cartesian point EY 010 0
would be in the third quadrant. Since r = cos(360) is negative

on % << % , this interval corresponds to the loop of the graph in the third quadrant.

4. Sketch a graph of the polar equation r =sin(28). Would you call this function a
limacon or a rose?

Converting Equations

While many polar equations cannot be expressed nicely in Cartesian form (and vice
versa), it can be beneficial to convert between the two forms, when possible. To do this
we use the same relationships we used to convert points between coordinate systems.

xample 10

Rewrite the Cartesian equation x* + y* =6y as a polar equation.

We wish to eliminate x and y from the equation and introduce r and 6. Ideally, we
would like to write the equation with r isolated, if possible, which represents r as a
function of 6.

x* +y? =6y Remembering x* + y® =r® we substitute

r’ =6y y =rsin(@) and so we substitute again

r’ =6rsin(o) Subtract 6rsin(&) from both sides

r’—6rsin(6) =0 Factor

r(r —6sin(4))=0 Use the zero factor theorem

r=6sin(d) or r=0 Since r = 0 is only a point, we reject that solution.

The solution r = 6sin( @) is fairly similar to the one we graphed in Example 7. In fact,
this equation describes a circle with bottom at the origin and top at the point (0, 6).
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Example 11
Rewrite the Cartesian equation y =3x+ 2 as a polar equation.

y=3x+2 Use y=rsin(@) and x = rcos(9)
rsin( &) = 3rcos(b) + 2 Move all terms with r to one side
rsin(@) —3rcos(0) =2 Factor out r
r(sin(8) —3cos(@)) =2 Divide

2

= sin( @) —3cos()

In this case, the polar equation is more unwieldy than the Cartesian equation, but there
are still times when this equation might be useful.

Example 12

Rewrite the polar equation r = 3 as a Cartesian equation.
1-2cos(6)

We want to eliminate & and r and introduce x and y. It is usually easiest to start by
clearing the fraction and looking to substitute values that will eliminate 6.

r= _ 3 Clear the fraction

1-2cos(6)
r(l-2cos(@))=3 Use cos(#) = é to eliminate 6
r(l— Zﬁj =3 Distribute and simplify

r

r—-2x=3 Isolate the r
r=3+2X Square both sides
r’ =(3+2x)° Use x> +y° =r°

x? +y® =(3+2x)

When our entire equation has been changed from r and 6 to x and y we can stop unless
asked to solve for y or simplify.

In this example, if desired, the right side of the equation could be expanded and the

equation simplified further. However, the equation cannot be written as a function in
Cartesian form.

5. a. Rewrite the Cartesian equation in polar form: y =+/3—x?
b. Rewrite the polar equation in Cartesian form: r = 2sin(8)
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Example 13

Rewrite the polar equation r =sin(28) in Cartesian form.

r =sin(26) Use the double angle identity for sine
r = 2sin( &) cos(0) Use cos(#) :é and sin( 9) =%
r=2.2.Y Simplify

rr
r :2_x2y Multiply by r?

r
ré =2xy Since x> +y>=r%, r=x*+y?
(«/x2 + yz)3 = 2xy

This equation could also be written as
(+y?f?=2xy or  x*+y?=(2xy)

2/3

Important Topics of This Section

Cartesian coordinate system

Polar coordinate system

Plotting points in polar coordinates

Converting coordinates between systems

Polar equations: Spirals, circles, limagons and roses
Converting equations between systems

Try it Now Answers

2.a. (r,0)=(2,7)converts to (x,y)=(-2,0)

b. (x,y)=(0,-4) converts to (r,6) :(4,37”j0r(—4,%j
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It completes one cycle on the interval 0< 6@ < .

This is a 4-leaf rose.

5.a. y=+y3—x* becomesr=3
b. r =2sin(@) becomes x*+y* =2y
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Section 3.5 Exercises

Convert the given polar coordinates to Cartesian coordinates.

1 [7,22 2. (63—”j 3. (4,7—”j 4, (9,4—”j
6 4 4 3

5. | 6,-= 6. (12,—£j 7. (3,1j 8. (5,7)
4 3 2

9. —3,% 10. (-2,%”} 11. (3,2) 12. (7))

Convert the given Cartesian coordinates to polar coordinates.
13. (4,2) 14. (8,8) 15. (-4,6) 16. (-5,1)

17. (3,-5) 18. (6,-5) 19. (~10,-13) 20. (—4,-7)

Convert the given Cartesian equation to a polar equation.
21. x=3 22. y=4 23. y=4x° 24, y=2x"

25. x> +y* =4y 26. x> +y* =3x 27. x> —y* =x 28. x> —y* =3y

Convert the given polar equation to a Cartesian equation.

29. r =3sin(0) 30. r=4cos(0)
4 6
3l.r= 32 r=
' sin(6)+7cos(0) ' cos(8)+3sin(6)
33. r=2sec(6) 34. r=3csc(0)

35. r=,[rcos(0)+2 36. r* =4sec(8)csc(0)
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Match each equation with one of the graphs shown.

37. r=2+2cos(0) 38. r=2+2sin(6) 39. r=4+3cos(6)
40. r =3+4cos(0) 41. r=5 42. r =2sin(6)
A \J 5 \J C \J

ik
N

Match each equation with one of the graphs shown.

43. r=log(0) 44. r =@cos(6) 45, r = cos(gj
46. r =sin(6)cos*(0) 47. r=1+2sin(30) 48. r=1+sin(20)
- - //f - \-\
(¥ ) o/
—N- N

A\ﬁ ) o B

ﬁ’/ / \\l r\\\\ ) H/ |//

\'\\ / \J I,.rl e / ) 1Y
D E =
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Sketch a graph of the polar equation.

49. r =3cos(0) 50. r =4sin(6) 51. r =3sin(20)
52. r =4sin(46) 53. r =5sin(30) 54. r =4sin(50)
55. r =3cos(26) 56. r =4cos(40) 57. r=2+2cos(0)
58. r =3+3sin(6) 59. r =1+3sin(9) 60. r =2+4cos(8)

1
61. r=20 62. r=—

0
63. r =3+sec(#), a conchoid 64. r ==, alituus’

Jo

65. r =2sin(@)tan (), a cissoid 66. r =2,/1-sin?(8), a hippopede

% This curve was the inspiration for the artwork featured on the cover of this book.
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Section 4.1 Functions and Function Notation

What is a Function?

The natural world is full of relationships between quantities that change. When we see
these relationships, it is natural for us to ask “If I know one quantity, can I then determine
the other?” This establishes the idea of an input quantity, or independent variable, and a
corresponding output quantity, or dependent variable. From this we get the notion of a
functional relationship in which the output can be determined from the input.

For some quantities, like height and age, there are certainly relationships between these
quantities. Given a specific person and any age, it is easy enough to determine their
height, but if we tried to reverse that relationship and determine height from a given age,
that would be problematic, since most people maintain the same height for many years.

Function: A rule for a relationship between an input, or independent, quantity and an
output, or dependent, quantity in which each input value uniquely determines one
output value. We say “the output is a function of the input.”

In the height and age example above, is height a function of age? Is age a function of
height?

In the height and age example above, it would be correct to say that height is a function
of age, since each age uniquely determines a height. For example, on my 18" birthday,
| had exactly one height of 69 inches.

However, age is not a function of height, since one height input might correspond with
more than one output age. For example, for an input height of 70 inches, there is more
than one output of age since | was 70 inches at the age of 20 and 21.

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.



176 Chapter 4

Example 2

At a coffee shop, the menu consists of items and their prices. Is price a function of the
item? Is the item a function of the price?

We could say that price is a function of the item, since each input of an item has one
output of a price corresponding to it. We could not say that item is a function of price,
since two items might have the same price.

In many classes the overall percentage you earn in the course corresponds to a decimal
grade point. Is decimal grade a function of percentage? Is percentage a function of
decimal grade?

For any percentage earned, there would be a decimal grade associated, so we could say
that the decimal grade is a function of percentage. That is, if you input the percentage,
your output would be a decimal grade. Percentage may or may not be a function of
decimal grade, depending upon the teacher’s grading scheme. With some grading
systems, there are a range of percentages that correspond to the same decimal grade.

One-to-One Function

Sometimes in a relationship each input corresponds to exactly one output, and every
output corresponds to exactly one input. We call this kind of relationship a one-to-one
function.

From Example 3, if each unique percentage corresponds to one unique decimal grade
point and each unique decimal grade point corresponds to one unique percentage then it
is a one-to-one function.

Let’s consider bank account information.
1. Is your balance a function of your bank account number?
(if you input a bank account number does it make sense that the output is your balance?)

2. Is your bank account number a function of your balance?
(if you input a balance does it make sense that the output is your bank account number?)

Function Notation

To simplify writing out expressions and equations involving functions, a simplified
notation is often used. We also use descriptive variables to help us remember the
meaning of the quantities in the problem.
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Rather than write “height is a function of age”, we could use the descriptive variable h to
represent height and we could use the descriptive variable a to represent age.

“height is a function of age” if we name the function f we write

“hisfofa” or more simply
h =1f(a) we could instead name the function h and write
h(a) which is read “h of a”

Remember we can use any variable to name the function; the notation h(a) shows us that
h depends on a. The value “@” must be put into the function “h” to get a result. Be
careful - the parentheses indicate that age is input into the function (Note: do not confuse
these parentheses with multiplication!).

Function Notation
The notation output = f(input) defines a function named f. This would be read “output
is f of input”

Example 4

Introduce function notation to represent a function that takes as input the name of a
month, and gives as output the number of days in that month.

The number of days in a month is a function of the name of the month, so if we name
the function f, we could write “days = f(month)” or d = f(m). If we simply name the
function d, we could write d(m)

For example, d(March) = 31, since March has 31 days. The notation d(m) reminds us
that the number of days, d (the output) is dependent on the name of the month, m (the
input)

A function N = f(y) gives the number of police officers, N, in a town in yeary. What
does f(2005) = 300 tell us?

When we read f(2005) = 300, we see the input quantity is 2005, which is a value for the
input quantity of the function, the year (y). The output value is 300, the number of
police officers (N), a value for the output quantity. Remember N=f(y). So this tells us
that in the year 2005 there were 300 police officers in the town.

Tables as Functions

Functions can be represented in many ways: Words (as we did in the last few examples),
tables of values, graphs, or formulas. Represented as a table, we are presented with a list
of input and output values.
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In some cases, these values represent everything we know about the relationship, while in
other cases the table is simply providing us a few select values from a more complete
relationship.

Table 1: This table represents the input, number of the month (January = 1, February = 2,
and so on) while the output is the number of days in that month. This represents
everything we know about the months & days for a given year (that is not a leap year)

(input) Month | 1 2 3 |4 5 6 7 8 9 10 |11 |12
number, m
(output) Days 31 |28 |31 |30 |31 |30 |31 {31 |30 |31 |30 |31
in month, D

Table 2: The table below defines a function Q = g(n). Remember this notation tells us g
is the name of the function that takes the input n and gives the output Q.

n 1 2 3 4 5
Q |8 6 7 6 8

Table 3: This table represents the age of children in years and their corresponding
heights. This represents just some of the data available for height and ages of children.

(input) a,age |5 5 6 7 8 9 10
in years
(output) h,
height inches

40 |42 |44 |47 |50 |52 |54

Which of these tables define a function (if any)? Are any of them one-to-one?

Input | Output Input | Output Input | Output
2 1 -3 5 1 0
5 3 0 1 5 2
8 6 4 5 5 4

The first and second tables define functions. In both, each input corresponds to exactly
one output. The third table does not define a function since the input value of 5
corresponds with two different output values.

Only the first table is one-to-one; it is both a function, and each output corresponds to
exactly one input. Although table 2 is a function, because each input corresponds to

exactly one output, each output does not correspond to exactly one input so this
function is not one-to-one. Table 3 is not even a function and so we don’t even need to
consider if it is a one-to-one function.
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Try it Now
3. If each percentage earned translated to one letter grade, would this be a function? Is
it one-to-one?

Solving and Evaluating Functions:

When we work with functions, there are two typical things we do: evaluate and solve.
Evaluating a function is what we do when we know an input, and use the function to
determine the corresponding output. Evaluating will always produce one result, since

each input of a function corresponds to exactly one output.

Solving equations involving a function is what we do when we know an output, and use
the function to determine the inputs that would produce that output. Solving a function
could produce more than one solution, since different inputs can produce the same
output.

Example 7

Using the table shown, where Q=g(n)

ol

a) Evaluate g(3) n 1 2 3 4

Q |8 6 7 6 8

Evaluating g(3) (read: “g of 3”)

means that we need to determine the output value, Q, of the function g given the input
value of n=3. Looking at the table, we see the output corresponding to n=3 is Q=7,
allowing us to conclude g(3) = 7.

b) Solve g(n) =6

Solving g(n) = 6 means we need to determine what input values, n, produce an output
value of 6. Looking at the table we see there are two solutions: n=2and n = 4.

When we input 2 into the function g, our output is Q =6

When we input 4 into the function g, our output is also Q = 6

4. Using the function in Example 7, evaluate g(4)

Graphs as Functions

Oftentimes a graph of a relationship can be used to define a function. By convention,
graphs are typically created with the input quantity along the horizontal axis and the
output quantity along the vertical.
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The most common graph has y on the vertical axis and x on the horizontal axis, and we
say Yy is a function of x, or y = f(x) when the function is named f.

y

Example 8
Which of these graphs defines a function y=f(x)? Which of these graphs defines a one-

to-one function?

Looking at the three graphs above, the first two define a function y=f(x), since for each
input value along the horizontal axis there is exactly one output value corresponding,
determined by the y-value of the graph. The 3" graph does not define a function y=f(x)
since some input values, such as x=2, correspond with more than one output value.

Graph 1 is not a one-to-one function. For example, the output value 3 has two
corresponding input values, -2 and 2.3

Graph 2 is a one-to-one function; each input corresponds to exactly one output, and
every output corresponds to exactly one input.

Graph 3 is not even a function so there is no reason to even check to see if it is a one-to-
one function.

Vertical Line Test
The vertical line test is a handy way to think about whether a graph defines the vertical
output as a function of the horizontal input. Imagine drawing vertical lines through the
graph. If any vertical line would cross the graph more than once, then the graph does
not define only one vertical output for each horizontal input.
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Horizontal Line Test

Once you have determined that a graph defines a function, an easy way to determine if
it is a one-to-one function is to use the horizontal line test. Draw horizontal lines
through the graph. If any horizontal line crosses the graph more than once, then the
graph does not define a one-to-one function.

Evaluating a function using a graph requires taking the given input and using the graph to
look up the corresponding output. Solving a function equation using a graph requires
taking the given output and looking on the graph to determine the corresponding input.

Example 9
Given the graph below,
a) Evaluate f(2)

b) Solve f(x) = 4i

-5
a) To evaluate f(2), we find the input of x=2 on the horizontal axis. Moving up to the
graph gives the point (2, 1), giving an output of y=1. Sof(2) =1

b) To solve f(x) = 4, we find the value 4 on the vertical axis because if f(x) = 4 then 4 is
the output. Moving horizontally across the graph gives two points with the output of 4:
(-1,4) and (3,4). These give the two solutions to f(x) =4: x=-1orx=3

This means f(-1)=4 and f(3)=4, or when the input is -1 or 3, the output is 4.

Notice that while the graph in the previous example is a function, getting two input
values for the output value of 4 shows us that this function is not one-to-one.

5. Using the graph from example 9, solve f(x)=1.

Formulas as Functions

When possible, it is very convenient to define relationships using formulas. Ifitis
possible to express the output as a formula involving the input quantity, then we can
define a function.
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Example 10

Express the relationship 2n + 6p = 12 as a function p = f(n) if possible.

To express the relationship in this form, we need to be able to write the relationship
where p is a function of n, which means writing it as p = [something involving n].

2n+6p =12 subtract 2n from both sides
6p=12-2n divide both sides by 6 and simplify

_l2-2n 12 2n_, 1

6 6 6 3

Having rewritten the formula as p=, we can now express p as a function:

1
=f(n)=2-=n
p (n) 3

It is important to note that not every relationship can be expressed as a function with a
formula.

Note the important feature of an equation written as a function is that the output value can
be determined directly from the input by doing evaluations - no further solving is
required. This allows the relationship to act as a magic box that takes an input, processes
it, and returns an output. Modern technology and computers rely on these functional
relationships, since the evaluation of the function can be programmed into machines,
whereas solving things is much more challenging.

xample 11

Express the relationship x* +y® =1 as a function y = f(x) if possible.

If we try to solve for y in this equation:
y2 :1_ X2

y =+y1-x?

We end up with two outputs corresponding to the same input, so this relationship cannot
be represented as a single function y = f(x)

As with tables and graphs, it is common to evaluate and solve functions involving
formulas. Evaluating will require replacing the input variable in the formula with the
value provided and calculating. Solving will require replacing the output variable in the
formula with the value provided, and solving for the input(s) that would produce that
output.
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Example 12

Given the function k(t) =t*+2

a) Evaluate k(2)
b) Solve k(t) = 1

a) To evaluate k(2), we plug in the input value 2 into the formula wherever we see the
input variable t, then simplify

k(2)=2°+2
k(2)=8+2
So k(2) = 10

b) To solve k(t) = 1, we set the formula for k(t) equal to 1, and solve for the input value
that will produce that output

k(t) =1 substitute the original formula k(t) =t*+2
t?+2=1 subtract 2 from each side

t?=-1 take the cube root of each side

t=-1

When solving an equation using formulas, you can check your answer by using your
solution in the original equation to see if your calculated answer is correct.

We want to know if k(t) =1 is true when t =-1.
k(<) =(-1)°*+2

-1+2

1 which was the desired result.

Example 13

Given the function h(p) = p*+2p

a) Evaluate h(4)
b) Solve h(p) =3

To evaluate h(4) we substitute the value 4 for the input variable p in the given function.
a) h(4) = (4)* +2(4)

=16+8
=24
b) h(p) =3 Substitute the original function h(p) = p*+2p
p’+2p=3 This is quadratic, so we can rearrange the equation to getit=0
p’+2p-3=0 subtract 3 from each side
p’+2p-3=0 this is factorable, so we factor it

(p+3)(p-1)=0
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By the zero factor theorem since (p+3)(p-1) =0, either (p+3)=0 or (p-1) =0 (or
both of them equal 0) and so we solve both equations for p, finding p = -3 from the first
equation and p =1 from the second equation.

This gives us the solution: h(p) =3whenp=1orp=-3

We found two solutions in this case, which tells us this function is not one-to-one.

6. Given the function g(m)=vm-4

a. Evaluate g(5)
b. Solve g(m) =2

Basic Toolkit Functions

In this text, we will be exploring functions — the shapes of their graphs, their unique
features, their equations, and how to solve problems with them. When learning to read,
we start with the alphabet. When learning to do arithmetic, we start with numbers.
When working with functions, it is similarly helpful to have a base set of elements to
build from. We call these our “toolkit of functions” — a set of basic named functions for
which we know the graph, equation, and special features.

For these definitions we will use x as the input variable and f(x) as the output variable.

Toolkit Functions

Linear
Constant: f(x) =c, where cisa constant (number)
Identity: f(x)=x
Absolute Value: f(x) =X
Power
Quadratic: f(x) = x?
Cubic: f(x)=x°
Reciprocal: f(x)= 1
X
Reciprocal squared:  f(x) = iz
X
Square root: f(x)= x =x
Cube root: f(x)=2%x
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You will see these toolkit functions, combinations of toolkit functions, their graphs and
their transformations frequently throughout this book. In order to successfully follow
along later in the book, it will be very helpful if you can recognize these toolkit functions
and their features quickly by name, equation, graph and basic table values.

Not every important equation can be written as y = f(x). An example of this is the
equation of a circle. Recall the distance formula for the distance between two points:

dist = \/(Xz - Xl)2 + (Y2 - 3/1)2
A circle with radius r with center at (h, k) can be described as all points (X, y) a distance

of r from the center, so using the distance formula, r = /(x—h)? +(y —k)? , giving

Equation of a circle
A circle with radius r with center (h, k) has equation r? =(x—h)’ +(y —k)’

Graphs of the Toolkit Functions

Constant Function: f(x)=2 Identity: f(x)=x Absolute Value: f(x) = ||

™ ba e R
— ba e R

Y5320 1234 43207 1234 4320|1234

[
'
[
'
[
'

L LTI ]
| | '

L LTI ]
' ' '

L LTI ]

Quadratic: f(x) = x? Cubic: f(x)=x* Square root: f(x) =+/x

[
[
[

| /

7234 G352 1234

4320 1234 43

by
!
by
!

Aode rs
Aode rs



186 Chapter 4

Cube root: f(x)= 3x Reciprocal: f(x) =§ Reciprocal squared: f(x)= %

N T

Y3201 23 4

T 2 34 430201234

—
'

oW

Important Topics of this Section

Definition of a function

Input (independent variable)

Output (dependent variable)

Definition of a one-to-one function

Function notation

Descriptive variables

Functions in words, tables, graphs & formulas
Vertical line test

Horizontal line test

Evaluating a function at a specific input value
Solving a function given a specific output value
Toolkit Functions

Try it Now Answers

1. Yes

2.No

3. Yes it’s a function; No, it’s not one-to-one
4.Q=9(4)=6

5. x=00rx=2

6.a.9(5=1 b.m=38
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Section 4.1 Exercises

1. The amount of garbage, G, produced by a city with population p is given by

G=f(p). G is measured in tons per week, and p is measured in thousands of people.

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage
each week. Express this information in terms of the function f.

b. Explain the meaning of the statement f (5)=2.

. The number of cubic yards of dirt, D, needed to cover a garden with area a square
feetis given by D =g(a).
a. A garden with area 5000 ft* requires 50 cubic yards of dirt. Express this
information in terms of the function g.
b. Explain the meaning of the statement g (100)=1.

Let f(t) be the number of ducks in a lake t years after 1990. Explain the meaning of
each statement:
a. f(5)=30 b. f(10)=40

Let h(t) be the height above ground, in feet, of a rocket t seconds after launching.
Explain the meaning of each statement:
a. h(1)=200 b. h(2) =350

. Select all of the following graphs which represent y as a function of x.
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6. Select all of

5

the following graphs which represent y as a function of x.

|

R E R TJfQE_E\Q
2 2] 2]
i i -3
4 4] 4]
a 5 b 5 C 5
54 54 5
4 4 ]
a4 \f\- kR
2 2 2]
1 1
I I S I STy N SRR EEEE
2] 2] 2
] 4 ]
4] 4 4]
d 5 e 5 f 5

7. Select all of the following tables which represent y as a function of x.

a. [ x|5]10]15 b. |x|5]10|15 c. [x|5]10]10

y| 3|8 |14 y|3/8 |8 y| 3|8 |14
8. Select all of the following tables which represent y as a function of x.

a. | x|2]6 |13 b. |[x|2]6 |6 C. [x|2]|6 |13

y|3]10] 10 y|3]10]14 y|3]10]14
9. Select all of the following tables which represent y as a function of x.

a x|y b. |x |y C. |X |y d [x |y
0]-2 -1]-4 0 |-5 -1 -4
3|1 2 |3 3 |1 1 |2
416 5 |4 3 |4 4 |2
819 8 |7 9 |8 9 |7
31 12 | 11 16 | 13 12 | 13

10. Select all of the following tables which represent y as a function of x.

a. | x |y b. |[x |y C. |x |y d. [x |y
-4 | -2 -5 | -3 -1 -3 -11-5
3 |2 2 |1 112 3 |1
6 |4 2 |4 5 |4 5 |1
9 |7 7 19 9 |8 8 |7
12 | 16 11 |10 112 14 |12
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11. Select all of the following tables which represent y as a function of x and are one-to-
one.

a. | x|3/8|12 b. |x[3|8]12 C. |[x|3|/8]|8
yla4|7|7 y|4|7]13 y|4]7]13

12. Select all of the following tables which represent y as a function of x and are one-to-
one.

a. |x|2|8]8 b. |x|2|8|14 C. |x|2|8]|14
y|5]6|13 y|5|/6|6 y|5]6|13
13. Select all of the following graphs which are one-to-one functions.
54 54 3
4 4 4
2 i N
4 1
SR TE5 43 Fyrolzi4s FEFER[TE543
-2 -2 -2
] 3 ]
a. 54 b. 5 C. 5
54 54 5
4 4 4
. . .
/\ 1 1 1

14. Select all of the following graphs which are one-to-one functions.
54 54 54




190 Chapter 4

Given each function f(x) graphed, evaluate f (1) and f(3)
44 41

31
2__
A
R /Jr 2 3\ 4

At |

3 4
15. e 16. 2+
17. Given the function g(x) graphed here, 18. Given the function f(x) graphed here.
a. Evaluate g(2) a. Evaluate f(4)
b. Solve g(x)=2 b. Solve f(x)=4
64 61
5 5
Al \i
_///.;-- 2'\
Il 14
I I I NN R

19. Based on the table below,
a. Evaluate f(3) b. Solve f(x)=1

X 0O |1 |2|3 |4 |5]|6 |7 |8 |9
f(x) |74 |28|1|53|56|3|36|45|14 |47

20. Based on the table below,
a. Evaluate f(8) b. Solve f(x)=7

X 0 [1]2]3 |4 |5 |6 |7 |8 |9
f(x) 6287|3886 |73|70|39]|75]34

For each of the following functions, evaluate: f(-2), f(-1), f(0), f(1),and f(2)

21. f(x)=4-2x 22. f(x)=8-3x

23. f(x)=8x"-7x+3 24. f(x)=6x"-7x+4

25. f(x)=—x"+2x 26. f(x)=5x"+x*

27. f(x)=3+/x+3 28. f(x)=4-Yx-2

29. f(x)=(x=2)(x+3) 30. f(x)=(x+3)(x—1)2
X—3 X—2

31. f(x):F 32. f(x):F

33. f(x)=2" 34. f(x)=3"



35.

36.

37.

38.

39.

40.
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Suppose f (x)=x*+8x—4. Compute the following:
a f(-1)+fQ b. f(-1)— ()

Suppose f (x)=x*+x+3. Compute the following:
a. f(-2)+f(4) b. f(=2)— f(4)

Let f(t)=3t+5

a. Evaluate f(0) b. Solve f(t)=0

Let g(p)=6-2p

a. Evaluate g(0) b. Solve g(p)=0

Match each function name with its equation.

a  y=X i.  Cube root

b. y=x° ii.  Reciprocal
c. y=%x iii.  Linear
1 Iv.  Square Root
d y== v.  Absolute Value
X2 vi.  Quadratic
€. y=X vii.  Reciprocal Squared
f. y=+x viii.  Cubic
g y=[
1
h. y==
X2
Match each graph with its equation.
[ ii iii. iv.
a. y =X 4 4 4 4
b. y=x : 2 :
C_ 12545 B, -1_1 12545 E N R, ) -1_1 1549
2 2
: 3
&y vii. viii.
f.y y y i
g y=|x| i ; ; :
B R, 12 549 5432 12545 542 - 12545 B R, R 12549
h 1 - -4 4 4
LY== : : : :
X’ : ; ; :
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41. Match each table with its equation.

ay=x i. [In|Out]| ii. {In]|Out] iii.
b. y=x -2 1-05 -2 |-2
C. y:\/§ -1]-1 -1 -1
0 | 0|0
d. y=1/x 111 111
e y=x| 2 |05 2 |2
f.y=x° 3 10.33 3 |3
iv. [In|Out| Vv In | Out| Vi
214 2|
11 Kl
0|0 0|0
1|1 1|1
2 |4 4 |2
319 9 |3
42. Match each equation with its table
a. Quadratic i. [InJout] ii. [In]Out
b. Absolute Value 21-05 2 |2
c. Square Root 11 111
d. Linear 0 0 10
e. Cubic 1 11 1 1
f. Reciprocal 5 105 > 2
3 1033 3 |3
iv. |In|{Out| V. |In|Out
24 2|
1)1 A
0|0 0|0
1|1 1|1
2 |4 4 |2
319 9 |3

43. Write the equation of the circle centered at (3,-9 ) with radius 6.

44. Write the equation of the circle centered at (9 ,-8) with radius 11.

45, Sketch a reasonable graph for each of the following functions. [UW]

a. Height of a person depending on age.
b. Height of the top of your head as you jump on a pogo stick for 5 seconds.

c. The amount of postage you must put on a first class letter, depending on the

weight of the letter.

Out

WIN RO

Vi.

Out

WIN PR IO
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46. Sketch a reasonable graph for each of the following functions. [UW]

47. Using the graph shown,
a.

b.

C.
d.

48.

a.
b.

Distance of your big toe from the ground as you ride your bike for 10 seconds.
Your height above the water level in a swimming pool after you dive off the high
board.

The percentage of dates and names you’ll remember for a history test, depending

on the time you study. X

A
L__fx)
tl
' /
Evaluate f(c) /
a
Solve f(x)=p | D T X

P [
<« I Ll

Suppose f (b)=z. Find f(2)
What are the coordinates of points L and K? K P+

Dave leaves his office in Padelford Hall on his way to teach in Gould Hall. Below are
several different scenarios. In each case, sketch a plausible (reasonable) graph of the
function s = d(t) which keeps track of Dave’s distance s from Padelford Hall at time t.
Take distance units to be “feet” and time units to be “minutes.” Assume Dave’s path
to Gould Hall is long a straight line which is 2400 feet long. [UW]

a.

gould

padelford
L —

Dave leaves Padelford Hall and walks at a constant spend until he reaches Gould
Hall 10 minutes later.

Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute. He
then continues on to Gould Hall at the same constant speed he had when he
originally left Padelford Hall.

Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute to
figure out where he is. Dave then continues on to Gould Hall at twice the constant
speed he had when he originally left Padelford Hall.



194 Chapter 4

d. Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute to
figure out where he is. Dave is totally lost, so he simply heads back to his office,
walking the same constant speed he had when he originally left Padelford Hall.

e. Dave leaves Padelford heading for Gould Hall at the same instant Angela leaves
Gould Hall heading for Padelford Hall. Both walk at a constant speed, but Angela
walks twice as fast as Dave. Indicate a plot of “distance from Padelford” vs.
“time” for the both Angela and Dave.

f. Suppose you want to sketch the graph of a new function s = g(t) that keeps track
of Dave’s distance s from Gould Hall at time t. How would your graphs change in

(a)-(e)?
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Section 4.2 Domain and Range

One of our main goals in mathematics is to model the real world with mathematical
functions. In doing so, it is important to keep in mind the limitations of those models we
create.

This table shows a relationship between circumference and height of a tree as it grows.

Circumference, c | 1.7 25 55 8.2 13.7
Height, h 245 |31 452 |546 |92.1

While there is a strong relationship between the two, it would certainly be ridiculous to
talk about a tree with a circumference of -3 feet, or a height of 3000 feet. When we
identify limitations on the inputs and outputs of a function, we are determining the
domain and range of the function.

Domain and Range
Domain: The set of possible input values to a function
Range: The set of possible output values of a function

Using the tree table above, determine a reasonable domain and range.

We could combine the data provided with our own experiences and reason to
approximate the domain and range of the function h = f(c). For the domain, possible
values for the input circumference c, it doesn’t make sense to have negative values, so C
> 0. We could make an educated guess at a maximum reasonable value, or look up that
the maximum circumference measured is about 119 feet'. With this information we
would say a reasonable domain is 0 < ¢ <119 feet.

Similarly for the range, it doesn’t make sense to have negative heights, and the
maximum height of a tree could be looked up to be 379 feet, so a reasonable range is
0 <h<379feet.

When sending a letter through the United States Postal Service, the price depends upon
the weight of the letter?, as shown in the table below. Determine the domain and range.

! http://en.wikipedia.org/wiki/Tree, retrieved July 19, 2010
2 http://www.usps.com/prices/first-class-mail-prices.htm, retrieved July 19, 2010
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Letters
Weight not Over | Price
1 ounce $0.44
2 ounces $0.61
3 ounces $0.78
3.5 ounces $0.95

Suppose we notate Weight by w and Price by p, and set up a function named P, where
Price, p is a function of Weight, w. p = P(w).

Since acceptable weights are 3.5 ounces or less, and negative weights don’t make sense,
the domain would be 0 <w<3.5. Technically 0 could be included in the domain, but
logically it would mean we are mailing nothing, so it doesn’t hurt to leave it out.

Since possible prices are from a limited set of values, we can only define the range of
this function by listing the possible values. The range is p = $0.44, $0.61, $0.78, or
$0.95.

1. The population of a small town in the year 1960 was 100 people. Since then the
population has grown to 1400 people reported during the 2010 census. Choose
descriptive variables for your input and output and use interval notation to write the
domain and range.

Notation

In the previous examples, we used inequalities to describe the domain and range of the
functions. This is one way to describe intervals of input and output values, but is not the
only way. Let us take a moment to discuss notation for domain and range.

Using inequalities, such as 0<c <163, 0<w<3.5, and 0<h <379 imply that we are
interested in all values between the low and high values, including the high values in
these examples.

However, occasionally we are interested in a specific list of numbers like the range for
the price to send letters, p =$0.44, $0.61, $0.78, or $0.95. These numbers represent a set
of specific values: {0.44, 0.61, 0.78, 0.95}

Representing values as a set, or giving instructions on how a set is built, leads us to
another type of notation to describe the domain and range.

Suppose we want to describe the values for a variable x that are 10 or greater, but less
than 30. In inequalities, we would write 10 <x < 30.
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When describing domains and ranges, we sometimes extend this into set-builder
notation, which would look like this: {x|10 < x <30}. The curly brackets {} are read as
“the set of”, and the vertical bar | is read as “such that”, so altogether we would read
{x]10 < x <30} as “the set of x-values such that 10 is less than or equal to x and x is less
than 30.”

When describing ranges in set-builder notation, we could similarly write something like
{ f(x)|0< f(x) <100} , or if the output had its own variable, we could use it. So for our

tree height example above, we could write for the range {h|0<h <379}. In set-builder
notation, if a domain or range is not limited, we could write {t |t is areal number} , or

{t [te R} , read as “the set of t-values such that t is an element of the set of real numbers.

A more compact alternative to set-builder notation is interval notation, in which
intervals of values are referred to by the starting and ending values. Curved parentheses
are used for “strictly less than,” and square brackets are used for “less than or equal to.”
Since infinity is not a number, we can’t include it in the interval, so we always use curved
parentheses with o and -co. The table below will help you see how inequalities
correspond to set-builder notation and interval notation:

Inequality Set Builder Notation Interval notation
5<h<10 {h|5<h<10} (5,10]

5<h<10 {h|5<h<10} [5, 10)

5<h<10 {h|5<h<10} (5, 10)

h<10 {h|h<10} (=o0,10)

h=10 {h|h=>10} [10, )

all real numbers {h lhe R} (00, 0)

To combine two intervals together, using inequalities or set-builder notation we can use
the word “or”. In interval notation, we use the union symbol, U, to combine two
unconnected intervals together.

Describe the intervals of values shown on the line graph below using set builder and
interval notations.

s
Ll

} t -t
4 3 6 7
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To describe the values, x, that lie in the intervals shown above we would say, “x is a real
number greater than or equal to 1 and less than or equal to 3, or a real number greater
than 5.”

As an inequality itis: 1<x<3o0orx>5
In set builder notation: {x|1<x<3or x >5}
In interval notation: [1,3]w (5,)

Remember when writing or reading interval notation:
Using a square bracket [ means the start value is included in the set
Using a parenthesis ( means the start value is not included in the set

Try it Now
2. Given the following interval, write its meaning in words, set builder notation, and
interval notation.

-
-J

(.
N

4 -3

Domain and Range from Graphs

We can also talk about domain and range based on graphs. Since domain refers to the set
of possible input values, the domain of a graph consists of all the input values shown on
the graph. Remember that input values are almost always shown along the horizontal
axis of the graph. Likewise, since range is the set of possible output values, the range of
a graph we can see from the possible values along the vertical axis of the graph.

Be careful — if the graph continues beyond the window on which we can see the graph,
the domain and range might be larger than the values we can see.
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Example 4
Determine the domain and range of the graph below.

Alaska Crude Oil Production
(thousand barrels per day)
2,200 -

2,000 | /\
1,200 |

1,000 —

600
400

Data from US Energy Information
200 Administration

o LLLL L L P P

1975 1980 1985 1990 1995 2000 2005

1,600 ——

1,400

In the graph above®, the input quantity along the horizontal axis appears to be “year”,
which we could notate with the variable y. The output is “thousands of barrels of oil per
day”, which we might notate with the variable b, for barrels. The graph would likely
continue to the left and right beyond what is shown, but based on the portion of the
graph that is shown to us, we can determine the domain is 1975 <y <2008, and the

range is approximately180 <b <2010.

In interval notation, the domain would be [1975, 2008] and the range would be about
[180, 2010]. For the range, we have to approximate the smallest and largest outputs
since they don’t fall exactly on the grid lines.

Remember that, as in the previous example, x and y are not always the input and output
variables. Using descriptive variables is an important tool to remembering the context of
the problem.

% http://commons.wikimedia.org/wiki/File:Alaska_Crude_Oil_Production.PNG, CC-BY-SA, July 19, 2010
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Try it Now
3. Given the graph below write the domain and range in interval notation

World Population Increase
100

S0
80 //N\// ~ e,
70 S

60 /

o f

40 U

30

population increase (millions)

20

10

o t t t t t
1950 1960 1970 19580 1990 2000
year

source: LS. Bureau of the Census, International Data Base (via GeoHive)

Domains and Ranges of the Toolkit functions
We will now return to our set of toolkit functions to note the domain and range of each.

Constant Function: f(x)=c

The domain here is not restricted; x can be anything. When this is the case we say the
domain is all real numbers. The outputs are limited to the constant value of the function.
Domain: (—o0,®)

Range: [c]

Since there is only one output value, we list it by itself in square brackets.

Identity Function: f(x)=x
Domain: (—oo,®)
Range: (—o0, )

Quadratic Function: f(x) =X’

Domain: (—oo,®)

Range: [0,x)

Multiplying a negative or positive number by itself can only yield a positive output.

Cubic Function: f(x) = x°
Domain: (—o0, )
Range: (—o0, )
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Reciprocal: f(x) =§

Domain: (—,0) U (0,)

Range: (—,0) U (0,0)

We cannot divide by 0 so we must exclude O from the domain.

One divide by any value can never be 0, so the range will not include 0.

Reciprocal squared: f(x)= iz
X

Domain: (—o,0)w (0, )
Range: (0, )
We cannot divide by 0 so we must exclude 0 from the domain.

Cube Root: f (x) = ¥/x
Domain: (—oo,®)
Range: (—o, )

Square Root: f(x) = x, commonly just written as, f(x)= Jx

Domain: [0, )

Range: [0,x)

When dealing with the set of real numbers we cannot take the square root of a negative
number so the domain is limited to O or greater.

Absolute Value Function: f(x) =|x|

Domain: (—oo, )

Range: [0, )

Since absolute value is defined as a distance from 0, the output can only be greater than
or equal to 0.

Example 4.5

Find the domain of each function: a) f(x)=2Jx+4 b) g(x) = 6—33x

a) Since we cannot take the square root of a negative number, we need the inside of the
square root to be non-negative.

X+4>0 when x>—4.

The domain of f(x) is [-4,x) .

b) We cannot divide by zero, so we need the denominator to be non-zero.
6—3x =0 when x = 2, so we must exclude 2 from the domain.
The domain of g(x) is (—0,2) U (2,).
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Piecewise Functions

In the toolkit functions we introduced the absolute value function f(x) = |x| .

With a domain of all real numbers and a range of values greater than or equal to 0, the
absolute value can be defined as the magnitude or modulus of a number, a real number

value regardless of sign, the size of the number, or the distance from 0 on the number
line. All of these definitions require the output to be greater than or equal to 0.

If we input 0, or a positive value the output is unchanged
f(x)=x if x>0

If we input a negative value the sign must change from negative to positive.
f(x)=—x if x<0 since multiplying a negative value by -1 makes it positive.

Since this requires two different processes or pieces, the absolute value function is often
called the most basic piecewise defined function.

Piecewise Function

A piecewise function is a function in which the formula used depends upon the domain
the input lies in. We notate this idea like:

formulal if domain to use formula 1
f(x)=<formula2 if domain to use formula 2
formula3 if domain to use formula 3

xample 5

A museum charges $5 per person for a guided tour with a group of 1 to 9 people, or a
fixed $50 fee for 10 or more people in the group. Set up a function relating the number
of people, n, to the cost, C.

To set up this function, two different formulas would be needed. C = 5n would work
for n values under 10, and C = 50 would work for values of n ten or greater. Notating
this:

5n if O0<n<10
C(n) = .

50 if n>10

xample 6
A cell phone company uses the function below to determine the cost, C, in dollars for g
gigabytes of data transfer.

25 if 0<g<2

c(9) :{25+10(g _2) if g>2
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Find the cost of using 1.5 gigabytes of data, and the cost of using 4 gigabytes of data.

To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which piece
of domain our input falls in. Since 1.5 is less than 2, we use the first formula, giving
C(1.5) = $25.

The find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater
than 2, so we’ll use the second formula. C(4) = 25 + 10(4-2) = $45.

Example 7
x> if x<1
Sketch a graph of the function f(x)=4 3 if 1<x<2
x if  x>2

Since each of the component functions are from our library of Toolkit functions, we
know their shapes. We can imagine graphing each function, then limiting the graph to
the indicated domain. At the endpoints of the domain, we put open circles to indicate
where the endpoint is not included, due to a strictly-less-than inequality, and a closed

circle where the endpoint is included, due to a less-than-or-equal-to inequality.
5 eh ot
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Try it Now

4. At Pierce College during the 2009-2010 school year tuition rates for in-state residents
were $89.50 per credit for the first 10 credits, $33 per credit for credits 11-18, and for
over 18 credits the rate is $73 per credit*. Write a piecewise defined function for the
total tuition, T, at Pierce College during 2009-2010 as a function of the number of
credits taken, c. Be sure to consider a reasonable domain and range.

Important Topics of this Section

Definition of domain

Definition of range

Inequalities

Interval notation

Set builder notation

Domain and Range from graphs
Domain and Range of toolkit functions
Piecewise defined functions

Try it Now Answers

1. Domain; y = years [1960,2010] ; Range, p = population, [100,1400]

2. a. Values that are less than or equal to -2, or values that are greater than or equal to -
1 and less than 3

b. {x|x<-20r-1<x<3}
c. (—0,~2]U[-1,3)

3. Domain; y=years, [1952,2002] ; Range, p=population in millions, [40,88]

89.5¢c if c<10
4. T(c)=+895+33(c—10) if 10<c<18 Tuition, T, as a function of credits, c.
1159 +73(c-18) if  c>18

Reasonable domain should be whole numbers 0 to (answers may vary), e.g. [0, 23]
Reasonable range should be $0 — (answers may vary), e.g. [0,1524]

4 https://www.pierce.ctc.edu/dist/tuition/ref/files/0910 tuition_rate.pdf, retrieved August 6, 2010
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Write the domain and range of the function using interval notation.

N

e b L
P I R T

6 -5 A -4 -2 -

12 3 4 5 8

e
I

[ S

Write the domain and range of each graph as an inequality.

b2

&

\

f

1.

107
sl
6+
_.; +
2 +

3.

2 4 6 8

10

4.

101
gt
64+
44+
24

I

n

2 4 6 8§ 10

Suppose that you are holding your toy submarine under the water. You release it and it
begins to ascend. The graph models the depth of the submarine as a function of time,
stopping once the sub surfaces. What is the domain and range of the function in the

graph?
14
| [ itime )
-J! 1 2 474 5 6 7 &
2]
-3
_4.
5
61
-7
5 _o | d{depth)

I

itime )

-1

1 F 4 5 6 7 8

-1
2
-3
__‘.
-5
61
-7
Y d (depth)
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Find the domain of each function

7. f(x)=3Jx-2
9. f(x)=3-+6-2x

ll.f(x)=;gg
_3x+1
CAx+2

15. f(x)::’\/;(_:r_‘I

X—4

13. f(x)

X-3

17'f(x):x2+9x—22

8. f(x)=5Vx+3

10. f(x)=5-+10-2x

12. f(x)=

14. f(x)=

16. f(x)=

18. f(X)=———

Given each function, evaluate: f(-1), f(0), f(2), f(4)

19 f(x)— 7x+3 if x<0
' 17x+6 if x>0

21. 1 (x) x2-2 if x<2
' 4+[x-5 if x>2
5x if x<0

23. f(x)=43 if 0<x<3

X% if X>3

20. f(x)={

22.f(x):{

24. f(x)=

4x—-9
4x-18

4-x°

Jx+1

x3+1
4
3x+1

if
if

if

if

if

if
if

Xx<0
x>0

x<1

Xx>1

x<0
0<x<3
X>3
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Write a formula for the piecewise function graphed below.

8 &
3 O—i
4 4
3 3+
JI'
3 76 4 0 -2 - I > i 4 3 &

26.

: ————t——+ !-
4 - /1’ 2 3 4 5 06 ':\*\N\i-{j_}—" +———
o—® T _;__'
-l
29, 44 30. -
Sketch a graph of each piecewise function
if 2 4 if x<0
a1, 1 (x)= 1T X< 32. f(x)=
5 if x>2 Jx if x>0
2 1 if 1
3. f(x)=] © 1T x<0 34 f(x)={ 7 01T
x+2 if x>0 x> if x>1
3 if X<=2 -3 if X<=2
35. f(x)=9-x+1 if -2<x<1 36. f(x)=9x-1 if -2<x<2

3 if x>1 0 if X>2
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Section 4.3 Rates of Change and Behavior of Graphs

Since functions represent how an output quantity varies with an input quantity, it is
natural to ask about the rate at which the values of the function are changing.

For example, the function C(t) below gives the average cost, in dollars, of a gallon of
gasoline t years after 2000.

t 2 3 4 5 6 7 8 9
C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14

If we were interested in how the gas prices had changed between 2002 and 2009, we
could compute that the cost per gallon had increased from $1.47 to $2.14, an increase of
$0.67. While this is interesting, it might be more useful to look at how much the price
changed per year. You are probably noticing that the price didn’t change the same
amount each year, so we would be finding the average rate of change over a specified
amount of time.

The gas price increased by $0.67 from 2002 to 2009, over 7 years, for an average of
$0.67
7years

cents each year.

~ 0.096 dollars per year. On average, the price of gas increased by about 9.6

Rate of Change
A rate of change describes how the output quantity changes in relation to the input
quantity. The units on a rate of change are “output units per input units”

Some other examples of rates of change would be quantities like:

e A population of rats increases by 40 rats per week

e A barista earns $9 per hour (dollars per hour)

o A farmer plants 60,000 onions per acre

e A car can drive 27 miles per gallon

e A population of grey whales decreases by 8 whales per year

e The amount of money in your college account decreases by $4,000 per quarter

Average Rate of Change
The average rate of change between two input values is the total change of the
function values (output values) divided by the change in the input values.

Change of Output _AY YoV

Average rate of change =
Change of Input  AX X, =X,
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Example 1

Using the cost-of-gas function from earlier, find the average rate of change between
2007 and 2009

From the table, in 2007 the cost of gas was $2.64. In 2009 the cost was $2.14.

The input (years) has changed by 2. The output has changed by $2.14 - $2.64 = -0.50.

The average rate of change is then —$0.50 =-0.25 dollars per year

2years

Try it Now
1. Using the same cost-of-gas function, find the average rate of change between 2003
and 2008

Notice that in the last example the change of output was negative since the output value
of the function had decreased. Correspondingly, the average rate of change is negative.

Example 2
Given the function g(t) shown here, find the average rate of
change on the interval [0, 3].

Att =0, the graph shows g(0) =1
At t = 3, the graph shows g(3) =4

7 T3 3
i

The output has changed by 3 while the input has changed by 3, giving an average rate of

change of:

4-1 3

—:—:1

3-0 3

Example 3

On a road trip, after picking up your friend who lives 10 miles away, you decide to
record your distance from home over time. Find your average speed over the first 6
hours.

t (hours) 0 1 2 3 4 5 6 7
D(t) (miles) |10 55 90 153 214 240 292 300

Here, your average speed is the average rate of change.
You traveled 282 miles in 6 hours, for an average speed of
292-10 282

6-0

= 47 miles per hour
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We can more formally state the average rate of change calculation using function
notation.

Average Rate of Change using Function Notation

Given a function f(x), the average rate of change on the interval [a, b] is
Change of Output _ f(b) - f(a)

Average rate of change =
Change of Input b-a

Compute the average rate of change of f(x) = x? —% on the interval [2, 4]

We can start by computing the function values at each endpoint of the interval

(o tog 17
2 2 2
1 1 63

f4)=4"-==16--=—
) 4 4 4

Now computing the average rate of change

B8_ 171 8
Average rate of change = f-f@_4 2_4_9%
4-2 4-2 2 8

2. Find the average rate of change of f(x) =x— 2/x on the interval [1, 9]

Example 5

The magnetic force F, measured in Newtons, between two magnets is related to the
. . : 2 .
distance between the magnets d, in centimeters, by the formula F(d) = FE Find the

average rate of change of force if the distance between the magnets is increased from 2
cmto 6 cm.

We are computing the average rate of change of F(d) = d% on the interval [2, 6]

F(6)-F(2)
6

Average rate of change = Evaluating the function
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F(6)-F(2) _
6-2

2 _2

62 2° .

-_— Simplifyin
6_2 plitying

2 2

3§T4 Combining the numerator terms

-16

% Simplifying further

-1 .
? Newtons per centimeter

This tells us the magnetic force decreases, on average, by 1/9 Newtons per centimeter
over this interval.

Example 6

Find the average rate of change of g(t) =t* + 3t +1on the interval [0,a]. Your answer
will be an expression involving a.

Using the average rate of change formula

9 (aa)1 - g 0) Evaluating the function

2 2
(a* +3a+1) - (0° +3(0) +1) Simplifying

a-0

2 _

a“+3a+1-1 Simplifying further, and factoring
a

a(aa+ 3) Cancelling the common factor a
a+3

This result tells us the average rate of change between t = 0 and any other point t = a.
For example, on the interval [0, 5], the average rate of change would be 5+3 = 8.

3. Find the average rate of change of f(x)=x*+2 on the interval [a,a+h].
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Graphical Behavior of Functions

As part of exploring how functions change, it is interesting to explore the graphical
behavior of functions.

Increasing/Decreasing

A function is increasing on an interval if the function values increase as the inputs
increase. More formally, a function is increasing if f(b) > f(a) for any two input values
a and b in the interval with b>a. The average rate of change of an increasing function
IS positive.

A function is decreasing on an interval if the function values decrease as the inputs
increase. More formally, a function is decreasing if f(b) < f(a) for any two input values
a and b in the interval with b>a. The average rate of change of a decreasing function is
negative.

xample 7
Given the function p(t) graphed here, on what 1
intervals does the function appear to be :\
increasing?

2
The function appears to be increasing fromt =1 14

tot=3, and fromt=4on.

In interval notation, we would say the function
appears to be increasing on the interval (1,3)and el

the interval (4,0)

Notice in the last example that we used open intervals (intervals that don’t include the
endpoints) since the function is neither increasing nor decreasingatt=1, 3, or 4.

Local Extrema
A point where a function changes from increasing to decreasing is called a local
maximum.

A point where a function changes from decreasing to increasing is called a local
minimum.

Together, local maxima and minima are called the local extrema, or local extreme
values, of the function.
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Example 8
Using the cost of gasoline function from the beginning of the section, find an interval on

which the function appears to be decreasing. Estimate any local extrema using the
table.

t 2 3 4 5 6 7 8 9
C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14

It appears that the cost of gas increased from t = 2 to t = 8. It appears the cost of gas
decreased fromt =8 tot = 9, so the function appears to be decreasing on the interval
(8,9).

Since the function appears to change from increasing to decreasing at t = 8, there is
local maximum at t = 8.

xample 9

. . 2
Use a graph to estimate the local extrema of the function f(x) =—+ % Use these to
X

REaEE

5 4 3 2 a4 | 1 2 3 4 3

1
Most graphing calculators and graphing 24
utilities can estimate the location of 31
maxima and minima. Below are screen 1

images from two different technologies,
showing the estimate for the local maximum and minimum.

determine the intervals on which the function is increasing.

Using technology to graph the function, it
appears there is a local minimum
somewhere between x =2 and x =3, and a
symmetric local maximum somewhere
between x = -3 and x = -2.

ol

:\\m:gs, 16329032

b . Haximum
j ==z 4yay0d §y=-1 g=z00z

Based on these estimates, the function is increasing on the intervals (—0,—2.449) and
(2.449, ) . Notice that while we expect the extrema to be symmetric, the two different

technologies agree only up to 4 decimals due to the differing approximation algorithms
used by each.
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Try it Now

4. Use a graph of the function f(x) = x* —6x* —15x+ 20 to estimate the local extrema
of the function. Use these to determine the intervals on which the function is increasing
and decreasing.

Concavity

The total sales, in thousands of dollars, for two companies over 4 weeks are shown.

Company A Company B
141 144
12+ 12+
10+ 10+
81 81
61 61
41 44
21 21
! 5 1 4

As you can see, the sales for each company are increasing, but they are increasing in very
different ways. To describe the difference in behavior, we can investigate how the
average rate of change varies over different intervals. Using tables of values,

Company A Company B
Week Sales Rate of Week Sales Rate of
Change Change
0 0 0 0
5 0.5
1 5 1 0.5
2.1 1.5
2 7.1 2 2
1.6 2.5
3 8.7 3 4.5
1.3 3.5
4 10 4 8

From the tables, we can see that the rate of change for company A is decreasing, while

the rate of change for company B is increasing.




Section 4.3 Rates of Change and Behavior of Graphs215

144 Smaller 144
724 Larger llncrease 124 Larger
increase increase

107 l 104 l

51 &1 smaller

61 6T  increase

41 41

21 24

T 2 3 4 5 1 4

When the rate of change is getting smaller, as with Company A, we say the function is
concave down. When the rate of change is getting larger, as with Company B, we say
the function is concave up.

A function is concave up if the rate of change is increasing.

A function is concave down if the rate of change is decreasing.

A point where a function changes from concave up to concave down or vice versa is
called an inflection point.

xample 10

An object is thrown from the top of a building. The object’s height in feet above
ground after t seconds is given by the function h(t) =144 —16t> for 0<t <3. Describe
the concavity of the graph.

Sketching a graph of the function, we can see that the

function is decreasing. We can calculate some rates of Hoy
change to explore the behavior ; ig"
t h(t) Rate of 801
Change 607
0 144 401
-16 204
1 128
-48
2 80
-80
3 0

Notice that the rates of change are becoming more negative, so the rates of change are
decreasing. This means the function is concave down.
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Example 11

t

0

2

4 6

8

V()

28000

24342

21162

18397

15994

The value, V, of a car after t years is given in the table below. Is the value increasing or
decreasing? Is the function concave up or concave down?

Since the values are getting smaller, we can determine that the value is decreasing. We
can compute rates of change to determine concavity.

t 0 2 4 6 8
V(1) 28000 24342 21162 18397 15994
Rate of change | -1829 | -1590 | -13825 | -12015 |

Since these values are becoming less negative, the rates of change are increasing, so
this function is concave up.

Try it Now

5. Is the function described in the table below concave up or concave down?

X

0

5

10 15

20

g(x)

10000

9000

7000

4000 0

Graphically, concave down functions bend downwards like a frown, and

concave up function bend upwards like a smile.

Increasing Decreasing
| S
Concave \
Down / \
Concave / \\
Up
_/ \




Section 4.3 Rates of Change and Behavior of Graphs217

Example 12

Estimate from the graph shown the
intervals on which the function is 41
concave down and concave up.
On the far left, the graph is decreasing 21
but concave up, since it is bending 11
upwards. It beginsincreasingatx=-2, | |
but it continues to bend upwards until 3 -2 -
about x = -1.

24
From x = -1 the graph starts to bend 34+

upwards for the remainder of the graph shown.

=-landx=2.

J+

jzvﬁ

downward, and continues to do so until about x = 2. The graph then begins curving

From this, we can estimate that the graph is concave up on the intervals (—o0,—1) and
(2,), and is concave down on the interval (—1,2) . The graph has inflection points at x

Try it Now

6. Using the graph from Try it Now 4, f(x) = x® —6x* —15x + 20, estimate the

intervals on which the function is concave up and concave down.

Behaviors of the Toolkit Functions

We will now return to our toolkit functions and discuss their graphical behavior.

Function Increasing/Decreasing Concavity
Constant Function Neither increasing nor Neither concave up nor down
f(x)=c decreasing
Identity Function Increasing Neither concave up nor down
f(x)=x
Quadratic Function Increasing on (0, ) Concave up (—o0, )
f(x)=x° Decreasing on (—,0)

Minimumat x=0
Cubic Function Increasing Concave down on (—,0)
f(x)=x° Concave up on (0, )

Inflection point at (0,0)

Reciprocal Decreasing (—,0) U (0,0) | Concave down on (—,0)

f(x)= 1 Concave up on (0, )
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Function Increasing/Decreasing Concavity

Reciprocal squared Increasing on (—x,0) Concave up on (—0,0) w (0,)
£ (x) = iz Decreasing on (0, )

X
Cube Root Increasing Concave down on (0,)
f(x)=3x Concave up on (—,0)
Inflection point at (0,0)

Square Root Increasing on (0, ) Concave down on (0,)
f(x) =X

Absolute Value Increasing on (0, ) Neither concave up or down
f(x) =|x| Decreasing on (—0,0)

[Important Topics of This Section
Rate of Change

Average Rate of Change

Calculating Average Rate of Change using Function Notation
Increasing/Decreasing

Local Maxima and Minima (Extrema)

Inflection points

Concavity

Try it Now Answers

g $301-81.69 _ $1.32 _ 264 dollars per year.
Syears Syears
2. Average rate of change = fO)-1W _ (9 — 2\/5)_ (1_ Z‘E) = 8)-(1) _4_1
9-1 9-1 9-1 8 2
fla+h)—f(a) ((@a+h)®+2)-(a®+2) a®+3a’h+3ah?+h®+2-a°-2
(a+h)—a h h
2 2 3 2 2
3a*h+3ah? +h® _h(3a® +3ah+h ):3a2 \ 32 b
h h
401
4. Based on the graph, the local maximum appears 2 /
to occur at (-1, 28), and the local minimum — (?\\ 2
occurs at (5,-80). The function is increasing 201
on (—oo,—1) U (5,0) and decreasing on (-1,5). 401
601

-80 1
-100 +
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5. Calculating the rates of change, we see the rates of change become more negative, so
the rates of change are decreasing. This function is concave down.

X 0 5 10 15 20
9(x) 10000 | 9000 7000 4000 0
Rate of change | -1000 | -2000 | -3000 | -4000 |

6. Looking at the graph, it appears the function is concave down on (—»,2) and
concave up on (2,).



220 Chapter 4

Section 4.3 Exercises

1. The table below gives the annual sales (in millions of dollars) of a product. What was
the average rate of change of annual sales...
a) Between 2001 and 2002? b) Between 2001 and 2004?

year | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006
sales | 201 | 219 | 233 | 243 | 249 | 251 |249 |243 | 233

2. The table below gives the population of a town, in thousands. What was the average
rate of change of population...
a) Between 2002 and 2004? b) Between 2002 and 2006?

year 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008
population | 87 84 83 80 77 76 75 78 81

3. Based on the graph shown, estimate the
average rate of change fromx=1tox=4.

4. Based on the graph shown, estimate the
average rate of change from x =2 to x = 5.

\ﬁ.h.q_\lu'._uu.mwﬁo
v

y_j_fzf4€ﬁ?8
Find the average rate of change of each function on the interval specified.
5. f(x)=x*on[1, 5] 6. q(x) = x® on [-4, 2]
7. g(x)=3x> -1 on[-3, 3] 8. h(x) =5-2x* on [-2, 4]
2 —
9. K(t) = 6t +ti3 on [-1, 3] 10. p(t) :% on[-3, 1]
+

Find the average rate of change of each function on the interval specified. Your answers
will be expressions involving a parameter (b or h).

11. f(x)=4x* -7 on[1,b] 12. g(x) =2x* -9 on [4, b]

13. h(x) =3x+4 on [2, 2+h] 14. k(x) =4x—2 on [3, 3+h]

15. a(t) = L on [9, 9+h] 16. b(x) = 1 on [1, 1+h]
t+4 X+3

17. j(x) =3x* on[1, 1+h] 18. r(t) = 4t® on [2, 2+h]

19. f(x) =2x*+1 on [, x+h] 20. g(x) =3x* -2 on [x, x+h]
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For each function graphed, estimate the intervals on which the function is increasing and
decreasing.

AP

21. 47 22.

23. ST 24, 44

For each table below, select whether the table represents a function that is increasing or
decreasing, and whether the function is concave up or concave down.

25. | x|[fx)| 26. [x]|g(x) 27. | x| hX) | 28. | x| k(X
12 1]90 1300 1/0
24 2170 2 1290 2115
3|8 3[80 31270 3125
4116 4175 41240 4132
5132 5|72 5| 200 5135

29. | x| f(x)| 30. [x|g(x 31. | x|hXx) | 32. | x|k(Xx)
1/-10 1|-200 1]- 1|-50
2| -25 2| -190 100 2 | -100
3(-37 3]-160 2| -50 3]-200
4| -47 4| -100 3]-25 4 | -400
5]-54 5|0 41-10 5| -900

5/0
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For each function graphed, estimate the intervals on which the function is concave up and
concave down, and the location of any inflection points.

10+

33. 10+

44
35. ST 36. 54

Use a graph to estimate the local extrema and inflection points of each function, and to
estimate the intervals on which the function is increasing, decreasing, concave up, and
concave down.

37. f(x)=x"-4x>+5 38. h(x) = x> +5x* +10x® +10x* -1
39. g(t) =tJt+3 40. k(t) =3t*3 -t

41. m(x) = x* +2x* —12x* —10x + 4 42. n(x) = x* —8x% +18x* —6x+2



Section 4.4 Composition of Functions223

Section 4.4 Composition of Functions

Suppose we wanted to calculate how much it costs to heat a house on a particular day of
the year. The cost to heat a house will depend on the average daily temperature, and the
average daily temperature depends on the particular day of the year. Notice how we have
just defined two relationships: The temperature depends on the day, and the cost depends
on the temperature. Using descriptive variables, we can notate these two functions.

The first function, C(T), gives the cost C of heating a house when the average daily
temperature is T degrees Celsius, and the second, T(d), gives the average daily
temperature of a particular city on day d of the year. If we wanted to determine the cost
of heating the house on the 5" day of the year, we could do this by linking our two
functions together, an idea called composition of functions. Using the function T(d), we
could evaluate T(5) to determine the average daily temperature on the 5 day of the year.
We could then use that temperature as the input to the C(T) function to find the cost to
heat the house on the 5™ day of the year: C(T(5)).

Composition of Functions

When the output of one function is used as the input of another, we call the entire
operation a composition of functions. We write f(g(x)), and read this as “f of g of X” or
“f composed with g at x”.

An alternate notation for composition uses the composition operator: o
(f o g)(x) is read “f of g of X” or “f composed with g at x”, just like f(g(x)).

Example 1
Suppose c(s) gives the number of calories burned doing s sit-ups, and s(t) gives the
number of sit-ups a person can do in t minutes. Interpret c(s(3)).

When we are asked to interpret, we are being asked to explain the meaning of the
expression in words. The inside expression in the composition is s(3). Since the input
to the s function is time, the 3 is representing 3 minutes, and s(3) is the number of sit-
ups that can be done in 3 minutes. Taking this output and using it as the input to the
c(s) function will gives us the calories that can be burned by the number of sit-ups that
can be done in 3 minutes.

Note that it is not important that the same variable be used for the output of the inside
function and the input to the outside function. However, it is essential that the units on
the output of the inside function match the units on the input to the outside function, if the
units are specified.
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Example 2

Suppose f(x) gives miles that can be driven in x hours, and g(y) gives the gallons of gas
used in driving y miles. Which of these expressions is meaningful: f(g(y)) or g(f(x))?

The expression g(y) takes miles as the input and outputs a number of gallons. The
function f(x) is expecting a number of hours as the input; trying to give it a number of
gallons as input does not make sense. Remember the units have to match, and number
of gallons does not match number of hours, so the expression f(g(y)) is meaningless.

The expression f(x) takes hours as input and outputs a number of miles driven. The
function g(y) is expecting a number of miles as the input, so giving the output of the f(x)
function (miles driven) as an input value for g(y), where gallons of gas depends on
miles driven, does make sense. The expression g(f(x)) makes sense, and will give the
number of gallons of gas used, g, driving a certain number of miles, f(x), in x hours.

1. In a department store you see a sign that says 50% off of clearance merchandise, so
final cost C depends on the clearance price, p, according to the function C(p). Clearance
price, p, depends on the original discount, d, given to the clearance item, p(d).

Interpret C(p(d)).

Composition of Functions using Tables and Graphs

When working with functions given as tables and graphs, we can look up values for the
functions using a provided table or graph, as discussed in section 1.1. We start evaluation
from the provided input, and first evaluate the inside function. We can then use the
output of the inside function as the input to the outside function. To remember this,
always work from the inside out.

xample 3
Using the tables below, evaluate f (g(3)) and g(f (4))

X f(x) X 9()
1 6 1 3
2 8 2 5
3 3 3 2
4 1 4 7

To evaluate f (g(3)), we start from the inside with the value 3. We then evaluate the

inside expression g(3) using the table that defines the function g: g(3)=2. We can then
use that result as the input to the f function, so g(3) is replaced by the equivalent value 2
and we get f(2) . Then using the table that defines the function f, we find that f (2) =8.

f(9@)=f(2)=8.
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To evaluate g(f (4)), we first evaluate the inside expression f (4) using the first table:
f(4) =1. Then using the table for g we can evaluate:

9(f(4)=9@)=3

2. Using the tables from the example above, evaluate f(g(1)) and g(f(3)).

xample 4

Using the graphs below, evaluate f(g(1)).
9(x) f(x)
5 7
1 ¢
i j
24 3
1 2

A T TR TR SR S . ' — i

_?-5-_5-4-_f-2-;_1_:2\i/456? T I T Y R AT
-2 5
3 3
: j
5

To evaluate f(g(1), we again start with the inside evaluation. We evaluate g(1) using
the graph of the g(x) function, finding the input of 1 on the horizontal axis and finding
the output value of the graph at that input. Here, g(1) =3. Using this value as the input
to the f function, f(g(1))= f(3). We can then evaluate this by looking to the graph of

the f(x) function, finding the input of 3 on the horizontal axis, and reading the output
value of the graph at this input. Here, f(3)=6,s0 f(g(1))=6.

3. Using the graphs from the previous example, evaluate g(f(2)).

Composition using Formulas

When evaluating a composition of functions where we have either created or been given
formulas, the concept of working from the inside out remains the same. First we evaluate
the inside function using the input value provided, then use the resulting output as the
input to the outside function.
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Example 5
Given f(t)=t?—t and h(x) =3x+2, evaluate f(h(1)).

Since the inside evaluation is h(1) we start by evaluating the h(x) function at 1:
h)=31)+2=5

Then f(h(1)= f(5), so we evaluate the f(t) function at an input of 5:
f(h()) = f(5)=5"-5=20

Try it Now
\ 4. Using the functions from the example above, evaluate h(f(-2)).

While we can compose the functions as above for each individual input value, sometimes
it would be really helpful to find a single formula which will calculate the result of a
composition f(g(x)). To do this, we will extend our idea of function evaluation. Recall

that when we evaluate a function like f (t) =t® —t, we put whatever value is inside the
parentheses after the function name into the formula wherever we see the input variable.

Example 6
Given f (t) =t* —t, evaluate f (3) and f(-2).

f(3)=3"-3
f(-2)=(-2°-(-2)
We could simplify the results above if we wanted to
f(3)=3"-3=9-3=6
f(-2)=(-2)*—-(-2)=4+2=6

We are not limited, however, to using a numerical value as the input to the function. We
can put anything into the function: a value, a different variable, or even an algebraic
expression, provided we use the input expression everywhere we see the input variable.

Example 7

Using the function from the previous example, evaluate f(a)

This means that the input value for t is some unknown quantity a. As before, we
evaluate by replacing the input variable t with the input quantity, in this case a.
f(a)=a’-a
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The same idea can then be applied to expressions more complicated than a single letter.

Using the same f(t) function from above, evaluate f(x+2).

Everywhere in the formula for f where there was a t, we would replace it with the input
(x+2). Since in the original formula the input t was squared in the first term, the entire

input x+2 needs to be squared when we substitute, so we need to use grouping
parentheses. To avoid problems, it is advisable to always use parentheses around
inputs.

f(x+2)=(x+2)*-(x+2)

We could simplify this expression further to f (x+2) = x* +3x+ 2 if we wanted to:

f(X+2)=(X+2)(Xx+2)—(x+2) Use the “FOIL” technique (first, outside, inside, last)
f(X+2)=X"+2X+2X+4—(x+2) distribute the negative sign
f(X+2)=x*+2X+2X+4—-Xx-2 combine like terms

f(X+2)=%x*+3x+2

Example 9

Using the same function, evaluate f (t°).

Note that in this example, the same variable is used in the input expression and as the
input variable of the function. This doesn’t matter — we still replace the original input t

in the formula with the new input expression, t°.
.I:(t3) — (t3)2 _(t3) :tG _t3

5. Given g(x) =3x—+/x , evaluate g(t—2).

This now allows us to find an expression for a composition of functions. If we want to
find a formula for f(g(x)), we can start by writing out the formula for g(x). We can then
evaluate the function f(x) at that expression, as in the examples above.
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Let f(x)=x?and g(x) :§—2x, find f(g(x)) and g(f(x)).

To find f(g(x)), we start by evaluating the inside, writing out the formula for g(x)

9(x) == - 2x
X

We then use the expression (E— ZXJ as input for the function f.
X

f(g(x)) = f(1 - 2xj
X
We then evaluate the function f(x) using the formula for g(x) as the input.
2
Since f(x) = x? then f[l - ZXJ = (1 - ZXJ
X

X

2
This gives us the formula for the composition: f(g(x)) = [1 - ZXJ
X

Likewise, to find g(f(x)), we evaluate the inside, writing out the formula for f(x)

o(f () =g(x*)
Now we evaluate the function g(x) using x* as the input.

g(f(x»=xi2—2x2

6. Let f(x)=x>+3x and g(x) = Jx , find f(g(x)) and g(f(x)).

Example 11

A city manager determines that the tax revenue, R, in millions of dollars collected on a
population of p thousand people is given by the formula R(p) =0.03p + \/B , and that
the city’s population, in thousands, is predicted to follow the formula

p(t) = 60 + 2t + 0.3t%, where t is measured in years after 2010. Find a formula for the
tax revenue as a function of the year.

Since we want tax revenue as a function of the year, we want year to be our initial input,
and revenue to be our final output. To find revenue, we will first have to predict the
city population, and then use that result as the input to the tax function. So we need to
find R(p(t)). Evaluating this,
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R(p(t)) = R(60 + 2t +0.3t? )= 0.03(60 + 2t + 0.3t )+ /60 + 2t + 0.3t

This composition gives us a single formula which can be used to predict the tax revenue
during a given year, without needing to find the intermediary population value.

For example, to predict the tax revenue in 2017, when t = 7 (because t is measured in
years after 2010)

R(p(7)) = 0.03(60 + 2(7) +0.3(7)? )+ /60 + 2(7) + 0.3(7)? ~12.079 million dollars

In some cases, it is desirable to decompose a function — to write it as a composition of
two simpler functions.

xample 12

Write f(x)=3++/5-x* as the composition of two functions.

We are looking for two functions, g and h, so f (x) =g(h(x)). To do this, we look for a
function inside a function in the formula for f(x). As one possibility, we might notice
that 5— x* is the inside of the square root. We could then decompose the function as:
h(x) =5-x*

g(x)=3+ Jx

We can check our answer by recomposing the functions:

g(h(x)) = g(5—x2)=3+\/5—x2

Note that this is not the only solution to the problem. Another non-trivial
decomposition would be h(x) = x* and g(x) =3++/5-x

[Important Topics of this Section

Definition of Composition of Functions
Compositions using:

Words

Tables

Graphs

Equations




230 Chapter 4

Try it Now Answers

1. The final cost, C, depends on the clearance price, p, which is based on the original
discount, d. (Or the original discount d, determines the clearance price and the final
cost is half of the clearance price.)

f(g@))=1(3)=3 and  g(f@)=90@)=2
9(f(2)=9(5=3
h(f(-2))=h(6) =20  did you remember to insert your input values using parentheses?

g(t-2)=3(t-2)—[(t-2)
(900 = 1 (Vx) = (%) +3(+x)
g(f () =g(x*+3x) = /(x* +3x)

o g koo
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Section 4.4 Exercises

Given each pair of functions, calculate f(g(0)) and g( f(0)).

1. f(x)=4x+8, g(x)=7-x* 2. f(x)=5x+7, g(x)=4-2x’
3. f(x)=Vx+4, g(x)=12-% 4 1(0)=—, 9(x)=4x+3

Use the table of values to evaluate each expression x| £(x) a(x)
5. (9(8) o7 5
6. (9(5)) G 5
7. 9(f(5) 2| 5 6
8. 9(f(3) .
9. f(f(4) 5/ 0 8
10. f(f(1)) S i ;
11. 9(9(2)) s 9 2
12. 9(9(6)) 9| 3 0
Use the graphs to evaluate the expressions below.

13. f(9(3)) 6+ 6+

14. f(g(2)) s 5]

15. g(f (@) 41 44

16. g(f(0)) 34 34

17. £(f(5)) 21 5.

18. f(f(4)) 11 A

19. 9(9(2)) | [ |

20. 9(9(0)) | - |

For each pair of functions, find f (g(x)) and g( f(x)). Simplify your answers.
1 7 1

21. f(x):x—_(s,g(x):;+6 22. f(x):m,g(x):§+4

23. f(x)=x*+1, g(x)=x+2 24, f(x):\/;+2, g(x)=x*+3
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25.

27.

28.

29.

30.

31.

32.

f(x)=]x], g(x)=5x+1 26. f(x):%/;, g(x)= thl
If f(x)=x"+6, g(x)=x—6and h(x)=vx , find f(g(h(x)))

If f(x)=x*+1, g(x)=% and h(x)=x+3, find f(g(h(x)))

Given functions p(x)= % and m(x)=x* -4, state the domains of the following
functions using interval notation.

P(x)

m(x)

b. Domain of p(m(x))

c. Domain of m(p(x))

a. Domain of

Given functions g(x)=—= and h(x)=x* -9, state the domains of the following

Bk

X
functions using interval notation.

a. Domain of q_x)
h(x)

b. Domain of q(h(x))

c. Domain of h(q(x))

>

~—

The function D(p) gives the number of items that will be demanded when the price
is p. The production cost, C(x) is the cost of producing x items. To determine the

cost of production when the price is $6, you would do which of the following:
a. Evaluate D(C(6)) b. Evaluate C(D(6))

c. Solve D(C(x))=6 d. Solve C(D(p))=6

The function A(d) gives the pain level on a scale of 0-10 experienced by a patient

with d milligrams of a pain reduction drug in their system. The milligrams of drug in
the patient’s system after t minutes is modeled by m(t) . To determine when the

patient will be at a pain level of 4, you would need to:
a. Evaluate A(m(4)) b. Evaluate m(A(4))

c. Solve A(m(t))=4 d. Solve m(A(d))=4
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33. The radius r, in inches, of a spherical balloon is related to the volume, V, by
r\v) = 3\/ . Air is pumped into the balloon, so the volume after t seconds is given

by V (t )=10+20t.

a. Find the composite function r(V (t))
b. Find the time when the radius reaches 10 inches.

34. The number of bacteria in a refrigerated food product is given by
N(T)=23T%-56T +1, 3<T <33, where T is the temperature of the food. When

the food is removed from the refrigerator, the temperature is given by T(t) =5t +1.5,
where t is the time in hours.
a. Find the composite function N (T (t))

b. Find the time when the bacteria count reaches 6752

Find functions f(x) and g(x) so the given function can be expressed as

h(X)=f(9( )):

. h(x)= (x+2) 36. h(x)=(x-5)’
4

( ) 38. h( )_(X+2)2

39. h(x):3+\/x—2 40. h(x)=4+3x

41. Let f(x) be a linear function, with form f (x)=ax+b for constants a and b. [UW]
a. Show that f(f(x)) is a linear function
b. Find a function g(x) such that g(g(x))=6x-8

42. Let f(x):%x+3 [uw]

a. Sketch the graphs of f(x), f(f(x)),f(f(f(x))) onthe interval -2 <x< 10.

b. Your graphs should all intersect at the point (6, 6). The value x =6 is called a
fixed point of the function f(x)since f(6)=6; thatis, 6 is fixed - it doesn’t move
when f is applied to it. Give an explanation for why 6 is a fixed point for any
function f(f(f(...f(x)..))).

c. Linear functions (with the exception of f(x)=x) can have at most one fixed
point. Quadratic functions can have at most two. Find the fixed points of the
function g(x)=x*-2.

d. Give a quadratic function whose fixed points are x = -2 and x = 3.
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43. A car leaves Seattle heading east. The speed of the car in mph after m minutes is

given by the function C(m) -

a.

70m?
10+m?
Find a function m = f (s) that converts seconds s into minutes m. Write out the

formula for the new function C(f (s)) ; what does this function calculate?

Find a function m = g(h) that converts hours h into minutes m. Write out the
formula for the new function C(g(h)) ; what does this function calculate?

Find a function z =v(s) that converts mph s into ft/sec z. Write out the formula
for the new function v(C(m); what does this function calculate?

[UW]
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Section 4.5 Transformation of Functions

Often when given a problem, we try to model the scenario using mathematics in the form
of words, tables, graphs and equations in order to explain or solve it. When building
models, it is often helpful to build off of existing formulas or models. Knowing the basic
graphs of your tool-kit functions can help you solve problems by being able to model
new behavior by adapting something you already know. Unfortunately, the models and
existing formulas we know are not always exactly the same as the ones presented in the
problems we face.

Fortunately, there are systematic ways to shift, stretch, compress, flip and combine
functions to help them become better models for the problems we are trying to solve. We
can transform what we already know into what we need, hence the name,
“Transformation of functions.” When we have a story problem, formula, graph, or table,
we can then transform that function in a variety of ways to form new functions.

Shifts

xample 1

To regulate temperature in our green building, air flow vents near the roof open and
close throughout the day to allow warm air to escape. The graph below shows the open
vents V (in square feet) throughout the day, t in hours after midnight. During the
summer, the facilities staff decides to try to better regulate temperature by increasing
the amount of open vents by 20 square feet throughout the day. Sketch a graph of this
new function.

J00+
2501
2001
150+
1001

30+

We can sketch a graph of this new function by adding 20 to each of the output values of
the original function. This will have the effect of shifting the graph up.
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Notice that in the second graph, for each
input value, the output value has
increased by twenty, so if we call the
new function S(t), we could write
S(t)=V(t)+20.

Note that this notation tells us that for
any value of t, S(t) can be found by
evaluating the V function at the same
input, then adding twenty to the result. . . . . . .
This defines S as a transformation of the 4 8 216 20 M4
function V, in this case a vertical shift
up 20 units.

Notice that with a vertical shift the input values stay the same and only the output
values change.

Vertical Shift

Given a function f(x), if we define a new function g(x) as

g(x) = f (x)+k, where k is a constant

then g(x) is a vertical shift of the function f(x), where all the output values have been
increased by k.

If k is positive, then the graph will shift up

If k is negative, then the graph will shift down

Example 2

A function f(x) is given as a table below. Create a table for the function g(x) = f(x)-3

x |2 4 6 8
f(x) | 1 3 7 11

The formula g(x) = f (x) -3 tells us that we can find the output values of the g function

by subtracting 3 from the output values of the f function. For example,
f(2)=1 is found from the given table

g(x)=f(x)-3 IS our given transformation
g(2)=f(2)-3=1-3=-2

Subtracting 3 from each f(x) value, we can complete a table of values for g(x)

X 2 4 6 8
g(x) | -2 0 4 8




Section 4.5 Transformation of Functions 237

As with the earlier vertical shift, notice the input values stay the same and only the output
values change.

1. The function h(t) = —4.9t* + 30t gives the height h of a ball (in meters) thrown
upwards from the ground after t seconds. Suppose the ball was instead thrown from the
top of a 10 meter building. Relate this new height function b(t) to h(t), then find a
formula for b(t).

The vertical shift is a change to the output, or outside, of the function. We will now look
at how changes to input, on the inside of the function, change its graph and meaning.

xample 3

Returning to our building air flow example from the beginning of the section, suppose
that in Fall, the facilities staff decides that the original venting plan starts too late, and
they want to move the entire venting program to start two hours earlier. Sketch a graph
of the new function.

V(t) = the original venting plan ~ F(t) = starting 2 hrs sooner

JFtH

00
2504

2504

So0l 2004

1501 1504

100 100

50 304
4 8 2 16 T 4 8 2 16 20 24

In the new graph, which we can call F(t), at each time, the air flow is the same as the
original function V(t) was two hours later. For example, in the original function V, the
air flow starts to change at 8am, while for the function F(t) the air flow starts to change
at 6am. The comparable function values are V (8) = F(6) .

Notice also that the vents first opened to 220 sqg. ft. at 10 a.m. under the original plan,
while under the new plan the vents reach 220 sq. ft. at 8 a.m., so V (10) = F(8) .

In both cases we see that since F(t) starts 2 hours sooner, the same output values are
reached when, F(t) =V (t+2)

Note that V (t + 2) had the affect of shifting the graph to the left.
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Horizontal changes or “inside changes” affect the domain of a function (the input) instead
of the range and often seem counterintuitive. The new function F(t) uses the same
outputs as V(t), but matches those outputs to inputs two hours earlier than those of V(t).
Said another way, we must add 2 hours to the input of V to find the corresponding output
forF: F(t)=V(t+2).

Horizontal Shift

Given a function f(x), if we define a new function g(x) as
g(x) = f (x+k), where k is a constant

then g(x) is a horizontal shift of the function f(x)

If k is positive, then the graph will shift left

If k is negative, then the graph will shift right

A function f(x) is given as a table below. Create a table for the function g(x) = f(x—3)

x |2 4 6 8
f(x) | 1 3 7 11

The formula g(x) = f (x—3) tells us that the output values of g are the same as the
output value of f with an input value three smaller. For example, we know that f (2) =1.

To get the same output from the g function, we will need an input value that is 3 larger:
We input a value that is three larger for g(x) because the function takes three away
before evaluating the function f.

g(5) = f(5-3)= f(2) =1

x |5 7 9 11
g(x) | 1 3 7 11

The result is that the function g(x) has been shifted to the right by 3. Notice the output
values for g(x) remain the same as the output values for f(x) in the chart, but the
corresponding input values, x, have shifted to the right by 3: 2 shifted to 5, 4 shifted to
7, 6 shifted to 9 and 8 shifted to 11.
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The graph shown is a transformation of the toolkit
function f(x)=x’. Relate this new function g(x)
to f(x), and then find a formula for g(x).

Notice that the graph looks almost identical in

shape to the f(x) =x* function, but the x values 3T

are shifted to the right two units. The vertex used 21

to be at (0, 0) but now the vertex is at (2, 0) . The

graph is the basic quadratic function shifted two to i

the right, so : N
g(X)Zf(X—Z) -1 1 2 3 4 5

s

Notice how we must input the value x = 2, to get the output value y = 0; the x values
must be two units larger, because of the shift to the right by 2 units.

We can then use the definition of the f(x) function to write a formula for g(x) by
evaluating f(x-2):

Since f(x)=x*and g(x)= f(x-2)
g(x) = f(x=2) = (x-2)°

If you find yourself having trouble determining whether the shift is +2 or -2, it might
help to consider a single point on the graph. For a quadratic, looking at the bottom-
most point is convenient. In the original function, f(0)=0. In our shifted function,

g(2) =0. To obtain the output value of 0 from the f function, we need to decide
whether a +2 or -2 will work to satisfy g(2)= f(2?2) = f(0)=0. For this to work, we
will need to subtract 2 from our input values.

When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical
shifts are affecting the output values of the function, while horizontal shifts are affecting
the input values of the function.

The function G(m) gives the number of gallons of gas required to drive m miles.
Interpret G(m)+10 and G(m+10)

G(m)+10 is adding 10 to the output, gallons. So this is 10 gallons of gas more than is

required to drive m miles. So this is the gas required to drive m miles, plus another 10
gallons of gas.

G(m+10) is adding 10 to the input, miles. So this is the number of gallons of gas
required to drive 10 miles more than m miles.
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2. Given the function f(x) =Jx graph the original function f(x) and the
transformation g(x) = f(x+2).

a. Is this a horizontal or a vertical change?
b. Which way is the graph shifted and by how many units?
c. Graph f(x) and g(x) on the same axes.

Now that we have two transformations, we can combine them together.

Remember:
Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the
transformed function up or down.

Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting
the transformed function left or right.

Example 7
Given f(x)=|x|, sketch a graph of h(x) = f (x+1)-3.

The function f is our toolkit absolute value function. We know that this graph has a V
shape, with the point at the origin. The graph of h has transformed f in two ways:
f (x+1) is a change on the inside of the function, giving a horizontal shift left by 1,

then the subtraction by 3 in f (x+1)—3 is a change to the outside of the function,
giving a vertical shift down by 3. Transforming the graph gives
)__

44
31

-'/'2‘3'45'

4
54

We could also find a formula for this transformation by evaluating the expression for
h(x):
h(x)=f(x+1)-3

h(x) =|x+1-3
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Example 8
Write a formula for the graph shown, a 5t
transformation of the toolkit square root function.

The graph of the toolkit function starts at the
origin, so this graph has been shifted 1 to the right,
and up 2. In function notation, we could write that
as h(x) = f(x—1)+2. Using the formula for the

square root function we can write jal

h(x) =vx—-1+2

Note that this transformation has changed the
domain and range of the function. This new graph
has domain [1,00) and range [2,).

Reflections
Another transformation that can be applied to a function is a reflection over the horizontal
or vertical axis.

Example 9
Reflect the graph of s(t) = Jt both vertically and horizontally.

Reflecting the graph vertically, each output value will be reflected over the horizontal t

axis:
24 24
ot ot
t t t 1 t t + } t t t t t 1 t t + } t t
S5 o4 03 2 I 2 3 4 3 S5 o4 03 2 I 2 3 4 3
44 s
24 21

Since each output value is the opposite of the original output value, we can write

V(t) = —s(t)

V)=t

Notice this is an outside change or vertical change that affects the output s(t) values so
the negative sign belongs outside of the function.
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Reflecting horizontally, each input value will be reflected over the vertical axis:
54

44
It
24
1

R N B DS B B
AN
24
341
41

54+
Since each input value is the opposite of the original input value, we can write
H(t) =s(-t)
H(t) =v-t
Notice this is an inside change or horizontal change that affects the input values so the
negative sign is on the inside of the function.

Note that these transformations can affect the domain and range of the functions. While
the original square root function has domain [0,) and range [0,), the vertical
reflection gives the V(t) function the range (—o0,0], and the horizontal reflection gives

the H(t) function the domain (-, 0].

Reflections

Given a function f(x), if we define a new function g(x) as

g(x) =—f(x),

then g(x) is a vertical reflection of the function f(x), sometimes called a reflection
about the x-axis

If we define a new function g(x) as

9(x) = f(=x),

then g(x) is a horizontal reflection of the function f(x), sometimes called a reflection
about the y-axis

xample 10
A function f(x) is given as a table below. Create a table for the function g(x) =—f(x)

and h(x) = f(-x)

x |2 4 6 8
f(x) | 1 3 7 11
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For g(x), this is a vertical reflection, so the x values stay the same and each output value
will be the opposite of the original output value:

X

For h(x), this is a horizontal reflection, and each input value will be the opposite of the
original input value and the h(x) values stay the same as the f(x) values:

X -2 -4 -6 -8
h(x) | 1 3 7 11

xample 11

A common model for learning has an equation similar to
k(t)=—2""+1, where k is the percentage of mastery that
can be achieved after t practice sessions. This is a

transformation of the function f (t) =2' shown here. _

Sketch a graph of k(t). = T;j’fb s
g4+

This equation combines three transformations into one equation.

A horizontal reflection: f(-t)=2" combined with

A vertical reflection: —f(-t)=-2" combined with

A vertical shift up 1: —f(-t)+1=-2"+1

We can sketch a graph by applying these transformations one at a time to the original
function:

The original graph Horizontally reflected Then vertically reflected
3t 3+ 54
41 41 41
3+ I+ 3
2t 2t 24

5 4 3 2 I 2 3 4 5 5 4 3 2 - I 2 3 4 55 4 3 -

R N T I
R N T I

Then, after shifting up 1, we get the final graph:
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_‘)__

4..

34

24

s
54 5 2 I 2 3 4 3

g4

24

34

41

54 k(t)=—f(-t)+1=-2"+1.
Note: As a model for learning, this function would be limited to a domain of t >0,
with corresponding range [0,1) .

3. Given the toolkit function f(x)=x?, graph g(x) = -f(x) and h(x) = f(-x).
Do you notice anything surprising? Discuss your findings with a friend.

Some functions exhibit symmetry, in which reflections result in the original graph. For
example, reflecting the toolkit functions f(x)=x* or f(x)=|x| will result in the original
graph. We call these types of graphs symmetric about the y-axis.

Likewise, if the graphs of f(x)=x> or f(x) :% were reflected over both axes, the

result would be the original graph:

f(x)=x° f(—x) —f(-x)

— b ST
— ko Lo s L
LV T

54 3 2 - 12 3 4 5 5 4 3 -2 - l 2 3 4 5 5 4 -3 -2 - 1 2 3 4 3

L.

ok de

We call these graphs symmetric about the origin.
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Symmetry: Even and Odd Functions

A graph is symmetric about the vertical axis if
f(x)=f(-x)

A function with this symmetry is called an even function

A graph is symmetric about the origin if
f(x)=—"1(-x)

A function with this symmetry is called an odd function

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For
example, the f(x)=2" function is neither even nor odd.

xample 12

Is the function f(x) = x*+2x even, odd, or neither?

Without looking at a graph, we can determine this by finding formulas for the
reflections, and seeing if they return us to the original function:

(%) = (%" +2(-x) = %" ~2x

This does not return us to the original function, so this function is not even. We can
now try also applying a horizontal reflection:

—f(=x) =—(=x*—2x) = x*+2x

Since —f (—x) = f(x), this is an odd function

Stretches and Compressions
With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a
function. We now explore the effects of multiplying the inputs or outputs.

Remember, we can transform the inside (input values) of a function or we can transform
the outside (output values) of a function. Each change has a specific effect that can be
seen graphically.
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Example 13
A function P(t) models the growth of a population of fruit flies. The growth is shown
below.

",a‘_.

S SR T = )
T S TR S

A scientist is comparing this to another population, Q, that grows the same way, but
starts twice as large. Sketch a graph of this population.

Since the population is always twice as large, the new population’s output values are
always twice the original function output values. Graphically, this would look like
i+

S R TR S = )

Symbolically,
Q(t) = 2P(t)

This means that for any input t, the value of the Q function is twice the value of the P
function. Notice the effect on the graph is a vertical stretching of the graph, where
every point doubles its distance from the horizontal axis. The input values, t, stay the
same while the output values are twice as large as before.

Vertical Stretch/Compression
Given a function f(x), if we define a new function g(x) as

g(x) = kf(x), where k is a constant
then g(x) is a vertical stretch or compression of the function f(x).

If k > 1, then the graph will be stretched
If 0< k < 1, then the graph will be compressed

If k <0, then there will be combination of a vertical stretch or compression with a
vertical reflection
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Example 14

SN

[ep}

8

X
f(x) | 1

w

11

values of f with the same inputs. For example, we know that f (4) =3. Then

9@ = 1@ =20 -

X 2

4

6

8

g(x) | 1/2

3/2

712

11/2

A function f(x) is given as a table below. Create a table for the function g(x) = % f(x)

The formula g(x) = % f (x) tells us that the output values of g are half of the output

The result is that the function g(x) has been compressed vertically by %2. Each output
value has been cut in half, so the graph would now be half the original height.

Example 15

conclude that;
1

X) == f(x

g(x) 1 (x)

The graph to the right is a transformation of the
toolkit function f(x) = x*. Relate this new function
g(x) to f(x), then find a formula for g(x).

When trying to determine a vertical stretch or shift, it
is helpful to look for a point on the graph that is | |
relatively clear. In this graph, it appears that Tt
g(2) = 2. With the basic cubic function at the same
input, f(2)=2°=8. Based on that, it appears that
the outputs of g are ¥4 the outputs of the function f,

since g(2) = % f(2). From this we can fairly safely

b ba s e

We can write a formula for g by using the definition of the function f
1 1,

Now we consider changes to the inside of a function.

2 5 4 3
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Returning to the fruit fly population we looked at earlier, suppose the scientist is now
comparing it to a population that progresses through its lifespan twice as fast as the
original population. In other words, this new population, R, will progress in 1 hour the
same amount the original population did in 2 hours, and in 2 hours, will progress as
much as the original population did in 4 hours. Sketch a graph of this population.

Symbolically, we could write

RQ) =P(2)
R(2) = P(4), and in general,
R(t) = P(2t)

Graphing this,

Original population, P(t) Transformed, R(t)

b

S T TR - T )
I | I | I |

L -
I | I | I |

4 5 6 7

Note the effect on the graph is a horizontal compression, where all input values are half
their original distance from the vertical axis.

[Horizontal Stretch/Compression

Given a function f(x), if we define a new function g(x) as
g(x) = f(kx), where k is a constant

then g(x) is a horizontal stretch or compression of the function f(x).

If k > 1, then the graph will be compressed by %

If 0< k < 1, then the graph will be stretched by %

If k <0, then there will be combination of a horizontal stretch or compression with a
horizontal reflection.
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Example 17

A function f(x) is given as a table below. Create a table for the function g(x) = f(% xj

X 2 4 6 8
f(x) |1 3 7 11

The formula g(x) = f(% xj tells us that the output values for g are the same as the

output values for the function f at an input half the size. Notice that we don’t have

enough information to determine g(2) since g(2) = f(%ZJ = f (@), and we do not

have a value for f (1) inour table. Our input values to g will need to be twice as large
to get inputs for f that we can evaluate. For example, we can determine g(4) since

g(4):f(%-4j:f(2):l.

X 4 8 12 16
g(x) |1 3 7 11

Since each input value has been doubled, the result is that the function g(x) has been
stretched horizontally by 2.

Example 18

Two graphs are shown below. Relate the function g(x) to f(x)

f(x) X)
vl _

L Q

7 I 2 3 4 5 6 7

The graph of g(x) looks like the graph of f(x) horizontally compressed. Since f(x) ends at
(6,4) and g(x) ends at (2,4) we can see that the x values have been compressed by 1/3,
because 6(1/3) = 2. We might also notice that g(2) = f(6), and g(1) = f(3). Either
way, we can describe this relationship as g(x) = f(3x). This is a horizontal
compression by 1/3.
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Notice that the coefficient needed for a horizontal stretch or compression is the
reciprocal of the stretch or compression. So to stretch the graph horizontally by 4, we

need a coefficient of 1/4 in our function: f (% xj . This means the input values must be

four times larger to produce the same result, requiring the input to be larger, causing the
horizontal stretching.

4. Write a formula for the toolkit square root function horizontally stretched by three.

It is useful to note that for most toolkit functions, a horizontal stretch or vertical stretch
can be represented in other ways. For example, a horizontal compression of the function

f (x) =x* by % would result in a new function g(x)= (2x)*, but this can also be written

as g(x)= 4x?, a vertical stretch of f(x) by 4. When writing a formula for a transformed
toolkit, we only need to find one transformation that would produce the graph.

Combining Transformations

When combining transformations, it is very important to consider the order of the
transformations. For example, vertically shifting by 3 and then vertically stretching by 2
does not create the same graph as vertically stretching by 2 and then vertically shifting by
3.

When we see an expression like 2 f (x) + 3, which transformation should we start with?
The answer here follows nicely from order of operations, for outside transformations.
Given the output value of f(x), we first multiply by 2, causing the vertical stretch, then
add 3, causing the vertical shift. (Multiplication before Addition)

Combining Vertical Transformations
When combining vertical transformations written in the form af (x) +k ,

first vertically stretch by a, then vertically shift by k.

Horizontal transformations are a little trickier to think about. When we write
g(x) = f(2x + 3) for example, we have to think about how the inputs to the g function

relate to the inputs to the f function. Suppose we know f (7) =12. What inputto g
would produce that output? In other words, what value of x will allow

g(x) = f(2x+3) = f(12) ? We would need 2x+3=12. To solve for x, we would first
subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal
compression.
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Combining Horizontal Transformations

} When combining horizontal transformations written in the form f (bx + p),

first horizontally shift by p, then horizontally stretch by 1/b.
This format ends up being very difficult to work with, since it is usually much easier to
horizontally stretch a graph before shifting. We can work around this by factoring inside
the function.

f®x+m:f(%x+gl

Factoring in this way allows us to horizontally stretch first, then shift horizontally.

Combining Horizontal Transformations (Factored Form) .
} When combining horizontal transformations written in the form f (b(x + h)),
first horizontally stretch by 1/b, then horizontally shift by h.
Independence of Horizontal and Vertical Transformations
Horizontal and vertical transformations are independent. It does not matter
H whether horizontal or vertical transformations are done first.

xample 19

Given the table of values for the function f(x) below, create a table of values for the
function g(x) =2f(3x)+1

X |6 12 |18 |24
fx) |10 |14 |15 |17

There are 3 steps to this transformation and we will work from the inside out. Starting
with the horizontal transformations, f(3x) is a horizontal compression by 1/3, which

means we multiply each x value by 1/3.

X 2 |4 6 |8
f3x) |10 |14 |15 |17

Looking now to the vertical transformations, we start with the vertical stretch, which
will multiply the output values by 2. We apply this to the previous transformation.

X 2 |4 |6 |8
27(3x) |20 |28 |30 |34

Finally, we can apply the vertical shift, which will add 1 to all the output values.

X 2 |4 |6 |8
g(x)=2f(3x)+1 21|29 |31|35
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Example 20
Using the graph of f(x) below, sketch a graph of k(x) = f(%x +1j -3

41

34
5% 3 2 a4 | 123 453

al

24

34

41

5]

To make things simpler, we’ll start by factoring out the inside of the function
f(lx+1}—3: f(l(x+2)j—3
2 2

By factoring the inside, we can first horizontally stretch by 2, as indicated by the %2 on
the inside of the function. Remember twice the size of 0 is still 0, so the point (0,2)
remains at (0,2) while the point (2,0) will stretch to (4,0).

Next, we horizontally shift left by 2 units, as indicated by the x+2.

Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the
outside of the function.

Horizontal stretch by 2 Horizontal shift left by 2 Vertical shift down 3
3t 5 54
47 4

3+ 3

T

5 4 3 2 1 2 3 4 5 Y E iyt T3 5 7 6 5 4 3 2 1 7 2 3

—

Lok b L
[ A
Lo
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Example 21

Write an equation for the transformed graph of 21
the quadratic function shown.
24
Since this is a quadratic function, first consider A
what the basic quadratic tool kit function looks /\
like and how this has changed. Observing the —
graph, we notice several transformations:
The original tool kit function has been flipped &l
over the x axis, some kind of stretch or
compression has occurred, and we can see a shift
to the right 3 units and a shift up 1 unit. 31

24

In total there are four operations: “+
Vertical reflection, requiring a negative sign outside the function

Vertical Stretch or Horizontal Compression”

Horizontal Shift Right 3 units, which tells us to put x-3 on the inside of the function
Vertical Shift up 1 unit, telling us to add 1 on the outside of the function

"It is unclear from the graph whether it is showing a vertical stretch or a horizontal
compression. For the quadratic, it turns out we could represent it either way, so we’ll
use a vertical stretch. You may be able to determine the vertical stretch by observation.

By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points
at (1, 1) and (-1, 1). These points are one unit up and one unit over from the vertex.
The new points on the transformed graph are one unit away horizontally but 2 units
away vertically. They have been stretched vertically by two.

Not everyone can see this by simply looking at the graph. If you can, great, but if not,
we can solve for it. First, we will write the equation for this graph, with an unknown
vertical stretch.

f(x) =x? The original function
—f(x)=—x* Vertically reflected
—af (x) = —ax® Vertically stretched
—af (x—3) = —a(x—23)* Shifted right 3

—af (x—3)+1=—-a(x-3)>+1  Shiftedup 1

We now know our graph is going to have an equation of the form g(x) = —a(x —3) +1.

To find the vertical stretch, we can identify any point on the graph (other than the
highest point), such as the point (2,-1), which tells us g(2) =-1. Using our general

formula, and substituting 2 for x, and -1 for g(x)
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~1=-a(2-3)* +1
-l1=-a+1
-2=-a

2=a

This tells us that to produce the graph we need a vertical stretch by two.
The function that produces this graph is therefore g(x) = —2(x —3) +1.

5. Consider the linear function g(x) =—-2x+1. Describe its transformation in words
using the identity tool kit function f(x) = x as a reference.

Example 22

On what interval(s) is the function g(x) = ( — 21)2 + 3 increasing and decreasing?
X —

. . N . 1
This is a transformation of the toolkit reciprocal squared function, f(x) =—:
X

—2f(x) = _—22 A vertical flip and vertical stretch by 2
X
-2 I
-2f(x-1= A shift right by 1
( )(x—l)z ght by
—2f(x-1D)+3= “2 .3 A shift up by 3

(x-1)°

5
The basic reciprocal squared function is increasing on 41
(—0,0) and decreasing on (0,%) . Because of the vertical ﬁj\
flip, the g(x) function will be decreasing on the left and B r
increasing on the right. The horizontal shift right by 1 will — +—=——=———f———

also shift these intervals to the right one. From this, we can
determine g(x) will be increasing on (1,) and decreasing on

I
-3
(—0,1) . We also could graph the transformation to help us 4
determine these intervals. 3

6. On what interval(s) is the function h(t) = (t —3)® + 2 concave up and down?
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[Important Topics of This Section
Transformations

Vertical Shift (up & down)

Horizontal Shifts (left & right)

Reflections over the vertical & horizontal axis
Even & Odd functions

Vertical Stretches & Compressions
Horizontal Stretches & Compressions
Combinations of Transformation

Try it Now Answers

1. b(t) = h(t) +10 = —4.9t> + 30t +10 1
2. a. Horizontal shift 2_/
b. The function is shifted to the LEFT by 2 units. a(x) 1_/
c. Shown to the right flx)
Y5 2 0 72 5 4
I
24

3. Shown to the right it
Notice: g(x) = f(-x) looks the same as f(x) ; }.!ﬁ x)
T (x)
4. 9(x) = f(% xj so using the square root function we get it
EREE

IR
g(x) = \/;x

5. The identity tool kit function f(x) = x has been
transformed in 3 steps

a. Vertically stretched by 2.

b. Vertically reflected over the x axis.

c. Vertically shifted up by 1 unit.

(x)

6. h(t) is concave down on (—,3) and concave up on (3,)
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Section 4.5 Exercises

Describe how each function is a transformation of the original function f (x)

1. f(x—49) 2. f(x+43)
3. f(x+3) 4. f(x-4)
5. f(x)+5 6. f(x)+8
7. f(x)-2 8. f(x)-7
9. f(x-2)+3 10. f(x+4)-1

11. Write a formula for f (x) =+/x shifted up 1 unit and left 2 units.
12. Write a formula for f (x) = |x| shifted down 3 units and right 1 unit.

13. Write a formula for f(x) = 1 shifted down 4 units and right 3 units.
X

14. Write a formula for f(x) = iz shifted up 2 units and left 4 units.
X

15. Tables of values for f(x), g(x), and h(x) are given below. Write g(x) and h(x)
as transformations of f(x).

-21-1]0 [1]2 x |[-1]0 |1 |2]3 X [-2]-1]0

[uny
N

X
fx) | -2|-1|-3[1]2 g) | -2 |-1[3]1]2 h(x)[-1]0 |2

16. Tables of values for f(x), g(x), and h(x) are given below. Write g(x) and h(x)
as transformations of f (x).

-221-1/0[1]2 X |-3]-2|-1|0]1 X [-2]-1]0

X
fx)|-1]-3]4[2]1 gx) [-1]-3]4 [2]1 h(x) | -2 |43

The graph of f (x)=2" is shown. Sketch a graph of each transformation of f (x)

4.
17. g(x)=2" +1 *
18. h(x)=2" -3 y

Y3290 | 12 3 4
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Sketch a graph of each function as a transformation of a toolkit function.

21. f(t)=(t+1)*-3
22. h(x)=|x 1|+4
23. k(x)=(x- )

24. m(t)=3+Jt+_

Write an equation for each function graphed below.

5 4

4 3

: 2

5 _

1

ST A T .;\ Y

2

-3 -2

4 1

25. -5 26. -4

44 54

31 4

ER

21 5]

Vf/fﬂ"//f !

R NREER  EEEENREREE

2]

2 N

-3 4

27. -4 28. -5

Find a formula for each of the transformations of the square root whose graphs are given
below.

L T
P S T

L Haom
- 4

4
4

B R Q EEEED T2 3 43
24 24
-3
5

29. 5 30.
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The graph of f (x)=2" is shown. Sketch a graph of each ::
transformation of f (x) 5]
31 g(x)=-2"+1 55 T i

32. h(x)=2"

33. Starting with the graph of f (x)=6" write the equation of the graph that results from

a. reflecting f (x) about the x-axis and the y-axis
b. reflecting f(x) about the x-axis, shifting left 2 units, and down 3 units

34. Starting with the graph of  f (x)=4" write the equation of the graph that results from

a. reflecting f (x) about the x-axis
b. reflecting f(x) about the y-axis, shifting right 4 units, and up 2 units

Write an equation for each function graphed below.

44 4
A T
1 2
/i\- 1
Y320 [\ 234 Y320 |13 & 4
-1 -1
=2 =2
-3 3
35. -4 36. -4
44 44
31 3
\ N
’ /)
Y320 | 133 4 Y32 13 3 4
-1 -1
71 24
-3 3
37. 41 38. 4
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39. For each equation below, determine if the function is Odd, Even, or Neither.
a. f(x)=3x"

b. g(x)=vx
C. h(x)=%+3x

40. For each equation below, determine if the function is Odd, Even, or Neither.
a. f(x)=(x—2)2
b. g(x)=2x*
c. h(x)=2x-x°

Describe how each function is a transformation of the original function f(x).

41. —f(x) 42. f(—x)
43. 41 (x) 44. 6 f(x)
45. f(5x) 46. f(2x)
47. f(lxj 48. f(li
3 5
49. 3f (—x) 50. —f (3x)

Write a formula for the function that results when the given toolkit function is
transformed as described.

51. f(x)= |x| reflected over the y axis and horizontally compressed by a factor of % .

52. f(x)= Jx reflected over the x axis and horizontally stretched by a factor of 2.

53. f(x)= % vertically compressed by a factor of % , then shifted to the left 2 units and

down 3 units.

54. f(x) =% vertically stretched by a factor of 8, then shifted to the right 4 units and up

2 units.
55. f(x) = x* horizontally compressed by a factor of % , then shifted to the right 5 units
and up 1 unit.

56. f(x)=x* horizontally stretched by a factor of 3, then shifted to the left 4 units and
down 3 units.
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Describe how each formula is a transformation of a toolkit function. Then sketch a graph
of the transformation.

57. f(x)=4(x+1)" -5 58. g(x)=5(x+3)" -2

59. h(x)=-2|x-4|+3 60. k(x)=-3vx -1
L EET

61. m(x):Ex 62. n(x)_3|x 2|

63. p(x):(%xj -3 64. q(x):(%xj +1

65. a(X)=+-x+4 66. b(x)=3/-x—-6

Determine the interval(s) on which the function is increasing and decreasing.

67. f(x)=4(x+1)" -5 68. g(x)=5(x+3) -2
69. a(x)=v-x+4 70. k(x)=-3Vx -1

Determine the interval(s) on which the function is concave up and concave down.

71 m(x)=-2(x+3)* +1 72. b(x)=¥-x-6

73. p(x):(%sz—?; 74. k(x)=-3x -1



Section 4.5 Transformation of Functions 261

The function f(x) is graphed here. Write an equation for each 2
graph below as a transformation of f(x) .

24
4 4 4
31 31 1
2 24 21
i s H
5 5 VIR TNT 2 5 4 s X 7 1 2 3 4
__|i|- _j_\\ __|i|-
-2 =21 +7
-3 -3 3]
75. -4 76. -4 77. -4
4 4 24
EE 1
21 2 It
1=d /\
N B s IR \}/g_;; N \} 2
-1 -1
-2 2 d4
-3 -3
78. 4 79. -4 80. 2+
4% 4 24
31 3 i
1 2 —t ;
2 3 2 1 2 3 4
it i -1
5 b S R B T I 2
H -f 71
24 L 1
34 -3 -5
81. 4+ 82. 4 83. -6
44 >t Sh
3t 24
21 It
A | |
| 2 0 I 2 3 4
32 - gy
1 1
21 27
31 4 VI ] =7
84. 41 85. -1t 86. 41
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Write an equation for each transformed toolkit function graphed below.

e B s

35436

90. 4

3 1 1 2 3 43
g+
24
88. 3
j_
4-/
/
j_
730 :fj 12 3 4
2
91. -3

89.

92.

96.

97.

ey b e e gy O
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99. Suppose you have a function y= f (x) such that the domain of f(x) is1<x<6 and
the range of f(x) iIs—3<y<5. [UW]
a. What is the domain of f (2(x—3))?
b. What is the range of f(2(x-3)) ?
c. What is the domain of 2f(x)-3 ?
d. What is the range of 2f(x)-3 ?
e. Can you find constants B and C so that the domain of f(B(x—C)) is8<x<9?
f. Can you find constants A and D so that the range of Af (x)+D is0<y<1?
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Section 4.6 Inverse Functions

A fashion designer is travelling to Milan for a fashion show. He asks his assistant, Betty,
what 75 degrees Fahrenheit is in Celsius, and after a quick search on Google, she finds

the formula C = g(F —32). Using this formula, she calculates 2(75 —32) ~ 24 degrees

Celsius. The next day, the designer sends his assistant the week’s weather forecast for
Milan, and asks her to convert the temperatures to Fahrenheit.
Mon Tue Wed Thu

cE = E;S =
s T <  will

26°C [ 19°C 29°C | 19°C 30°C | 20°C 2B6°C |18°C

At first, Betty might consider using the formula she has already found to do the
conversions. After all, she knows her algebra, and can easily solve the equation for F
after substituting a value for C. For example, to convert 26 degrees Celsius, she could
write:

26 = > (F —32)
9
2.2 F _3

5
9

F :26-g+32z79

After considering this option for a moment, she realizes that solving the equation for each
of the temperatures would get awfully tedious, and realizes that since evaluation is easier
than solving, it would be much more convenient to have a different formula, one which
takes the Celsius temperature and outputs the Fahrenheit temperature. This is the idea of
an inverse function, where the input becomes the output and the output becomes the
input.

Inverse Function
If f(a)=Db, then a function g(x) is an inverse of f if g(b)=a.

The inverse of f(x) is typically notated f ™(x), which is read “f inverse of x”, so
equivalently, if f(a)=b then f *(b)=a.

Important: The raised -1 used in the notation for inverse functions is simply a notation,
and does not designate an exponent or power of -1.
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Example 1

If for a particular function, f (2) = 4, what do we know about the inverse?

The inverse function reverses which quantity is input and which quantity is output, so if
f(2)=4,then f'(4)=2.

Alternatively, if you want to re-name the inverse function g(x), then g(4) = 2

Try it Now

’ 1. Given that h™(6) = 2, what do we know about the original function h(x)?

Notice that original function and the inverse function undo each other. If f(a)=Db, then
f *(b) = a, returning us to the original input. More simply put, if you compose these
functions together you get the original input as your answer.

t(f(a))=a and f(f*(b))=b

Domain of f ¢ Range of f

(%)

Since the outputs of the function f are the inputs to f ™, the range of f is also the domain
of f'. Likewise, since the inputs to f are the outputs of f *, the domain of f is the
range of f*.

Basically, like how the input and output values switch, the domain & ranges switch as
well. But be careful, because sometimes a function doesn’t even have an inverse
function, or only has an inverse on a limited domain. For example, the inverse of

f(x)= Jx is f “(x) = x?, since a square “undoes” a square root, but it is only the
inverse of f(x) on the domain [0,0), since that is the range of f(X)=~/X .

The function f (x) =2* has domain (—o,) and range (0, ), what would we expect
the domain and range of f * to be?

We would expect f ' to swap the domain and range of f, so f ™ would have
domain (0,0) and range (—o0,).
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Example 3

A function f(t) is given as a table below, showing distance in miles that a car has
traveled in t minutes. Find and interpret f (70)

t (minutes) |30 |50 |70 |90
f(t) (miles) |20 |40 [60 |70

The inverse function takes an output of f and returns an input for f. So in the
expression f *(70), the 70 is an output value of the original function, representing 70
miles. The inverse will return the corresponding input of the original function f, 90
minutes, so f 7 (70) =90. Interpreting this, it means that to drive 70 miles, it took 90
minutes.

Alternatively, recall the definition of the inverse was that if f(a)=b then f *(b)=a.

By this definition, if you are given f *(70) = a then you are looking for a value a so
that f (a) =70 . In this case, we are looking for a t so that f (t) = 70, which is when t =
90.

Try it Now

2. Using the table below

t (minutes) |30 |50 [60 |70 |90
f(t) (miles) |20 |40 |50 |60 |70

Find and interpret the following
a. f(60)

b. f(60)

Example 4

A function g(x) is given as a graph below. Find g(3) and g*(3)
4 1

To evaluate g(3), we find 3 on the horizontal axis and find the corresponding output
value on the vertical axis. The point (3, 1) tells us that g(3) =1
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To evaluate g*(3), recall that by definition g (3) means g(x) = 3. By looking for the
output value 3 on the vertical axis we find the point (5, 3) on the graph, which means
g(5) = 3, so by definitiong ™" (3) =5.

3. Using the graph in Example 4 above
a. find g~ (1)
b. estimate g~ (4)

Returning to our designer’s assistant, find a formula for the inverse function that gives
Fahrenheit temperature given a Celsius temperature.

A quick Google search would find the inverse function, but alternatively, Betty might
look back at how she solved for the Fahrenheit temperature for a specific Celsius value,
and repeat the process in general

5
C=>(F-32
9( )
clF_m
5
F=2c+3
5

By solving in general, we have uncovered the inverse function. If
C =h(F) =§(F -32)

Then

F=h"(C)= %C +32

In this case, we introduced a function h to represent the conversion since the input and
output variables are descriptive, and writing C *could get confusing.

It is important to note that not all functions will have an inverse function. Since the
inverse f (x) takes an output of f and returns an input of f, in order for f ~* to itself be

a function, then each output of f (input to f ™) must correspond to exactly one input of f

(output of f ) in order for f ' to be a function. You might recall that this is the
definition of a one-to-one function.
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Properties of Inverses

| In order for a function to have an inverse, it must be a one-to-one function.

In some cases, it is desirable to have an inverse for a function even though the function is
not one-to-one. In those cases, we can often limit the domain of the original function to
an interval on which the function is one-to-one, then find an inverse only on that interval.

If you have not already done so, go back to the toolkit functions that were not one-to-one
and limit or restrict the domain of the original function so that it is one-to-one. If you are
not sure how to do this, proceed to Example 6.

xample 6
The quadratic function h(x) = x* is not one-to-one. Find a domain on which this
function is one-to-one, and find the inverse on that domain.

We can limit the domain to [0, ) to restrict the 4t

graph to a portion that is one-to-one, and find an 3l
inverse on this limited domain.

You may have already guessed that since we undo a il
square with a square root, the inverse of h(x) = x* . . . |
on this domain is h™(x) = /x . 7ot 7 1 % 1

14

You can also solve for the inverse function algebraically. If h(x) = x*, we can

introduce the variable y to represent the output values, allowing us to write y = x*. To
find the inverse we solve for the input variable

To solve for x we take the square root of each side. [y = vx? and get ﬁ =|x|, so
X= i\/y . We have restricted x to being non-negative, so we’ll use the positive square
root, x=4/y or h™*(y) = \/Y In cases like this where the variables are not descriptive,

it is common to see the inverse function rewritten with the variable x: h™(x) = Jx.
Rewriting the inverse using the variable x is often required for graphing inverse

functions using calculators or computers. it "

o)l y=x
Note that the domain and range of the square root function it
do correspond with the range and domain of the quadratic
function on the limited domain. In fact, if we graph h(x) on 2T g
the restricted domain and h™(x) on the same axes, we can jal - ()
notice symmetry: the graph of h™(x) is the graph of h(x)
reflected over the line y = x. N I s 1 4

LA N
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Example 7
Given the graph of f(x) shown, sketch a graph of f *(x).

(A CE R TR N
1 1 1 1
T T T T

This is a one-to-one function, so we will be able to sketch an

inverse. Note that the graph shown has an apparent domain /
of (0,%0) and range of (-o0,0), so the inverse will have a 4 5 50 T 2 3 4
domain of (-00,00) and range of (0,%). I

Reflecting this graph of the line y = x, the point (1, 0) reflects
to (0, 1), and the point (4, 2) reflects to (2, 4). Sketching the
inverse on the same axes as the original graph:

-1
I i ¢V I

hode e L
T R T

Important Topics of this Section
Definition of an inverse function
Composition of inverse functions yield the original input value
Not every function has an inverse function
To have an inverse a function must be one-to-one
Restricting the domain of functions that are not one-to-one.

Try it Now Answers
1. 9(2)=6

2.a. f(60)=50. In 60 minutes, 50 miles are traveled.

b. f*(60)=70. To travel 60 miles, it will take 70 minutes.
3.a.9g7'1)=3

b. g~'(4) =5.5 (thisis an approximation — answers may vary slightly)
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Section 4.6 Exercises

Assume that the function f is a one-to-one function.
1.1f £(6)=7,find f(7) 2.1f f(3)=2,find (2
3. If ffl(—4):—8, find f(-8) 4. If ffl(—z):—l, find f(-1)

5. 1f f(5)=2, find (f(5)) 6.1f f(1)=4,find ( (1)

-1

7. Using the graph of f(x) shown
a. Find f(0)
b. Solve f(x)=0
c. Find f(0)
d. Solve f™*(x)=0

8. Using the graph shown i
a. Find g(1) o .
b. Solve g(x)=1 g
c. Find g7*(1) 2 I 3/35 4
4+
d. Solve g™*(x)=1 /
3+

9. Use the table below to find the indicated quantities.

0 1 2 3 4 5 6

~
(00]

X
fx) |8 0 7 4 2 6 5 3 9

Find f (1)
Solve f(x)=3
Find f(0)
Solve f(x)=7

o o T
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10. Use the table below to fill in the missing values.

t 0 1 2 3 4 5 6 7 8
h® |6 0 1 7 2 3 5 4 9
a. Find h(6)
b. Solve h(t)=0
c. Find h™(5)
d. Solve h™(t)=1
For each table below, create a table for f’1(x).
11. | x 3/6(9(13|14 12. | x 3/5(7(13]15
fx) [1]4|7]12]16 fx) [ 2|69 11|16
For each function below, find f ()
13. f(x)=x+3 14. f(x)=x+5
15. f(x)=2-x 16. f(x)=3-x
17. f(x):11x+7 18. f(x):9+10x

For each function, find a domain on which f is one-to-one and non-decreasing, then find
the inverse of f restricted to that domain.

19. f(x):(x+7)2 20. f(x)
21. f(x)=x"-5 22. f(x)

(x-6)’

x?+1

23.1f f(x)=x>-5 and g(x)=3x+5, find
a. f(g(x))
b.  9(f(x))
c. What does this tell us about the relationship between f(x) and g(x)?

24, 1f f(x)=ﬁ and g(x)=12_—xx,find
a. f(g(x)
b. g(f(x)

c. What does this tell us about the relationship between f(x) and g(x) ?
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Chapter 5: Linear Functions

Chapter one was a window that gave us a peek into the entire course. Our goal was to
understand the basic structure of functions and function notation, the toolkit functions,
domain and range, how to recognize and understand composition and transformations of
functions and how to understand and utilize inverse functions. With these basic
components in hand we will further research the specific details and intricacies of each
type of function in our toolkit and use them to model the world around us.

Mathematical Modeling

As we approach day to day life we often need to quantify the things around us, giving
structure and numeric value to various situations. This ability to add structure enables us
to make choices based on patterns we see that are weighted and systematic. With this
structure in place we can model and even predict behavior to make decisions. Adding a
numerical structure to a real world situation is called Mathematical Modeling.

When modeling real world scenarios, there are some common growth patterns that are
regularly observed. We will devote this chapter and the rest of the book to the study of
the functions used to model these growth patterns.

Section 5.1 LiNear FUNCHIONS ........ooiiiieiiiiiieiee et 273
Section 5.2 Graphs of Linear FUNCLIONS ..........cooiiiiiiiiiiieeeee e 285
Section 5.3 Modeling with Linear FUNCLIONS...........c.cccveiviiieie e 300
Section 5.4 Fitting Linear Models t0 Data..........ccccoeeeieniiiniiieceec e 312
Section 5.5 Absolute Value FUNCHIONS..........cooiiiiiine i 320

Section 5.1 Linear Functions

As you hop into a taxicab in Las Vegas, the meter will immediately read $3.30; this is the
“drop” charge made when the taximeter is activated. After that initial fee, the taximeter
will add $2.40 for each mile the taxi drives. In this scenario, the total taxi fare depends
upon the number of miles ridden in the taxi, and we can ask whether it is possible to
model this type of scenario with a function. Using descriptive variables, we choose m for
miles and C for Cost in dollars as a function of miles: C(m).

We know for certain that C(0) = 3.30, since the $3.30 drop charge is assessed regardless
of how many miles are driven. Since $2.40 is added for each mile driven, then

C(@) =3.30+2.40 =5.70

If we then drove a second mile, another $2.40 would be added to the cost:
C(2)=3.30+2.40 +2.40 = 3.30 + 2.40(2) = 8.10

! http://taxi.state.nv.us/FaresFees.htm, retrieved July 28, 2010. There is also a waiting fee assessed when
the taxi is waiting at red lights, but we’ll ignore that in this discussion.

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.

This material is licensed under a Creative Commons CC-BY-SA license.
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If we drove a third mile, another $2.40 would be added ¢+
to the cost: 501
C(3)=3.30+2.40 + 2.40 + 2.40 = 3.30 + 2.40(3) =10.50 40l

301
From this we might observe the pattern, and conclude 29T
that if m miles are driven, C(m) = 3.30 + 2.40m 101
because we start with a $3.30 drop fee and then for +

each mile increase we add $2.40. 114 spRHIBBED

It is good to verify that the units make sense in this equation. The $3.30 drop charge is
measured in dollars; the $2.40 charge is measured in dollars per mile. So

C(m) = 3.30dollars + (2.40 d:'zrsj(m miles)

When dollars per mile are multiplied by a number of miles, the result is a number of
dollars, matching the units on the 3.30, and matching the desired units for the C function.

Notice this equation C(m) = 3.30 + 2.40m consisted of two quantities. The first is the
fixed $3.30 charge which does not change based on the value of the input. The second is
the $2.40 dollars per mile value, which is a rate of change. In the equation this rate of
change is multiplied by the input value.

Looking at this same problem in table format we can also see the cost changes by $2.40
for every 1 mile increase.

m 0 1 2 3
C(m) |3.30 5.70 |8.10 10.50

It is important here to note that in this equation, the rate of change is constant; over any
interval, the rate of change is the same.

Graphing this equation, C(m) =3.30 + 2.40m we see the shape is a line, which is how
these functions get their name: linear functions

When the number of miles is zero the cost is $3.30, giving the point (0, 3.30) on the
graph. This is the vertical or C(m) intercept. The graph is increasing in a straight line
from left to right because for each mile the cost goes up by $2.40; this rate remains
consistent.

In this example you have seen the taxicab cost modeled in words, an equation, a table and
in graphical form. Whenever possible, ensure that you can link these four representations
together to continually build your skills. It is important to note that you will not always
be able to find all 4 representations for a problem and so being able to work with all 4
forms is very important.
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Linear Function

A linear function is a function whose graph produces a line. Linear functions can
always be written in the form

f(x)=b+mx or f(x) =mx +b; they’re equivalent
where

b is the initial or starting value of the function (when input, x = 0), and

m is the constant rate of change of the function

Many people like to write linear functions in the form f (x) =b+ mx because it

corresponds to the way we tend to speak: “The output starts at b and increases at a rate
of m.”

For this reason alone we will use the f (x) = b+ mx form for many of the examples, but
remember they are equivalent and can be written correctly both ways.

Slope and Increasing/Decreasing

m is the constant rate of change of the function (also called slope). The slope
determines if the function is an increasing function or a decreasing function.
f (x) =b+ mx isan increasing function if m>0

f(x) =b+ mx is a decreasing function if m<0
If m=0, the rate of change zero, and the function f(x)=b+0x=Db is just a horizontal
line passing through the point (0, b), neither increasing nor decreasing.

Marcus currently owns 200 songs in his iTunes collection. Every month, he adds 15
new songs. Write a formula for the number of songs, N, in his iTunes collection as a
function of the number of months, m. How many songs will he own in a year?

The initial value for this function is 200, since he currently owns 200 songs, so
N (0) =200 . The number of songs increases by 15 songs per month, so the rate of

change is 15 songs per month. With this information, we can write the formula:
N (m) = 200 +15m .

N(m) is an increasing linear function.

With this formula we can predict how many songs he will have in 1 year (12 months):
N (12) = 200 +15(12) = 200 +180 = 380 . Marcus will have 380 songs in 12 months.
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Try it Now
1. If you earn $30,000 per year and you spend $29,000 per year write an equation for
the amount of money you save after y years, if you start with nothing.
“The most important thing, spend less than you earnl*”

Calculating Rate of Change

Given two values for the input, x, and x,, and two corresponding values for the output,

y, and y,, orasetof points, (x,, y,) and(x,, v,), if we wish to find a linear function
that contains both points we can calculate the rate of change, m:
m = change in output A Yo Y

change in input ~ Ax X, =X,

Rate of change of a linear function is also called the slope of the line.

Note in function notation, y, = f(x,) and y, = f(x,), so we could equivalently write
_ f (Xz)_ f (X1)

- X, =X

Example 2
The population of a city increased from 23,400 to 27,800 between 2002 and 2006. Find
the rate of change of the population during this time span.

The rate of change will relate the change in population to the change in time. The
population increased by 27800 — 23400 = 4400 people over the 4 year time interval. To
find the rate of change, the number of people per year the population changed by:

4400 people =1100 beople = 1100 people per year

4years year

Notice that we knew the population was increasing, so we would expect our value for m
to be positive. This is a quick way to check to see if your value is reasonable.

The pressure, P, in pounds per square inch (PSI) on a diver depends upon their depth
below the water surface, d, in feet, following the equation P(d)=14.696 +0.434d .
Interpret the components of this function.

2 http://www.thesimpledollar.com/2009/06/19/rule-1-spend-less-than-you-earn/
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output _ pressure _ PSI
input - depth Ot
tells us the pressure on the diver increases by 0.434 PSI for each foot their depth
increases.

The rate of change, or slope, 0.434 would have units . This

The initial value, 14.696, will have the same units as the output, so this tells us that at a
depth of O feet, the pressure on the diver will be 14.696 PSI.

Example 4

If f(x)isa linear function, f(3)=-2,and f(8) =1, find the rate of change.

f(3) = -2 tells us that the input 3 corresponds with the output -2, and f (8) =1 tells us

that the input 8 corresponds with the output 1. To find the rate of change, we divide the
change in output by the change in input:

m = change n o'utput _1-(2_3 . If desired we could also write this as m = 0.6
change in input 8-3 5

Note that it is not important which pair of values comes first in the subtractions so long
as the first output value used corresponds with the first input value used.

2. Given the two points (2, 3) and (0, 4), find the rate of change. Is this function
increasing or decreasing?

We can now find the rate of change given two input-output pairs, and can write an
equation for a linear function once we have the rate of change and initial value. If we
have two input-output pairs and they do not include the initial value of the function, then
we will have to solve for it.

Example 5

Write an equation for the linear function o
graphed to the right. \

Looking at the graph, we might notice that it i_
passes through the points (0, 7) and (4, 4). n
From the first value, we know the initial value :
of the function is b = 7, so in this case we will 5
only need to calculate the rate of change: I
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4-7 -3

m=———=—

4-0 4

This allows us to write the equation:

3
f(x)=7-—=x
(%) 2

If f(x)isa linear function, f(3)=-2,and f(8) =1, find an equation for the function.

In example 3, we computed the rate of change to be m = g . In this case, we do not
know the initial value f (0), so we will have to solve for it. Using the rate of change,
we know the equation will have the form f(x) =b+ g X. Since we know the value of

the function when x = 3, we can evaluate the function at 3.

f(A=Db +§(3) Since we know that f (3) = —2, we can substitute on the left side

-2=Db+ g (3) This leaves us with an equation we can solve for the initial value
b= o 2_-1
5 5

Combining this with the value for the rate of change, we can now write a formula for
this function:
-19 3
f(X)=—+=x
(x) st

Example 7

Working as an insurance salesperson, Ilya earns a base salary and a commission on each
new policy, so Ilya’s weekly income, I, depends on the number of new policies, n, he
sells during the week. Last week he sold 3 new policies, and earned $760 for the week.
The week before, he sold 5 new policies, and earned $920. Find an equation for I(n),
and interpret the meaning of the components of the equation.

The given information gives us two input-output pairs: (3,760) and (5,920). We start
by finding the rate of change.
920 —-760 160
= = =80
5-3 2
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Keeping track of units can help us interpret this quantity. Income increased by $160
when the number of policies increased by 2, so the rate of change is $80 per policy; llya
earns a commission of $80 for each policy sold during the week.

We can then solve for the initial value

I(n)=b+80n then whenn =3, 1(3) =760, giving
760 =b +80(3) this allows us to solve for b

b =760 —80(3) =520

This value is the starting value for the function. This is Ilya’s income when n = 0,
which means no new policies are sold. We can interpret this as Ilya’s base salary for
the week, which does not depend upon the number of policies sold.

Writing the final equation:

I (n) =520 +80n

Our final interpretation is: Ilya’s base salary is $520 per week and he earns an
additional $80 commission for each policy sold each week.

Flashback

Looking at Example 7:

Determine the independent and dependent variables.
What is a reasonable domain and range?

Is this function one-to-one?

3. The balance in your college payment account, C, is a function of the number of
quarters, g, you attend. Interpret the function C(a) = 20000 — 4000q in words. How
many quarters of college can you pay for until this account is empty?

Given the table below write a linear equation that represents the table values

w, number of |0 2 4 6
weeks

P(w), number | 1000 1080 1160 1240
of rats

We can see from the table that the initial value of rats is 1000 so in the linear format
P(w)=b+mw, b =1000.

Rather than solving for m, we can notice from the table that the population goes up by
80 for every 2 weeks that pass. This rate is consistent from week 0, to week 2, 4, and 6.
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The rate of change is 80 rats per 2 weeks. This can be simplified to 40 rats per week and
we can write
P(w)=b+mw as P(w)=1000 + 40w

If you didn’t notice this from the table you could still solve for the slope using any two
points from the table. For example, using (2, 1080) and (6, 1240),
m— 1240-1080 160

6-2

=40 rats per week

[Important Topics of this Section

Definition of Modeling

Definition of a linear function
Structure of a linear function
Increasing & Decreasing functions
Finding the vertical intercept (0, b)
Finding the slope/rate of change, m
Interpreting linear functions

Try it Now Answers

1. S(y)=30,000y —29,000y =1000y $1000 is saved each year.
_4-3 1
0-2 -2
3. Your College account starts with $20,000 in it and you withdraw $4,000 each quarter
(or your account contains $20,000 and decreases by $4000 each quarter.) You can pay

for 5 quarters before the money in this account is gone.

1 .
2. m 5 Decreasing because m < 0

Flashback Answers

n (number of policies sold) is the independent variable
I(n) (weekly income as a function of policies sold) is the dependent variable.

A reasonable domain is (0, 15)

A reasonable range is ($540, $1740)"

“answers may vary given reasoning is stated; 15 is an arbitrary upper limit based on
selling 3 policies per day in a 5 day work week and $1740 corresponds with the domain.

Yes this function is one-to-one
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1. Atown'’s population has been growing linearly. In 2003, the population was 45,000,
and the population has been growing by 1700 people each year. Write an

equation, P(t), for the population t years after 2003.

2. Atown's population has been growing linearly. In 2005, the population was 69,000,
and the population has been growing by 2500 people each year. Write an

equation, P(t), for the population t years after 2005.

3. Sonya is currently 10 miles from home, and is walking further away at 2 miles per
hour. Write an equation for her distance from home t hours from now.

4. A boat is 100 miles away from the marina, sailing directly towards it at 10 miles per
hour. Write an equation for the distance of the boat from the marina after t hours.

5. Timmy goes to the fair with $40. Each ride costs $2. How much money will he have

left after riding n rides?

6. Atnoon, a barista notices she has $20 in her tip jar. If she makes an average of $0.50
from each customer, how much will she have in her tip jar if she serves n more

customers during her shift?

Determine if each function is increasing or decreasing

7. f(x)=4x+3
9. a(x)=5-2x
11. h(x)=-2x+4

13. j(x):%x—3

15. n(x):—éx—z

8. g(x)=5x+6
10. b(x)=8-3x
X)=—4x+1

Find the slope of the line that passes through the two given points

17.(2, 4) and (4, 10)
19. (-1,4) and (5, 2)
21. (6,11) and (-4,3)

18. (1, 5) and (4, 11)
20. (-2, 8) and (4, 6)
22.(9,10) and (-6,-12)
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Find the slope of the lines graphed
54

23.

25.

26.

27.

28.

29.

30.

31.

_.;-
34
2_

A [ 12T 21| 123 4Ké

2+ 24, 2+

Sonya is walking home from a friend’s house. After 2 minutes she is 1.4 miles from
home. Twelve minutes after leaving, she is 0.9 miles from home. What is her rate?

A gym membership with two personal training sessions costs $125, while gym
membership with 5 personal training sessions costs $260. What is the rate for
personal training sessions?

A city's population in the year 1960 was 287,500. In 1989 the population was
275,900. Compute the slope of the population growth (or decline) and make a
statement about the population rate of change in people per year.

A city's population in the year 1958 was 2,113,000. In 1991 the population was
2,099,800. Compute the slope of the population growth (or decline) and make a
statement about the population rate of change in people per year.

A phone company charges for service according to the formula: C(n) =24+0.1n,
where n is the number of minutes talked, and C(n) is the monthly charge, in dollars.
Find and interpret the rate of change and initial value.

A phone company charges for service according to the formula: C(n) =26+0.04n,
where n is the number of minutes talked, and C(n) is the monthly charge, in dollars.
Find and interpret the rate of change and initial value.

Terry is skiing down a steep hill. Terry's elevation, E(t), in feet after t seconds is
given by E(t) =3000—70t. Write a complete sentence describing Terry’s starting
elevation and how it is changing over time.
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32. Maria is climbing a mountain. Maria's elevation, E(t), in feet after t minutes is given
by E(t)=1200+40t. Write a complete sentence describing Maria’s starting

elevation and how it is changing over time.

Given each set of information, find a linear equation satisfying the conditions, if possible

33. f(-5)=-4,and f(5)=2 34. f(-)=4,and f(5)=1
35. Passes through (2, 4) and (4, 10) 36. Passes through (1, 5) and (4, 11)
37. Passes through (-1,4) and (5, 2) 38. Passes through (-2, 8) and (4, 6)

39. x intercept at (-2, 0) and y intercept at (0, -3)
40. x intercept at (-5, 0) and y intercept at (0, 4)

Find an equation for the function graphed
54
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45. A clothing business finds there is a linear relationship between the number of shirts,
n, it can sell and the price, p, it can charge per shirt. In particular, historical data
shows that 1000 shirts can be sold at a price of $30, while 3000 shirts can be sold at
a price of $22. Find a linear equation in the form p=mn+b that gives the price p

they can charge for n shirts.
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46. A farmer finds there is a linear relationship between the number of bean stalks, n, she

47.

48.

49,

plants and the yield, y, each plant produces. When she plants 30 stalks, each plant
yields 30 oz of beans. When she plants 34 stalks, each plant produces 28 0z of beans.
Find a linear relationships in the form y =mn+b that gives the yield when n stalks
are planted.

Which of the following tables could represent a linear function? For each that could
be linear, find a linear equation models the data.

X g(x) X h(x) X f(X) X k(x)
0 5 0 5 0 -5 5 13
5 -10 5 30 5 20 10 |28
10 |-25 10 | 105 10 |45 20 |58
15 | -40 15 |230 15 |70 25 |73

Which of the following tables could represent a linear function? For each that could
be linear, find a linear equation models the data.

X g(x) X h(x) X f(X) X k(x)

0 6 2 13 2 -4 0 6

2 -19 4 23 4 16 2 31

4 -44 8 43 6 36 6 106

6 -69 10 |53 8 56 8 231
While speaking on the phone to a friend in Oslo, Norway, you learned that the current

temperature there was -23 Celsius (-23°C). After the phone conversation, you wanted

to convert this temperature to Fahrenheit degrees, °F, but you could not find a

reference with the correct formulas. You then remembered that the relationship

between °F and °C is linear. [UW]

a. Using this and the knowledge that 32°F = 0 °C and 212 °F = 100 °C, find an
equation that computes Celsius temperature in terms of Fahrenheit; i.e. an
equation of the form C = “an expression involving only the variable F.”

b. Likewise, find an equation that computes Fahrenheit temperature in terms of
Celsius temperature; i.e. an equation of the form F = “an expression involving
only the variable C.”

c. How cold was it in Oslo in °F?
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Section 5.2 Graphs of Linear Functions

When we are working with a new function, it is useful to know as much as we can about
the function: its graph, where the function is zero, and any other special behaviors of the
function. We will begin this exploration of linear functions with a look at graphs.

When graphing a linear function, there are three basic ways to graph it:
1) By plotting points (at least 2) and drawing a line through the points
2) Using the initial value (output when x = 0) and rate of change (slope)
3) Using transformations of the identity function f(x) = x

Graph f(x) = 5—§x by plotting points

In general, we evaluate the function at two or more inputs to find at least two points on
the graph. Usually it is best to pick input values that will “work nicely” in the equation.

In this equation, multiples of 3 will work nicely due to the % in the equation, and of
course using x = 0 to get the vertical intercept. Evaluating f(x) at x =0, 3 and 6:
f(0) = 5—%(0) =5

2
f(3)=5-@)=3

2
f(6)=5-7(6)=1

These evaluations tell us that the points (0,5), (3,3), and (6,1) lie on the graph of the
line. Plotting these points and drawing a line through them gives us the graph

D T
P
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When using the initial value and rate of change to graph, we need to consider the
graphical interpretation of these values. Remember the initial value of the function is the
output when the input is zero, so in the equation f(x) =b+ mx, the graph includes the
point (0, b). On the graph, this is the vertical intercept — the point where the graph
crosses the vertical axis.

For the rate of change, it is helpful to recall that we calculated this value as
_ change of output

~ change of input

From a graph of a line, this tells us that if we divide the vertical difference, or rise, of the
function outputs by the horizontal difference, or run, of the inputs, we will obtain the rate
of change, also called slope of the line.

— change of output  rise
change of input  run

Notice that this ratio is the same regardless of which two points we use

54 rise 2,run 4
m=2/4=%
4 "N e e e e 1 .
! < run 2, rise 1
| sl M
- 1 m:1/2
2-- -
_:<_run2,r|se1
/___ m=1%
2 - I 2 3 4 5 6 7
g4
24

Graphical Interpretation of a Linear Equation
Graphically, in the equation f (x) = b + mx
b is the vertical intercept of the graph and tells us we can start our graph at (0, b)
m is the slope of the line and tells us how far to rise & run to get to the next point

Once we have at least 2 points, we can extend the graph of the line to the left and right.

Graph f(x) = 5—§x using the vertical intercept and slope.

The vertical intercept of the function is (0, 5), giving us a point on the graph of the line.
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The slope is — % . This tells us that for every 3 units the graph “runs” in the horizontal,

the vertical “rise” decreases by 2 units. In graphing, we can use this by first plotting our
vertical intercept on the graph, then using the slope to find a second point. From the
initial value (0, 5) the slope tells us that if we move to the right 3, we will move down 2,
moving us to the point (3, 3). We can continue this again to find a third point at (6, 1).
Finally, exgend the line to the left and right, containing these points.

Try it Now
1. Consider that the slope -2/3 could also be written as % . Using % , find another

point on the graph that has a negative x value.

Another option for graphing is to use transformations of the identity function f (x) = x.
In the equation f (x) = mx , the m is acting as the vertical stretch of the identity function.

When m is negative, there is also a vertical reflection of the graph. Looking at some
examples:

f(x)=3x f(x)=2x f(x)=x
Y

A/
o 1
31 A/f(x)=§x
T 1
A A
f(X)==x
(X) 3
5 4 3 2 = 2 3 4 5
21 F () = —Sx
2
34
Eal
54 Ve = f(x)=—x

f (x) =-2x
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In f(X) =mx +b, the b acts as the vertical shift, moving the graph up and down without
affecting the slope of the line. Some examples:

X)=x+4 f(x)=x+2

Ty

Using Vertical Stretches or Compressions along with Vertical Shifts is another way to
look at identifying different types of linear functions. Although this may not be the
easiest way for you to graph this type of function, make sure you practice each method.

Example 3

Graph f(x) = —3+%x using transformations.

The equation is the graph of the identity function vertically compressed by %2 and
vertically shifted down 3.

Vertical compression combined with Vertical shift
4 54
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B b ey
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T2+ 4 5¢7 -'?5-_%&-}-5-}1}554"5:"
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Notice how this nicely compares to the other method where the vertical intercept is found
at (0, -3) and to get to another point we rise (go up vertically) by 1 unit and run (go
horizontally) by 2 units to get to the next point (2,-2), and the next one (4, -1). In these
three points (0,-3), (2, -2), and (4, -1), the output values change by +1, and the x values
change by +2, corresponding with the slope m = 1/2.

xample 4
Match each equation with one of the lines in the graph below
f(x)=2x+3

g(x) =2x-3
h(x) =-2x+3

. 1
X)=—X+3
J(x) >

Only one graph has a vertical intercept of -3, so we can immediately match that graph
with g(x). For the three graphs with a vertical intercept at 3, only one has a negative
slope, so we can match that line with h(x). Of the other two, the steeper line would
have a larger slope, so we can match that graph with equation f(x), and the flatter line
with the equation j(x).

h(x) =-2x+3
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In addition to understanding the basic behavior of a linear function (increasing or
decreasing, recognizing the slope and vertical intercept), it is often helpful to know the
horizontal intercept of the function — where it crosses the horizontal axis.

Finding Horizontal Intercept
The horizontal intercept of the function is where the graph crosses the horizontal axis.
If a function has a horizontal intercept, you can always find it by solving f(x) = 0.

Example 5

Find the horizontal intercept of f(x) =-3+ % X

Setting the function equal to zero to find what input will put us on the horizontal axis,

0:—3+£x
2
3:1x
2
X=6

The graph crosses the horizontal axis at (6,0)

There are two special cases of lines: a horizontal line and a
vertical line. In a horizontal line like the one graphed to the
right, notice that between any two points, the change in the I
outputs is 0. In the slope equation, the numerator will be 0,
resulting in a slope of 0. Using a slope of 0 in the

f (x) =b+ mx, the equation simplifiesto f(x)=b.

Notice a horizontal line has a vertical intercept, but no
horizontal intercept (unless it’s the line f(x) = 0).

54 3 2 12 3 4 3

~

L T

In the case of a vertical line, notice that between any two
points, the change in the inputs is zero. In the slope
equation, the denominator will be zero, and you may recall
that we cannot divide by the zero; the slope of a vertical line
is undefined. You might also notice that a vertical lineisnot 55 %% 7 1 7 § 5 ¢ 3
a function. To write the equation of vertical line, we simply
write input=value, likex=b.

Notice a vertical line has a horizontal intercept, but no
vertical intercept (unless it’s the line X = 0).

LR S I N

Lok b L
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Horizontal and Vertical Lines

Horizontal lines have equations of the form f(x)=b
Vertical lines have equations of the form x = a

Example 6

Write an equation for the horizontal line graphed above.

This line would have equation f(x) =2

Write an equation for the vertical line graphed above.

This line would have equation x =2

Try it Now
2. Describe the function f (x) =6—3x in terms of transformations of the identity
function and find its horizontal intercept.

Parallel and Perpendicular Lines
When two lines are graphed together, the lines will be parallel if they are increasing at

the same rate — if the rates of change are the same. In this case, the graphs will never
cross (unless they’re the same line).

Parallel Lines

Two lines are parallel if the slopes are equal (or, if both lines are vertical). In other
words, given two linear equations f(x) =b+mx and g(x) =b+m,x
The lines will be parallel if m, =m,

Example 8
Find a line parallel to f (x) =6+ 3x that passes through the point (3, 0)

We know the line we’re looking for will have the same slope as the given line, m = 3.
Using this and the given point, we can solve for the new line’s vertical intercept:
g(x) =b+3x then at (3, 0),

0=b+3(3)

b=-9

The line we’re looking for is g(Xx) = -9+ 3x
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If two lines are not parallel, one other interesting possibility is that the lines are
perpendicular, which means the lines form a right angle (90 degree angle — a square
corner) where they meet. In this case, the slopes when multiplied together will equal -1.
Solving for one slope leads us to the definition:

Perpendicular Lines

Given two linear equations f(x) =b+m,x and g(x) =b+m,x

The lines will be perpendicular if mm, =-1,andso m, = —
ml

We often say the slope of a perpendicular line is the “negative reciprocal” of the other
line’s slope.

Example 9
Find the slope of a line perpendicular to a line with:

a) a slope of 2. b) a slope of -4. c) a slope of % .

If the original line had slope 2, the perpendicular line’s slope would be m, = -1

If the original line had slope -4, the perpendicular line’s slope would be m, = _—‘11 = %

If the original line had slope % , the perpendicular line’s slope would be m, = -1 =

%7

Example 10

Find the equation of a line perpendicular to f(x) =6+ 3x and passing through the point
3,0

The original line has slope m = 3. The perpendicular line will have slope m = _?1

Using this and the given point, we can find the equation for the line.

g(x) =b—%x then at (3, 0),
1

0=b-=(3
3()

b=1

The line we’re looking for is g(x) =1- % X
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Try it Now
3. Given the line h(t) = -4+ 2t find an equation for the line passing through (0, 0) that
is: a) parallel to h(t). b) perpendicular to h(t).
xample 12

A line passes through the points (-2, 6) and (4, 5). Find the equation of a perpendicular
line that passes through the point (4, 5).

From the two given points on the reference line, we can calculate the slope of that line:
5-6 -1

m, = =
4-(-2) 6

The perpendicular line will have slope
-1
— =6

m2_7
6

We can then solve for the vertical intercept that makes the line pass through the desired
point:

g(x) =b+6x then at (4, 5),

5=b+6(4)

b=-19

Giving the line g(x) =-19 + 6x

Intersections of Lines

The graphs of two lines will intersect if they are not parallel. They will intersect at the
point that satisfies both equations. To find this point when the equations are given as
functions, we can solve for an input value so that f (x) = g(x). In other words, we can

set the formulas for the lines equal, and solve for the input that satisfies the equation.

Example 13

Find the intersection of the lines h(t) =3t —4 and j(t)=5-t

Setting h(t) = j(t),
3t—4=5-t
4t =9

9

t==
4

This tells us the lines intersect when the input is % .
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We can then find the output value of the intersection point by evaluating either function
at this input

(2)-s-2-1
4 4 4

These lines intersect at the point (%%) Looking at the graph, this result seems

reasonable.
_‘)‘:.

5 BRI
.

Two parallel lines can also intersect if they happen to be the same line. In that case, they
intersect at every point on the lines.

Try it Now

4. Look at the graph in example 13 above and answer the following for the function j(t):
a. Vertical intercept coordinates

b. Horizontal intercepts coordinates

c. Slope

d. Is j(t) parallel or perpendicular to h(t) (or neither)

e. Is j(t) an Increasing or Decreasing function (or neither)

f. Write a transformation description from the identity toolkit function f(x) = x

Finding the intersection allows us to answer other questions as well, such as discovering
when one function is larger than another.

xample 14
Using the functions from the previous example, for what values of t is h(t) > j(t)

To answer this question, it is helpful first to know where the functions are equal, since
that is the point where h(t) could switch from being greater to smaller than j(t) or vice-

. . 9
versa. From the previous example, we know the functions are equal at t = r
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By examining the graph, we can see that h(t), the function with positive slope, is going
to be larger than the other function to the right of the intersection. So h(t) > j(t) when

t>g
4

mportant Topics of this Section

Methods for graphing linear functions
Another name for slope = rise/run
Horizontal intercepts (a,0)

Horizontal lines

Vertical lines

Parallel lines

Perpendicular lines

Intersecting lines

Try it Now Answers

1. (-3,7) found by starting at the vertical intercept, going up 2 units and 3 in the
negative horizontal direction. You could have also answered, (-6, 9) or (-9, 11) etc...
2. Vertically stretched by a factor of 3, Vertically flipped (flipped over the x axis),
Vertically shifted up by 6 units. 6-3x=0 when x=2

3. Parallel f(t) =2t ; Perpendicular g(t):—%t

4. Given j(t) = 5-t

a. (0,5)

b. (5,0)

c. Slope -1

d. Neither parallel nor perpendicular

e. Decreasing function

f. Given the identity function, perform a vertical flip (over the t axis) and shift up 5
units.
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Section 5.2 Exercises

Match each linear equation with its graph

1. f(x)=—x-1

2. f(x)=-2x-1

3. f(x):—%x—l

4. f(x)=2
f(x)=2+x

6. f(x)=3x+2

Sketch a line with the given features

7. An x-intercept of (-4, 0) and y-intercept of (0, -2)

8. An x-intercept of (-2, 0) and y-intercept of (0, 4)

9. A vertical intercept of (0, 7) and slope —%

10. A vertical intercept of (0, 3) and slope %

11. Passing through the points (-6,-2) and (6,-6)
12. Passing through the points (-3,-4) and (3,0)

Sketch the graph of each equation

13. f(x)=-2x-1 14,
1

15. h(x):§x+2 16.

17. k(t)=3+2t 18.

19. x=3 20.

21. r(x)=4 22.

g(x)=—-3x+2

k(x):gx—i%

p(t)=—2+3t
X=-2
q(x)=3
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23. If g(x) isthe transformation of f(x)=x after a vertical compression by 3/4, a shift
left by 2, and a shift down by 4
a. Write an equation for g(x)

b. What is the slope of this line?
c. Find the vertical intercept of this line.

24. If g(x) is the transformation of f(x)=x after a vertical compression by 1/3, a shift
right by 1, and a shift up by 3
a. Write an equation for g(x)

b. What is the slope of this line?
c. Find the vertical intercept of this line.

Write the equzf}tion of the line shown

44
- 3
21 21
14
.;r.}.'z.}j_}é_%;r 4320 | 12 3 4
2 2
-3 3
25. 4 26. 4/
4 4
7 7
2 2
1 1
Y 2a |12 3 4 4520 | 1} 54
E E
2 2
-3 3
27. 4 28. 4/
Find the horizontal and vertical intercepts of each equation
29. f(x)=—x+2 30. g(x)=2x+4
31. h(x)=3x-5 32. k(x)=-5x+1

33. =2x+5y =20 34. 7Tx+2y =56
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Given below are descriptions of two lines. Find the slopes of Line 1 and Line 2. Is each
pair of lines parallel, perpendicular or neither?

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

Line 1: Passes through (0,6) and (3,-24)
Line 2: Passes through (-1,19) and (8,-71)

Line 1: Passes through (-8,-55) and (10,89)
Line 2: Passes through (9,—44) and (4,-14)

Line 1: Passes through (2,3) and (4,-1)
Line 2: Passes through (6,3) and (8,5)

Line 1: Passes through (1,7) and (5,5)
Line 2: Passes through (-1,-3) and (1,1)

Line 1: Passes through (0,5) and (3,3)
Line 2: Passes through (1,-5) and (3,-2)

Line 1: Passes through (2,5) and (5,-1)
Line 2: Passes through (-3,7) and (3,-5)

Write an equation for a line parallel to f (x)=-5x—3 and passing through the point
(2,-12)

Write an equation for a line parallel to g(x) =3x—-1 and passing through the point
(4.,9)

Write an equation for a line perpendicular to h(t) = -2t + 4 and passing through the
point (-4,-1)

Write an equation for a line perpendicular to p(t) =3t+4 and passing through the
point (3,1)

Find the point at which the line f (x) =—-2x-1 intersects the line g(x) =—x

Find the point at which the line f(x) =2x+5 intersects the line g(x) =—-3x-5



47.

48.

49,

50.

o1,
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Use algebra to find the point at which the line f (x) =—gx+22—754 intersects the line
h(x)=ngLE
4 10
Use algebra to find the point at which the line f (x) =—X+—— Intersects the line
4 31
X)=—X+—
9(x)=5x+7

A car rental company offers two plans for renting a car.

Plan A: 30 dollars per day and 18 cents per mile

Plan B: 50 dollars per day with free unlimited mileage

How many miles would you need to drive for plan B to save you money?

A cell phone company offers two data options for its prepaid phones
Pay per use: $0.002 per Kilobyte (KB) used

Data Package: $5 for 5 Megabytes (5120 Kilobytes) + $0.002 per addition KB
Assuming you will use less than 5 Megabytes, under what circumstances will the data
package save you money?

Sketch an accurate picture of the line having equation f (x)= 2—%x . Letcbean

unknown constant. [UW]
a. Find the point of intersection between the line you have graphed and the

line g(x)=1+cx; your answer will be a point in the xy plane whose
coordinates involve the unknown c.

b. Find c so that the intersection point in (a) has x-coordinate 10.
c. Find c so that the intersection point in (a) lies on the x-axis.
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Section 5.3 Modeling with Linear Functions

When modeling scenarios with a linear function and solving problems involving
quantities changing linearly, we typically follow the same problem solving strategies that
we would use for any type of function:

Problem solving strategy

1) Identify changing quantities, and then carefully and clearly define descriptive
variables to represent those quantities. When appropriate, sketch a picture or define
a coordinate system.

2) Carefully read the problem to identify important information. Look for information
giving values for the variables, or values for parts of the functional model, like slope
and initial value.

3) Carefully read the problem to identify what we are trying to find, identify, solve, or
interpret.

4) Identify a solution pathway from the provided information to what we are trying to
find. Often this will involve checking and tracking units, building a table or even
finding a formula for the function being used to model the problem.

5) When needed, find a formula for the function.

6) Solve or evaluate using the formula you found for the desired quantities.

7) Reflect on whether your answer is reasonable for the given situation and whether it
makes sense mathematically.

8) Clearly convey your result using appropriate units, and answer in full sentences
when appropriate.

Example 1

Emily saved up $3500 for her summer visit to Seattle. She anticipates spending $400
each week on rent, food, and fun. Find and interpret the horizontal intercept and
determine a reasonable domain and range for this function.

In the problem, there are two changing quantities: time and money. The amount of
money she has remaining while on vacation depends on how long she stays. We can
define our variables, including units.

Output: M, money remaining, in dollars

Input: t, time, in weeks

Reading the problem, we identify two important values. The first, $3500, is the initial
value for M. The other value appears to be a rate of change — the units of dollars per
week match the units of our output variable divided by our input variable. She is
spending money each week, so you should recognize that the amount of money
remaining is decreasing each week and the slope is negative.
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To answer the first question, looking for the horizontal intercept, it would be helpful to
have an equation modeling this scenario. Using the intercept and slope provided in the
problem, we can write the equation: M (t) = 3500 — 400t .

To find the horizontal intercept, we set the output to zero, and solve for the input:
0 = 3500 — 400t

(=22 _g75
400

The horizontal intercept is 8.75 weeks. Since this represents the input value where the
output will be zero, interpreting this, we could say: Emily will have no money left after
8.75 weeks.

When modeling any real life scenario with functions, there is typically a limited domain
over which that model will be valid — almost no trend continues indefinitely. In this
case, it certainly doesn’t make sense to talk about input values less than zero. Itis also
likely that this model is not valid after the horizontal intercept (unless Emily’s going to
start using a credit card and go into debt).

The domain represents the set of input values and so the reasonable domain for this
functionis 0<t <8.75.

However, in a real world scenario, the rental might be weekly or nightly. She may not
be able to stay a partial week and so all options should be considered. Emily could stay
in Seattle for 0 to 8 full weeks (and a couple of days), but would have to go into debt to
stay 9 full weeks, so restricted to whole weeks, a reasonable domain without going in to
debt would be 0 <t <8, or 0<t <9if she went into debt to finish out the last week.

The range represents the set of output values and she starts with $3500 and ends with $0
after 8.75 weeks so the corresponding range is 0 < M (t) <3500 .

If we limit the rental to whole weeks however, if she left after 8 weeks because she
didn’t have enough to stay for a full 9 weeks, she would have M(8) = 3500 -400(8) =
$300 dollars left after 8 weeks, giving a range of 300 < M (t) <3500 . If she wanted to

stay the full 9 weeks she would be $100 in debt giving a range of —100 < M (t) < 3500 .

Most importantly remember that domain and range are tied together, and what ever you
decide is most appropriate for the domain (the independent variable) will dictate the
requirements for the range (the dependent variable).
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Example 2

Jamal is choosing between two moving companies. The first, U-Haul, charges an up-
front fee of $20, then 59 cents a mile. The second, Budget, charges an up-front fee of
$16, then 63 cents a mile®. When will U-Haul be the better choice for Jamal?

The two important quantities in this problem are the cost, and the number of miles that
are driven. Since we have two companies to consider, we will define two functions:

Input: m, miles driven

Outputs:

Y(m): cost, in dollars, for renting from U-Haul
B(m): cost, in dollars, for renting from Budget

Reading the problem carefully, it appears that we were given an initial cost and a rate of
change for each company. Since our outputs are measured in dollars but the costs per
mile given in the problem are in cents, we will need to convert these quantities to match
our desired units: $0.59 a mile for U-Haul, and $0.63 a mile for Budget.

Looking to what we’re trying to find, we want to know when U-Haul will be the better
choice. Since all we have to make that decision from is the costs, we are looking for
when U-Haul will cost less, or when Y (m) < B(m). The solution pathway will lead us

to find the equations for the two functions, find the intersection, then look to see where
the Y(m) function is smaller. Using the rates of change and initial charges, we can write
the equations:

Y (m)=20+0.59m

-

1201

B(m) =16 + 0.63m 100+

These graphs are sketched to the right, with Y(m) ]

drawn dashed. sol

To find the intersection, we set the equations 401

equal and solve:

Y(m) = B(m) 207

20 +0.59m =16 + 0.63m % NN EEN
4 —0.04m ' 20 40 60 80 100 120 140 160 18
m =100

This tells us that the cost from the two companies will be the same if 100 miles are
driven. Either by looking at the graph, or noting that Y(m) is growing at a slower rate,
we can conclude that U-Haul will be the cheaper price when more than 100 miles are
driven.

® Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/



http://www.budgettruck.com/
http://www.uhaul.com/
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Example 3

A town’s population has been growing linearly. In 2004 the population was 6,200. By
2009 the population had grown to 8,100. If this trend continues,

a. Predict the population in 2013

b. When will the population reach 150007

The two changing quantities are the population and time. While we could use the actual
year value as the input quantity, doing so tends to lead to very ugly equations, since the
vertical intercept would correspond to the year 0, more than 2000 years ago!

To make things a little nicer, and to make our lives easier too, we will define our input
as years since 2004:

Input: t, years since 2004

Output: P(t), the town’s population

The problem gives us two input-output pairs. Converting them to match our defined
variables, the year 2004 would correspond to t = 0, giving the point (0, 6200). Notice
that through our clever choice of variable definition, we have “given” ourselves the
vertical intercept of the function. The year 2009 would correspond to t = 5, giving the
point (5, 8100).

To predict the population in 2013 (t = 9), we would need an equation for the population.
Likewise, to find when the population would reach 15000, we would need to solve for
the input that would provide an output of 15000. Either way, we need an equation. To
find it, we start by calculating the rate of change:

. 8100 —6200 1900

5-0 5

= 380 people per year

Since we already know the vertical intercept of the line, we can immediately write the
equation:
P(t) = 6200 + 380t

To predict the population in 2013, we evaluate our functionatt =9
P(9) = 6200 + 380(9) = 9620
If the trend continues, our model predicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we can set P(t) = 15000 and solve for t.
15000 = 6200 + 380t

8800 =380t
t ~ 23.158

Our model predicts the population will reach 15,000 in a little more than 23 years after
2004, or somewhere around the year 2027.
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Example 4

Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour
while Emanuel walks south at 3 miles per hour. They are communicating with a two-
way radio with a range of 2 miles. How long after they start walking will they fall out
of radio contact?

In essence, we can partially answer this question by saying they will fall out of radio
contact when they are 2 miles apart, which leads us to ask a new question: how long
will it take them to be 2 miles apart?

In this problem, our changing quantities are time and the two peoples’ positions, but
ultimately we need to know how long will it take for them to be 2 miles apart. We can
see that time will be our input variable, so we’ll define

Input: t, time in hours.

Since it is not obvious how to define our output variables, we’ll start by drawing a
picture.

Anna walking east, 4 miles/hour
>R

-

-
-

-
-

_.-~"Distance between them

-
-
-
-
-
-

%’/E’manuel walking south, 3 miles/hour

Because of the complexity of this question, it may be helpful to introduce some
intermediary variables. These are quantities that we aren’t directly interested in, but
seem important to the problem. For this problem, Anna’s and Emanuel’s distances
from the starting point seem important. To notate these, we are going to define a
coordinate system, putting the “starting point” at the intersection where they both
started, then we’re going to introduce a variable, A, to represent Anna’s position, and
define it to be a measurement from the starting point, in the eastward direction.
Likewise, we’ll introduce a variable, E, to represent Emanuel’s position, measured from
the starting point in the southward direction. Note that in defining the coordinate
system we specified both the origin, or starting point, of the measurement, as well as the
direction of measure.

While we’re at it, we’ll define a third variable, D, to be the measurement of the distance
between Anna and Emanuel. Showing the variables on the picture is often helpful:
Looking at the variables on the picture, we remember we need to know how long it
takes for D, the distance between them, to equal 2 miles.
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A
D
X A
Seeing this picture we remember that in order to find the distance b
between the two, we can use the Pythagorean Theorem, a at+b?=¢?

property of right triangles.

From here, we can now look back at the problem for relevant information. Anna is
walking 4 miles per hour, and Emanuel is walking 3 miles per hour, which are rates of
change. Using those, we can write formulas for the distance each has walked.

They both start at the same intersection and so when t = 0, the distance travelled by each
person should also be 0, so given the rate for each, and the initial value for each, we get:

At) = 4t
E(t) =3t

Using the Pythagorean theorem we get:

D(t)? = A(t)” + E(t)* substitute in the function formulas
D(t)? = (4t)* +(3t)* =16t + 9t = 25t° solve for D(t) using the square root

D(t) = ++/25t* = 5[

Since in this scenario we are only considering positive values of t and our distance D(t)
will always be positive, we can simplify this answer to D(t) = 5t

Interestingly, the distance between them is also a linear function. Using it, we can now
answer the question of when the distance between them will reach 2 miles:

D(t)=2

5t=2

t=2-04
5

They will fall out of radio contact in 0.4 hours, or 24 minutes.
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Example 5

There is currently a straight road leading from the town of Westborough to a town 30
miles east and 10 miles north. Partway down this road, it junctions with a second road,
perpendicular to the first, leading to the town of Eastborough. If the town of
Eastborough is located 20 miles directly east of the town of Westborough, how far is the
road junction from Westborough?

It might help here to draw a picture of

the situation. It would then be helpful to Other town
introduce a coordinate system. While we (30, 10)
could place the origin anywhere, placing

it at Westborough seems convenient. (20, 0)

This puts the other town at coordinates Westborough 20 miles  Eastborough
(30, 10), and Eastborough at (20, 0).

Using this point along with the origin, we can find the slope of the line from
Westborough to the other town: m= % =% . This gives the equation of the road

1
from Westborough to the other town to be W (x) = 3 X.

From this, we can determine the perpendicular road to Eastborough will have slope
m=-3. Since the town of Eastborough is at the point (20, 0), we can find the equation:
E(x)=-3x+b plug in the point (20, 0)

0=-3(20)+b

b=60

E(x)=-3x+60

We can now find the coordinates of the junction of the roads by finding the intersection
of these lines. Setting them equal,

1 X =—-3Xx+ 60

3

Ex=60
3

10x =180
x =18 Substituting this back into W(x)
y=W(18) = %(18) =6

The roads intersect at the point (18, 6). Using the distance formula, we can now find
the distance from Westborough to the junction:

dist = /(18 —0)% + (6—0)? ~18.934 miles.




1)

2)

3)
4)
5)
6)
7)

8)
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[Important Topics of this Section

The problem solving process

Identify changing quantities, and then carefully and clearly define descriptive
variables to represent those quantities. When appropriate, sketch a picture or define
a coordinate system.

Carefully read the problem to identify important information. Look for information
giving values for the variables, or values for parts of the functional model, like slope
and initial value.

Carefully read the problem to identify what we are trying to find, identify, solve, or
interpret.

Identify a solution pathway from the provided information to what we are trying to
find. Often this will involve checking and tracking units, building a table or even
finding a formula for the function being used to model the problem.

When needed, find a formula for the function.

Solve or evaluate using the formula you found for the desired quantities.

Reflect on whether your answer is reasonable for the given situation and whether it
makes sense mathematically.

Clearly convey your result using appropriate units, and answer in full sentences
when appropriate.
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Section 5.3 Exercises

1. In 2004, a school population was 1001. By 2008 the population had grown to 1697.
Assume the population is changing linearly.

a. How much did the population grow between the year 2004 and 2008?

b. How long did it take the population to grow from 1001 students to 1697
students?
What is the average population growth per year?
What was the population in the year 2000?
Find an equation for the population, P, of the school t years after 2000.
Using your equation, predict the population of the school in 2011.

ShD OO

2. In 2003, a town’s population was 1431. By 2007 the population had grown to 2134.
Assume the population is changing linearly.

How much did the population grow between the year 2003 and 2007?

How long did it take the population to grow from 1431 people to 2134?

What is the average population growth per year?

What was the population in the year 2000?

Find an equation for the population, P, of the town t years after 2000.

Using your equation, predict the population of the town in 2014.

hD OO o

3. A phone company has a monthly cellular plan where a customer pays a flat monthly
fee and then a certain amount of money per minute used on the phone. If a customer
uses 410 minutes, the monthly cost will be $71.50. If the customer uses 720 minutes,
the monthly cost will be $118.

a. Find a linear equation for the monthly cost of the cell plan as a function of x,
the number of monthly minutes used.

b. Interpret the slope and vertical intercept of the equation.

c. Use your equation to find the total monthly cost if 687 minutes are used.

4. A phone company has a monthly cellular data plan where a customer pays a flat
monthly fee and then a certain amount of money per megabyte (MB) of data used on
the phone. If a customer uses 20 MB, the monthly cost will be $11.20. If the customer
uses 130 MB, the monthly cost will be $17.80.

a. Find a linear equation for the monthly cost of the data plan as a function of x,
the number of MB used.

b. Interpret the slope and vertical intercept of the equation.

c. Use your equation to find the total monthly cost if 250 MB are used.



10.

11.
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In 1991, the moose population in a park was measured to be 4360. By 1999, the
population was measured again to be 5880. If the population continues to change
linearly,

a. Find a formula for the moose population, P.

b. What does your model predict the moose population to be in 2003?

In 2003, the owl population in a park was measured to be 340. By 2007, the
population was measured again to be 285. If the population continues to change
linearly,

a. Find a formula for the owl population, P.

b. What does your model predict the owl population to be in 2012?

The Federal Helium Reserve held about 16 billion cubic feet of helium in 2010, and is
being depleted by about 2.1 billion cubic feet each year.
a. Give a linear equation for the remaining federal helium reserves, R, in terms
of t, the number of years since 2010.
b. In 2015, what will the helium reserves be?
c. Ifthe rate of depletion doesn’t change, when will the Federal Helium Reserve
be depleted?

Suppose the world's current oil reserves are 1820 billion barrels. If, on average, the
total reserves is decreasing by 25 billion barrels of oil each year:
a. Give a linear equation for the remaining oil reserves, R, in terms of t, the
number of years since now.
b. Seven years from now, what will the oil reserves be?
c. If the rate of depletion isn’t change, when will the world’s oil reserves be
depleted?

You are choosing between two different prepaid cell phone plans. The first plan
charges a rate of 26 cents per minute. The second plan charges a monthly fee of
$19.95 plus 11 cents per minute. How many minutes would you have to use in a
month in order for the second plan to be preferable?

You are choosing between two different window washing companies. The first
charges $5 per window. The second charges a base fee of $40 plus $3 per window.
How many windows would you need to have for the second company to be
preferable?

When hired at a new job selling jewelry, you are given two pay options:

Option A: Base salary of $17,000 a year, with a commission of 12% of your sales
Option B: Base salary of $20,000 a year, with a commission of 5% of your sales
How much jewelry would you need to sell for option A to produce a larger income?
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12.

13.

14.

15.

16.

17.

18.

19.

When hired at a new job selling electronics, you are given two pay options:
Option A: Base salary of $14,000 a year, with a commission of 10% of your sales
Option B: Base salary of $19,000 a year, with a commission of 4% of your sales
How much electronics would you need to sell for option A to produce a larger
income?

Find the area of a triangle bounded by the y axis, the line f (x)= 9—? X, and the line

perpendicular to f(x) that passes through the origin.

Find the area of a triangle bounded by the x axis, the line f () :12—%x , and the

line perpendicular to f(x) that passes through the origin.

Find the area of a parallelogram bounded by the y axis, the line x=3, the line
f (x) =1+2x, and the line parallel to f(x) passing through (2, 7)

Find the area of a parallelogram bounded by the x axis, the line g(x) =2, the line
f (x) =3x, and the line parallel to f(x) passing through (6, 1)

If b>0 and m<0, then the line f (x)=b+mx cuts off a triangle from the first
quadrant. Express the area of that triangle in terms of mand b. [UW]

Find the value of m so the lines f (x)=mx+5 and g(x)=x and the y-axis form a
triangle with an area of 10. [UW]

The median home values in Mississippi and Hawaii (adjusted for inflation) are shown
below. If we assume that the house values are changing linearly,

Year | Mississippi | Hawaii

1950 25200 | 74400

2000 71400 | 272700

a. In which state have home values increased at a higher rate?

b. If these trends were to continue, what would be the median home value in
Mississippi in 2010?

c. If we assume the linear trend existed before 1950 and continues after 2000,
the two states' median house values will be (or were) equal in what year? (The
answer might be absurd)
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20. The median home value ins Indiana and Alabama (adjusted for inflation) are shown
below. If we assume that the house values are changing linearly,
Year | Indiana | Alabama
1950 | 37700 27100
2000 | 94300 85100
a. In which state have home values increased at a higher rate?
b. If these trends were to continue, what would be the median home value in
Indiana in 2010?
c. If we assume the linear trend existed before 1950 and continues after 2000,
the two states' median house values will be (or were) equal in what year? (The
answer might be absurd)

21. Pam is taking a train from the town of Rome to the town of Florence. Rome is located
30 miles due West of the town of Paris. Florence is 25 miles East, and 45 miles North
of Rome. On her trip, how close does Pam get to Paris? [UW]

22. You’re flying from Joint Base Lewis-McChord (JBLM) to an undisclosed location
226 km south and 230 km east. Mt. Rainier is located approximately 56 km east and
40 km south of JBLM. If you are flying at a constant speed of 800 km/hr, how long
after you depart JBLM will you be the closest to Mt. Rainier?
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Section 5.4 Fitting Linear Models to Data

In the real world, rarely do things follow trends perfectly. When we expect the trend to
behave linearly, or when inspection suggests the trend is behaving linearly, it is often
desirable to find an equation to approximate the data. Finding an equation to approximate
the data helps us understand the behavior of the data and allows us to use the linear
model to make predictions about the data, inside and outside of the data range.

The table below shows the number of cricket chirps in 15 seconds, and the air
temperature, in degrees Fahrenheit*. Plot this data, and determine whether the data
appears to be linearly related.

chirps | 44 35 204 |33 31 35 185 | 37 26
Temp [80.5 | 705 |57 66 68 72 52 73.5 |53

Plotting this data, it appears there may be a trend, and that the trend appears roughly
linear, though certainly not perfectly so.

90

™
2 80 4 'S
Qo
o> ¢
$ 70 1 . 2
s 'S
3 60 4
g .
'S
g 50 - *
[}
g
40 . . .
10 20 30 40 50

Cricket Chirps in 15 seconds

The simplest way to find an equation to approximate this data is to try to “eyeball” a line
that seems to fit the data pretty well, then find an equation for that line based on the slope
and intercept.

You can see from the trend in the data that the number of chirps increases as the
temperature increases. As you consider a function for this data you should know that you
are looking at an increasing function or a function with a positive slope.

* Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010
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Flashback

1. a. What descriptive variables would you choose to represent Temperature & Chirps?
b. Which variable is the independent variable and which is the dependent variable?
c. Based on this data and the graph, what is a reasonable domain & range?
d. Based on the data alone, is this function one-to-one, explain?

xample 2
Using the table of values from the previous example, find a linear function that fits the
data by “eyeballing” a line that seems to fit.

On a graph, we could try sketching in a line.

The scale on the axes has been adjusted to 90
including the vertical axis in the graph. 80 - 4
Using the starting and ending points of our 70 1 A
“hand drawn” line, points (0, 3603 and (50, 90), 60 - .
this graph has a slope of m = 0 =12 anda 50 | .
vertical intercept at 30, giving an equation of 40 A
T(c)=30+1.2c %0 '
0 10 20 30 40 50

where c is the number of chirps in 15 seconds,
and T(c) is the temperature in degrees
Fahrenheit.

This linear equation can then be used to approximate the solution to various questions we
might ask about the trend. While the data does not perfectly fall on the linear equation,
the equation is our best guess as to how the relationship will behave outside of the values
we have data for. There is a difference, though, between making predictions inside the
domain and range of values we have data for, and outside that domain and range.

Interpolation and Extrapolation
Interpolation: When we predict a value inside the domain and range of the data
Extrapolation: When we predict a value outside the domain and range of the data

For the Temperature as a function of chirps in our hand drawn model above:

Interpolation would occur if we used our model to predict temperature when the values
for chirps are between 18.5 and 44.

Extrapolation would occur if we used our model to predict temperature when the values
for chirps are less than 18.5 or greater than 44.
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Example 3

a) Would predicting the temperature when crickets are chirping 30 times in 15 seconds
be interpolation or extrapolation? Make the prediction, and discuss if it is reasonable.

b) Would predicting the number of chirps crickets will make at 40 degrees be
interpolation or extrapolation? Make the prediction, and discuss if it is reasonable.

With our cricket data, our number of chirps in the data provided varied from 18.5 to 44.
A prediction at 30 chirps per 15 seconds is inside the domain of our data, so would be
interpolation. Using our model:

T(30) =30+1.2(30) = 66 degrees.

Based on the data we have, this value seems reasonable.

The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40
degrees is extrapolation since 40 is outside the range of our data. Using our model:
40=30+1.2c

10=1.2c
c~8.33

Our model predicts the crickets would chirp 8.33 times in 15 seconds. While this might
be possible, we have no reason to believe our model is valid outside the domain and
range. In fact, generally crickets stop chirping altogether below around 50 degrees.

When our model no longer applies after some point, it is sometimes called model
breakdown.

What temperature would you predict if you counted 20 chirps in 15 seconds?

Fitting Lines with Technology

While eyeballing a line works reasonably well, there are statistical techniques for fitting a
line to data that minimize the differences between the line and data values®. This
technique is called least-square regression, and can be computed by many graphing
calculators, spreadsheet software like Excel or Google Docs, statistical software, and
many web-based calculators®.

> Technically, the method minimizes the sum of the squared differences in the vertical direction between
the line and the data values.
® For example, http://www.shodor.org/unchem/math/Ils/leastsg.html
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Example 4

Find the least-squares regression line
using the cricket chirp data from above. %0

80 +

Using the cricket chirp data from earlier,

with technology we obtain the equation: 70 1 *%
T(c)=30.281+1.143c 60 |
.
.
Notice that this line is quite similar to the %01
equation we “eyeballed”, but should fit 40 1
the data better. Notice also that using
this equation would change our 30 '
0 10 20 30 40 50

prediction for the temperature when

hearing 30 chirps in 15 seconds from 66

degrees to:

T(30) = 30.281+1.143(30) = 64.571 ~ 64.6 degrees.

Most calculators and computer software will also provide you with the correlation
coefficient, a measure of how closely the line fits the data.

Correlation Coefficient

The correlation coefficient is a value, r, between -1 and 1.

r > 0 suggests a positive (increasing) relationship

r < 0 suggests a negative (decreasing) relationship

The closer the value is to 0, the more scattered the data

The closer the value is to 1 or -1, the less scattered the data is

The correlation coefficient provides an easy way to get some idea of how close to a line
the data falls.

We should only compute the correlation coefficient for data that follows a linear pattern;
if the data exhibits a non-linear pattern, the correlation coefficient is meaningless. To get
a sense for the relationship between the value of r and the graph of the data, here are
some large data sets with their correlation coefficients:
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Examples of Correlation Coefficient Values

1.0 0.8 0.4 0.0
1.0
) / e S . o \\

Calculate the correlation coefficient for our cricket data.

Because the data appears to follow a linear pattern, we can use technology to calculate
r =0.9509. Since this value is very close to 1, it suggests a strong increasing linear
relationship.

Example 6

Gasoline consumption in the US has been increasing steadily. Consumption data from
1994 to 2004 is shown below.® Determine if the trend is linear, and if so, find a model
for the data. Use the model to predict the consumption in 2008.

Year 94 |'95 |'96 |'97 |'98 |['99 |'00 ['01 ['02 |'03 |'04
Consumption
(billions of
gallons) 113|116 | 118 | 119 | 123 | 125 | 126 | 128 | 131 | 133 | 136
(%]
To make things simpler, a new s 150
input variable is introduced, t, 3 140
representing years since 1994. =%
S 5 130 -
Using technology, the g S 120 A
correlation coefficient was 25 )
calculated to be 0.9965, 8§ 1101
suggesting a very strong g 100t

increasing linear trend. 0123456 78910111213 14
Years after 1994

" http://en.wikipedia.org/wiki/File:Correlation_examples.png
& http://www.bts.gov/publications/national _transportation_statistics/2005/html/table_04_10.html
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The least-squares regression equation is:
C(t) =113.318 + 2.209t .

Using this to predict consumption in 2008 (t = 14),
C(14) =113.318+2.209(14) = 144.244 billions of gallons

The model predicts 144.244 billion gallons of gasoline will be consumed in 2008.

2. Use the model created by technology in example 6 to predict the gas consumption in
2011. Is this an interpolation or an extrapolation?

Important Topics of this Section

Fitting linear models to data by hand

Fitting linear models to data using technology
Interpolation

Extrapolation

Correlation coefficient

Flashback Answers

1.a. T = Temperature, C = Chirps (answers may vary)
b. Independent (Chirps) , Dependent (Temperature)
c. Reasonable Domain (18.5, 44) , Reasonable Range (52, 80.5) (answers may vary)
d. NO, it is not one-to-one, there are two different output values for 35 chirps.

Try it Now Answers
1. 54 degrees Fahrenheit
2. 150.871 billion gallons, extrapolation
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Section 5.4 Exercises

1. The following is data for the first and second quiz scores for 8 students in a class. Plot

the points, then sketch a line that fits the data.

First Quiz

11

20

24

25

33

42

46

49

Second Quiz

10

16

23

28

30

39

40

49

2. Eight students were asked to estimate their score on a 10 point quiz. Their estimated

and actual scores are given. Plot the points, then sketch a line that fits the data.

Predicted

5

7

6

8

10

9

10

Actual

6

6

7

8

9

9

10

Based on each set of data given, calculate the regression line using your calculator or
other technology tool, and determine the correlation coefficient.

3. [ x|y
5[] 4
7112
10 | 17
12 | 22

15] 24

4.

x|y

8| 23
15| 41
26| 53
31| 72
56 | 103

5.

y

21.9

22.22

22.74

22.26

20.78

17.6

16.52

18.54

15.76

13.68

14.1

14.02

11.94

12.76

11.28

9.1

44.8

43.1

38.8

39

38

32.7

30.1

29.3

27

25.8

24.7

22

20.1

19.8

16.8
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7. A-regression was run to determine if there is a relationship between hours of TV
watched per day (x) and number of situps a person can do (y). The results of the
regression are given below. Use this to predict the number of situps a person who
watches 11 hours of TV can do.

y=ax+b

a=-1.341
b=32.234

r?=0.803

r=-0.896

8.

A regression was run to determine if there is a relationship between the diameter of a

tree (X, in inches) and the tree’s age (y, in years). The results of the regression are
given below. Use this to predict the age of a tree with diameter 10 inches.

y=ax+b
a=6.301

b=-1.044

r?=0.940

r=-0.970

Match each scatterplot shown below with one of the four specified correlations.
10.r=-0.89

9.r=0.95

11.r=0.26

12.r=-0.39

B

C

Do

13. The US census tracks the percentage of persons 25 years or older who are college
graduates. That data for several years is given below. Determine if the trend appears
linear. If so and the trend continues, in what year will the percentage exceed 35%?

Year 1990 | 1992 | 1994 | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008
Percent 213 (214 | 222 | 236 |244 |256 |26.7 |27.7 |28 29.4
Graduates

14. The US import of wine (in hectoliters) for several years is given below. Determine if
the trend appears linear. If so and the trend continues, in what year will imports
exceed 12,000 hectoliters?

Year

1992

1994

1996

1998

2000

2002

2004

2006

2008

2009

Imports

2665

2688

3565

4129

4584

5655

6549

7950

8487

9462
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Section 5.5 Absolute Value Functions

So far in this chapter we have been studying the behavior of linear functions. The
Absolute Value Function is a piecewise-defined function made up of two linear
functions. The name, Absolute Value Function, should be familiar to you from

Section 1.2. In its basic form f (x) =|x| it is one of our toolkit functions.

Absolute Value Function
The absolute value function can be defined as

x if x>0
f(x)=|x|={_x if x<0

The absolute value function is commonly used to determine the distance between
two numbers on the number line. Given two values a and b, then |a —b| will give

the distance, a positive quantity, between these values, regardless of which value is
larger.

Example 1

Describe all values, x, within a distance of 4 from the number 5.

We want the distance between x and 5 to be less than or equal to 4. The distance can be
represented using the absolute value, giving the expression

[x-5/<4

Example 2

A 2010 poll reported 78% of Americans believe that people who are gay should be able
to serve in the US military, with a reported margin of error of 3%°. The margin of error
tells us how far off the actual value could be from the survey value'®. Express the set of
possible values using absolute values.

Since we want the size of the difference between the actual percentage, p, and the
reported percentage to be less than 3%,

|p-78|<3

® http://www.pollingreport.com/civil.htm, retrieved August 4, 2010
19 Technically, margin of error usually means that the surveyors are 95% confident that actual value falls
within this range.
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Try it Now
1. Students who score within 20 points of 80 will pass the test. Write this as a distance
from 80 using the absolute value notation.

Important Features

The most significant feature of the absolute value graph is the corner point where the
graph changes direction. When finding the equation for a transformed absolute
value function, this point is very helpful for determining the horizontal and vertical
shifts.

Example 3
Write an equation for the function graphed below.

"rl'!.
i
2_
lr-
’ ] v 5

The basic absolute value function changes direction at the origin, so this graph has been
shifted to the right 3 and down 2 from the basic toolkit function. We might also notice
that the graph appears stretched, since the linear portions have slopes of 2 and -2. From
this information we can write the equation:

f(x)= 2|x - 3| — 2, treating the stretch as a vertical stretch

de to L

XY

f (x) =[2(x —3)|- 2, treating the stretch as a horizontal compression

Note that these equations are algebraically equivalent — the stretch for an absolute value
function can be written interchangeably as a vertical or horizontal stretch/compression.

If you had not been able to determine the stretch based on the slopes of the lines, you
can solve for the stretch factor by putting in a known pair of values for x and f(x)

f(x)=ax-3-2 Now substituting in the point (1, 2)
2=a1-3-2
4=2a

a=2
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Try it Now
2. Given the description of the transformed absolute value function write the equation.
The absolute value function is horizontally shifted left 2 units, is vertically flipped, and
vertically shifted up 3 units,

The graph of an absolute value function will have a vertical intercept when the input
is zero. The graph may or may not have horizontal intercepts, depending on how the
graph has been shifted and reflected. It is possible for the absolute value function to
have zero, one, or two horizontal intercepts.

Zero horizontal intercepts One Two

54 5 3

41 4 44

3 . S

24 2

- ! /
N NEEEEEEEEENREREE R ENREREN

2 -2 2

i -3 i

&
r
Iy

To find the horizontal intercepts, we will need to solve an equation involving an
absolute value.

Notice that the absolute value function is not one-to-one, so typically inverses of
absolute value functions are not discussed.

Solving Absolute Value Equations

To solve an equation like 8 =|2x — 6|, we can notice that the absolute value will be

equal to eight if the quantity inside the absolute value were 8 or -8. This leads to
two different equations we can solve independently:

2X—-6=8 or 2X—6=-8

2x=14 2X =-2

X=7 Xx=-1

Solutions to Absolute Value Equations
An equation of the form |A| = B, with B >0, will have solutions when
A=B or A=-B
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Example 4
Find the horizontal intercepts of the graph of f(x) =|4x+1-7

The horizontal intercepts will occur when f(x) =0. Solving,

0= |4x +]1 -7 Isolate the absolute value on one side of the equation
7= |4x +]J Now we can break this into two separate equations:
7=4x+1 —7=4x+1
6 = 4x or —-8=4x
(6.3 -8

4 2 4

The graph has two horizontal intercepts, at x = 3 and x = -2

Example 5
Solve 1=4Jx -2/ +2

Isolating the absolute value on one side the equation,

1=4x—2/+2

—1=4x-2|

NN
4

At this point, we notice that this equation has no solutions — the absolute value always

returns a positive value, so it is impossible for the absolute value to equal a negative
value.

3. Find the horizontal & vertical intercepts for the function f (x) = —|x + 2| +3

Solving Absolute Value Inequalities

When absolute value inequalities are written to describe a set of values, like the
inequality |x —5| <4 we wrote earlier, it is sometimes desirable to express this set of

values without the absolute value, either using inequalities, or using interval
notation.
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We will explore two approaches to solving absolute value inequalities:
1) Using the graph
2) Using test values

Solve [x—5/< 4

With both approaches, we will need to know first where the corresponding equality is
true. In this case we first will find where [x —5/ = 4. We do this because the absolute
value is a nice friendly function with no breaks, so the only way the function values can
switch from being less than 4 to being greater than 4 is by passing through where the

values equal 4. Solve |x—5|=4,

X-5=4 X-5=-4
or

Xx=9 x=1

To use a graph, we can sketch the function f(x) = |x - 5| . To help us see where the
outputs are 4, the line g(x) =4 could also be sketched.

2| 1234567891

On the graph, we can see that indeed the output values of the absolute value are equal to
4atx=1and x =9. Based on the shape of the graph, we can determine the absolute
value is less than or equal to 4 between these two points, when 1< x <9. In interval
notation, this would be the interval [1,9].

As an alternative to graphing, after determining that the absolute value is equal to 4 at x
=1 and x =9, we know the graph can only change from being less than 4 to greater than
4 at these values. This divides the number line up into three intervals: x<1, 1<x<9, and
x>9. To determine when the function is less than 4, we could pick a value in each
interval and see if the output is less than or greater than 4.
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Interval Test x f(x) <4 or >4?
x<1 0 0-5=5 greater
1<x<9 6 6-5=1 less

x>9 11 11-5=6  greater

Since 1< x <9 is the only interval in which the output at the test value is less than 4,
we can conclude the solution to [x —5/< 4 is 1< x<9.

Given the function f(x) = —%|4x —5|+3, determine for what x values the function

values are negative.

We are trying to determine where f(x) < 0, which is when — %|4x —5/+3<0. We begin
by isolating the absolute value:

— %|4x —5<—=3  when we multiply both sides by -2, it reverses the inequality

[4x—5/> 6

Next we solve for the equality [4x —5/=6

4Xx-5=6 4x-5=-6
4x =11 or 4x =-1
11 -1
X=—= X=—
4 4

We can now either pick test values or sketch a graph of the function to determine on
which intervals the original function value are negative. Notice that it is not even really
important exactly what the graph looks like, as long as we know that it crosses the

. . -1 11 .
horizontal axis at x = i and x = 7 and that the graph has been reflected vertically.



326 Chapter 5

From the graph of the function, we can see the function values are negative to the left of

. . . -1 . . .
the first horizontal intercept at x = 7 and negative to the right of the second intercept

11 L . . .
at x= T This gives us the solution to the inequality:

4

4. Solve—2k —4/< -6

In interval notation, this would be (—oo,%lju(g,ooj

Important Topics of this Section
The properties of the absolute value function
Solving absolute value equations
Finding intercepts
Solving absolute value inequalities

Try it Now Answers

1. Using the variable p, for passing, |p—80|< 20
2. f(x)=—x+2+3

3. f(0) = 1, so the vertical intercept is at (0,1). f(x)= 0 when x =-5and x =1 so the
horizontal intercepts are at (-5,0) & (1,0)
4. k <lor k > 7; in interval notation this would be (—o0,1)(7,00)
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Write an equation for each transformation of f (x) =| x|

L
P S S

2543

I T T

b Haow

dn &

IR N 54 5k -}E T3 543
i 2
4 -7
4,

Sketch a graph of each function

5 f(x)=—|x-1|-1

7. f(x)=2|x+3+1

9. f(x)=[2x-4]-3

Solve each the equation

11. |5x—2]=11
13. 2|4—x|=7
15. 3|x+1|-4=-2

6. f(x)=—|x+3+4
8. f(x)=3x-2/-3

10. f(x)=[3x+9|+2

12. |4x+2]=15
14. 3|5—-x|=5
16. 5|x—4|-7=2
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Find the horizontal and vertical intercepts of each function

17. f(x)=2|x+1|-10

19. f(x)=-3]x-2/-1

Solve each inequality
21. |[x+51]<6

23. |x-21=3
25. |13x+9 |< 4

18. f(x)=4|x-3+4

20. f(x)=-2|x+1+6

22. |x-3 <7
24, |X+4 [>2
26. |2x—9 |<8
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Chapter 6: Polynomial and Rational Functions
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Section 6.1 Power Functions & Polynomial Functions

A square is cut out of cardboard, with each side having length L. If we wanted to write a
function for the area of the square, with L as the input and the area as output, you may
recall that the area of a rectangle can be found by multiplying the length times the width.
Since our shape is a square, the length & the width are the same, giving the formula:

AL)=L-L=L2

Likewise, if we wanted a function for the volume of a cube with each side having some
length L, you may recall volume of a rectangular box can be found by multiplying length
by width by height, which are all equal for a cube, giving the formula:

V(L)=L-L-L=L°

These two functions are examples of power functions, functions that are some power of
the variable.

Power Function
A power function is a function that can be represented in the form

f(x) =xP
Where the base is a variable and the exponent, p, is a number.

Which of our toolkit functions are power functions?

The constant and identity functions are power functions, since they can be written as
f(x)=x"and f(x)=x" respectively.

The quadratic and cubic functions are both power functions with whole number powers:
f(x)=x*and f(x)=x>.

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2013, and
contains content remixed from College Algebra © Stitz & Zeager 2013.
This material is licensed under a Creative Commons CC-BY-NC-SA license.
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The reciprocal and reciprocal squared functions are both power functions with negative
whole number powers since they can be written as f(x) =x'and f(x) = x7.

The square and cube root functions are both power functions with fractional powers
since they can be written as f (x) = x*?or f(x) = x"*.

1. What point(s) do the toolkit power functions have in common?

Characteristics of Power Functions

Shown to the right are the graphs of

f(x)=x% f(x)=x* and f(x)=x°, all

even whole number powers. Notice that all
these graphs have a fairly similar shape, very
similar to the quadratic toolkit, but as the

power increases the graphs flatten somewhat %
near the origin, and become steeper away

from the origin.

To describe the behavior as numbers become larger and larger, we use the idea of
infinity. The symbol for positive infinity is oo, and —oo for negative infinity. When we
say that “x approaches infinity”, which can be symbolically written as X — oo, We are
describing a behavior — we are saying that x is getting large in the positive direction.

With the even power function, as the input becomes large in either the positive or
negative direction, the output values become very large positive numbers. Equivalently,
we could describe this by saying that as x approaches positive or negative infinity, the f(x)
values approach positive infinity. In symbolic form, we could write: as x — *w ,
f(x) > oo. U5
3t
Shown here are the graphs of ~

f(x)=x° f(x)=x%and f(x)=x’, all odd whole 5] "f(x)_xg
number powers. Notice all these graphs look

similar to the cubic toolkit, but again as the power i+

increases the graphs flatten near the origin and

become steeper away from the origin. % ; ; ;

For these odd power functions, as x approaches
negative infinity, f(x) approaches negative infinity.
As x approaches positive infinity, f(x) approaches
positive infinity. In symbolic form we write: as
X——0, f(X) > —0 andas X > o0, f(x) > x.
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Long Run Behavior
The behavior of the graph of a function as the input takes on large negative values
(x — —0) and large positive values (x — o0) as is referred to as the long run behavior
of the function.

xample 2
Describe the long run behavior of the graph of f(x) = x®.

Since f(x) = x® has a whole, even power, we would expect this function to behave
somewhat like the quadratic function. As the input gets large positive or negative, we
would expect the output to grow without bound in the positive direction. In symbolic
form, as x — to0, f(X) > .

xample 3
Describe the long run behavior of the graph of f(x) = —x°

Since this function has a whole odd power, we would expect it to behave somewhat like
the cubic function. The negative in front of the x° will cause a vertical reflection, so as
the inputs grow large positive, the outputs will grow large in the negative direction, and
as the inputs grow large negative, the outputs will grow large in the positive direction.
In symbolic form, for the long run behavior we would write: as x — oo,

f(X) > —oandas x > -0, f(x) > .

You may use words or symbols to describe the long run behavior of these functions.

2. Describe in words and symbols the long run behavior of f(x) = —x*

Treatment of the rational and radical forms of power functions will be saved for later.

Polynomials

An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular
shape. The slick is currently 24 miles in radius, but that radius is increasing by 8 miles
each week. If we wanted to write a formula for the area covered by the oil slick, we
could do so by composing two functions together. The first is a formula for the radius, r,
of the spill, which depends on the number of weeks, w, that have passed. Hopefully you
recognized that this relationship is linear: r(w) =24 +8w.

We can combine this with the formula for the area, A, of a circle: A(r) = ar?



332 Chapter 6

Composing these functions gives a formula for the area in terms of weeks:
A(wW) = A(r(w)) = A(24 +8w) = 7(24 +8w)*

Multiplying this out gives the formula
A(W) = 576 77 + 384 7w + 64 2W°

This formula is an example of a polynomial. A polynomial is simply the sum of terms
each consisting of a transformed power function with positive whole number power.

Terminology of Polynomial Functions

A polynomial is function that can be written as f(x) =a, +a,x+a,x* +---+a x"

Each of the a; constants are called coefficients and can be positive, negative, or zero,
and be whole numbers, decimals, or fractions.

A term of the polynomial is any one piece of the sum, that is any a,x'. Each individual
term is a transformed power function.

The degree of the polynomial is the highest power of the variable that occurs in the
polynomial.

The leading term is the term containing the highest power of the variable: the term
with the highest degree.

The leading coefficient is the coefficient of the leading term.

Because of the definition of the “leading” term we often rearrange polynomials so that
the powers are descending.

f(x)=a,x" +...+a,x* +a,x+a,

Identify the degree, leading term, and leading coefficient of these polynomials:
f(x)=3+2x*—4x° g(t) =5t°> —2t> + 7t h(p)=6p—p°*-2

For the function f(x), the degree is 3, the highest power on x. The leading term is the

term containing that power, —4x>. The leading coefficient is the coefficient of that
term, -4.

For g(t), the degree is 5, the leading term is 5t°, and the leading coefficient is 5.
For h(p), the degree is 3, the leading term is — p°, so the leading coefficient is -1.
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Long Run Behavior of Polynomials
For any polynomial, the long run behavior of the polynomial will match the long run
behavior of the leading term.

What can we determine about the long run behavior and degree of the equation for the
polynomial graphed here?

4
3
2
j/—\
B/ R R i 2\?4/1 & 7

o

ln ke

Since the output grows large and positive as the inputs grow large and positive, we
describe the long run behavior symbolically by writing: as x — o, f(X) > .

Similarly, as x —» —0, f(X) > —o©.

In words, we could say that as x values approach infinity, the function values approach
infinity, and as x values approach negative infinity the function values approach
negative infinity.

We can tell this graph has the shape of an odd degree power function which has not
been reflected, so the degree of the polynomial creating this graph must be odd, and the
leading coefficient would be positive.

3. Given the function f (x) = 0.2(x — 2)(x +1)(x — 5) use your algebra skills to write the

function in standard polynomial form (as a sum of terms) and determine the leading
term, degree, and long run behavior of the function.

Short Run Behavior
Characteristics of the graph such as vertical and horizontal intercepts and the places the
graph changes direction are part of the short run behavior of the polynomial.

Like with all functions, the vertical intercept is where the graph crosses the vertical axis,
and occurs when the input value is zero. Since a polynomial is a function, there can only
be one vertical intercept, which occurs at the point (0,a,) . The horizontal intercepts

occur at the input values that correspond with an output value of zero. It is possible to
have more than one horizontal intercept.
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Example 6

Given the polynomial function f(x) = (x—2)(x+1)(x—4), written in factored form for
your convenience, determine the vertical and horizontal intercepts.

The vertical intercept occurs when the input is zero.
f(0)=(0-2)(0+1)(0—-4)=8.

The graph crosses the vertical axis at the point (0, 8).

The horizontal intercepts occur when the output is zero.
0=(Xx-2)(x+1)(x—4) whenx=2,-1,0r4

The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0)

Notice that the polynomial in the previous example, which would be degree three if
multiplied out, had three horizontal intercepts and two turning points — places where the
graph changes direction. We will now make a general statement without justifying it —
the reasons will become clear later in this chapter.

Intercepts and Turning Points of Polynomials
A polynomial of degree n will have:
At most n horizontal intercepts. An odd degree polynomial will always have at least
one.
At most n-1 turning points

Example 7
What can we conclude about the graph of the polynomial shown here?

3
2_
]'.
R \;73 3

-5
Based on the long run behavior, with the graph becoming large positive on both ends of
the graph, we can determine that this is the graph of an even degree polynomial. The
graph has 2 horizontal intercepts, suggesting a degree of 2 or greater, and 3 turning
points, suggesting a degree of 4 or greater. Based on this, it would be reasonable to
conclude that the degree is even and at least 4, so it is probably a fourth degree
polynomial.
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Try it Now

\ 4. Given the function f (x) = 0.2(x — 2)(x +1)(x — 5) determine the short run behavior.

mportant Topics of this Section

Power Functions
Polynomials
Coefficients

Leading coefficient
Term

Leading Term

Degree of a polynomial
Long run behavior
Short run behavior

Try it Now Answers

1. (0,0) and (1, 1) are common to all power functions.
2. As x approaches positive and negative infinity, f(x) approaches negative infinity: as
X — o, f(x) —> —o because of the vertical flip.

3. The leading term is 0.2x°, so it is a degree 3 polynomial.

As x approaches infinity (or gets very large in the positive direction) f(x) approaches
infinity; as x approaches negative infinity (or gets very large in the negative direction)
f(x) approaches negative infinity. (Basically the long run behavior is the same as the
cubic function).

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and
there are 2 turns in the graph.
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Section 6.1 Exercises

Find the long run behavior of each function as x — o and x — —0

1. f(x)=x* 2. f(x)= 3. f(x)=x° 4. f(x)=x°
5. f(x)=—x° 6. f(x)=—x* 7. f(x)==x 8. f(x)=—x
Find the degree and leading coefficient of each polynomial

9. 4x’ 10. 5x°

11. 5-x? 12. 6+3x—4x°

13. —2x* =3x*+x-1
15. (2x+3)(x—4)(3x+1)

14. 6x° —2x* +x* +3
16. (3x+1)(x+1)(4x+3)

Find the long run behavior of each function as x — oo and x — —©
17. -2x* -3x* +x -1 18. 6x° —2x* +x* +3
19. 3x* +x -2 20. —2x° +x*> —x+3

21. What is the maximum number of x-intercepts and turning points for a polynomial of
degree 5?

22. What is the maximum number of x-intercepts and turning points for a polynomial of
degree 8?

2 2 2 2

i i i

What is the least possible degree of the polynomial function shown in each graph?
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Find the vertical and horizontal intercepts of each function.
31 f(t)=2(t-1)(t+2)(t-3) 32. f(x)=3(x+1)(x—4)(x+5)
33. g(n)=-2(3n-1)(2n+1) 34. k(u)=-3(4-n)(4n+3)
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Section 6.2 Quadratic Functions

In this section, we will explore the family of 2" degree polynomials, the quadratic
functions. While they share many characteristics of polynomials in general, the
calculations involved in working with quadratics is typically a little simpler, which makes
them a good place to start our exploration of short run behavior. In addition, quadratics
commonly arise from problems involving area and projectile motion, providing some
interesting applications.

Example 1

A backyard farmer wants to enclose a rectangular space for a new garden. She has
purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4™ side against the
backyard fence. Find a formula for the area enclosed by the fence if the sides of fencing
perpendicular to the existing fence have length L.

In a scenario like this involving geometry, it is often Garden L
helpful to draw a picture. It might also be helpful to

introduce a temporary variable, W, to represent the side W

of fencing parallel to the 4™ side or backyard fence.

Since we know we only have 80 feet of fence available, Backyard

we know that L+W + L =80, or more simply,
2L+W =80. This allows us to represent the width, W, in terms of L: W =80 —2L

Now we are ready to write an equation for the area the fence encloses. We know the
area of a rectangle is length multiplied by width, so

A=LW =L(80-2L)

A(L) =80L - 2L?

This formula represents the area of the fence in terms of the variable length L.

Short run Behavior: Vertex

We now explore the interesting features of the graphs of quadratics. In addition to
intercepts, quadratics have an interesting feature where they change direction, called the
vertex. You probably noticed that all quadratics are related to transformations of the

basic quadratic function f (x) = x°.
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Example 2

Write an equation for the quadratic graphed below as a transformation of f(x) = x?,

then expand the formula and simplify terms to write the equation in standard
polynomial form.

L BT S
P el

-7 6 -5 -_T-Q-Ij 2 34 5 8 7

-3
4]

_5
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a

formula in the form g(x) = a(x+2)> —3. By plugging in a point that falls on the grid,
such as (0,-1), we can solve for the stretch factor:

~1=a(0+2)*-3
2=14a

1
a=—

2

. . . . . 1
Written as a transformation, the equation for this formula is g(x) = E(x +2)2-3. To

write this in standard polynomial form, we can expand the formula and simplify terms:
g(x) = %(x+2)2 -3

g(x):%(x+2)(x+2)—3
g(x):%(x2 +4x+4)-3
g(x):%x2 +2X+2-3

g(x):%x2 +2x-1

Notice that the horizontal and vertical shifts of the basic quadratic determine the location
of the vertex of the parabola; the vertex is unaffected by stretches and compressions.
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1. A coordinate grid has been superimposed
over the quadratic path of a basketball*.
Find an equation for the path of the ball.
Does he make the basket?

Forms of Quadratic Functions
The standard form of a quadratic function is f (x) = ax® +bx+c
The transformation form of a quadratic function is f(x) =a(x—h)* +k

The vertex of the quadratic function is located at (h, k), where h and k are the numbers
in the transformation form of the function. Because the vertex appears in the
transformation form, it is often called the vertex form.

In the previous example, we saw that it is possible to rewrite a quadratic function given in
transformation form and rewrite it in standard form by expanding the formula. It would
be useful to reverse this process, since the transformation form reveals the vertex.

Expanding out the general transformation form of a quadratic gives:
f(x)=a(x—h)*>+k =a(x—h)(x—h)+k
f(x) = a(x® —2xh+h?) +k = ax* — 2ahx+ah® + k

This should be equal to the standard form of the quadratic:
ax” —2ahx+ah® +k = ax* +bx+c

The second degree terms are already equal. For the linear terms to be equal, the
coefficients must be equal:

—2ah=Db, so h=—£
2a

This provides us a method to determine the horizontal shift of the quadratic from the
standard form. We could likewise set the constant terms equal to find:

2 2 2
ah2+k:c,sok:c—ahzzc—a(—ij :c—ab =C b

2a 4a’® 4a

In practice, though, it is usually easier to remember that k is the output value of the
function when the input is h, so k = f (h).

! From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY



http://blog.mrmeyer.com/?p=4778
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Finding the Vertex of a Quadratic

For a quadratic given in standard form, the vertex (h, k) is located at:

b b
h=-—o k:f(h):f(z—a)

Find the vertex of the quadratic f (x) = 2x* —6x+ 7. Rewrite the quadratic into
transformation form (vertex form).

The horizontal coordinate of the vertex will be at h = —i = —__6 = 9 - E
2a 22) 4 2

. . . 3 3V (3 5

The vertical coordinate of the vertex will be at f 5 =2 5 -6 > +7= 5

Rewriting into transformation form, the stretch factor will be the same as the a in the
original quadratic. Using the vertex to determine the shifts,

3) 5
f(X)ZZ(X—E) +§

2. Given the equation g(x) =13+ x* —6x write the equation in standard form and then
in transformation/vertex form.

As an alternative to using a formula for finding the vertex, the equation can also be
written into vertex form by completing the square. This process is most easily
explained through example. In most cases, using the formula for finding the vertex will
be quicker and easier than completing the square, but completing the square is a useful
technique when faced with some other algebraic problems.

Example 4
Rewrite f(x)=2x* —12x+14 into vertex form by completing the square.

We start by factoring the leading coefficient from the quadratic and linear terms.
2(x2 - 6x)+ 14

Next, we are going to add something inside the parentheses so that the quadratic inside
the parentheses becomes a perfect square. In other words, we are looking for values p
and q so that (x2 —BX+ p): (x—q)?.
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Notice that if multiplied out on the right, the middle term would be -2q, so g must be
half of the middle term on the left; g = -3.

In that case, p must be (-3)? = 9. (x2 —6x+9):(x—3)2

Now, we can’t just add 9 into the expression — that would change the value of the
expression. In fact, adding 9 inside the parentheses actually adds 18 to the expression,
since the 2 outside the parentheses will distribute. To keep the expression balanced, we
can subtract 18.

2(x2 —6x+9)+14-18

Simplifying, we are left with vertex form.
2(x—3)* -4

In addition to enabling us to more easily graph a quadratic written in standard form,
finding the vertex serves another important purpose — it allows us to determine the
maximum or minimum value of the function, depending on which way the graph opens.

Exampled

Returning to our backyard farmer from the beginning of the section, what dimensions
should she make her garden to maximize the enclosed area?

Earlier we determined the area she could enclose with 80 feet of fencing on three sides
was given by the equation A(L) =80L —2L. Notice that quadratic has been vertically

reflected, since the coefficient on the squared term is negative, so the graph will open
downwards, and the vertex will be a maximum value for the area.

In finding the vertex, we take care since the equation is not written in standard
polynomial form with decreasing powers. But we know that a is the coefficient on the
squared term, soa=-2,b =80,and c = 0.

Finding the vertex:

h= —% _20, k= A(20) = 80(20) — 2(20)? 800

The maximum value of the function is an area of 800 square feet, which occurs when L
= 20 feet. When the shorter sides are 20 feet, that leaves 40 feet of fencing for the
longer side. To maximize the area, she should enclose the garden so the two shorter
sides have length 20 feet, and the longer side parallel to the existing fence has length 40
feet.
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Example 5

A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.
Market research has suggested that if they raised the price to $32, they would lose 5,000
subscribers. Assuming that subscriptions are linearly related to the price, what price
should the newspaper charge for a quarterly subscription to maximize their revenue?

Revenue is the amount of money a company brings in. In this case, the revenue can be
found by multiplying the charge per subscription times the number of subscribers. We
can introduce variables, C for charge per subscription and S for the number subscribers,
giving us the equation

Revenue = CS

Since the number of subscribers changes with the price, we need to find a relationship
between the variables. We know that currently S = 84,000 and C = 30, and that if they
raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values,
C=32and S =79,000. From this we can find a linear equation relating the two
quantities. Treating C as the input and S as the output, the equation will have form
S=mC +b. The slope will be
= 79,000 —84,000 —5,000

32-30 2

=-2,500

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.
We can then solve for the vertical intercept

S=-2500C +b Plug in the point S = 85,000 and C = 30
84,000 =-2500(30) +b Solve for b
b =159,000

This gives us the linear equation S =-2,500C +159,000 relating cost and subscribers.
We now return to our revenue equation.

Revenue =CS Substituting the equation for S from above
Revenue = C(-2,500C +159,000) Expanding

Revenue = —2,500C? +159,000C

We now have a quadratic equation for revenue as a function of the subscription charge.
To find the price that will maximize revenue for the newspaper, we can find the vertex:

b 159000 _, o
2(~2,500)

The model tells us that the maximum revenue will occur if the newspaper charges
$31.80 for a subscription. To find what the maximum revenue is, we can evaluate the
revenue equation:

Maximum Revenue = — 2,500(31.8)° +159,000(31.8) = $2,528,100
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Short run Behavior: Intercepts

As with any function, we can find the vertical intercepts of a quadratic by evaluating the
function at an input of zero, and we can find the horizontal intercepts by solving for when
the output will be zero. Notice that depending upon the location of the graph, we might
have zero, one, or two horizontal intercepts.

4 4% ,\
3 3+ 31
2 21 24
I It I

7 T 7 S T v N
L s -1
-2

24 2+ +
zero horizontal intercepts  one horizontal intercept two horizontal intercepts

Example 6
Find the vertical and horizontal intercepts of the quadratic f (x) = 3x* +5x—2

We can find the vertical intercept by evaluating the function at an input of zero:
f (0) =3(0)* +5(0) —2=-2 Vertical intercept at (0,-2)

For the horizontal intercepts, we solve for when the output will be zero
0=3x*+5x-2

In this case, the quadratic can be factored easily, providing the simplest method for
solution
0=0Bx-D(x+2)

0=t 0=x+2 1
1 or B Horizontal intercepts at (—,Oj and (-2,0)
X = 5 X=-2 3

Notice that in the standard form of a quadratic, the constant term c reveals the vertical
intercept of the graph.

Find the horizontal intercepts of the quadratic f(x) = 2x* +4x —4

Again we will solve for when the output will be zero
0=2x*+4x—-4

Since the quadratic is not easily factorable in this case, we solve for the intercepts by
first rewriting the quadratic into transformation form.
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b __ 4 _
2a  2(2)
f(x)=2(x+1)%-6

1 k=f(-D)=2(-1>+4(-1)-4=-6

Now we can solve for when the output will be zero
0=2(x+1)*-6

6=2(x+1)>
3=(x+1)?

X+1=+/3
x=-1%+/3

The graph has horizontal intercepts at (—1—+/3,0)and (—1++/3,0)

Try it Now
3. In Try it Now problem 2 we found the standard & transformation form for the
function g(x) =13 + x> —6x. Now find the Vertical & Horizontal intercepts (if any).

This process is done commonly enough that sometimes people find it easier to solve the
problem once in general and remember the formula for the result, rather than repeating
the process each time. Based on our previous work we showed that any quadratic in
standard form can be written into transformation form as:

Solving for the horizontal intercepts using this general equation gives:

2 2
0= a(x + 2—) +C— Z— start to solve for x by moving the constants to the other side
a a
b? b’
——C= a(x + —] divide both sides by a
4a 2a
b2 ¢ b\’ : . . .
———= (x +—] find a common denominator to combine fractions
4a° a 2a
2 2
b - = 4a(2: = (x + b combine the fractions on the left side of the equation
4a° 4da 2a

2 2
b 4 ?ac = [X + ZEJ take the square root of both sides
a a
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2 —
+ b fac =X+ b subtract b/2a from both sides
4a 2a
_b + Vb7 —4ac X combining the fractions
2a 2a
_h++h?% —
X = b+ Zba 4ac Notice that this can yield two different answers for x

Quadratic Formula
For a quadratic function given in standard form f (x) =ax*+bx+c, the quadratic
formula gives the horizontal intercepts of the graph of this function.

X:—bi\/b2—4ac

2a

A ball is thrown upwards from the top of a 40 foot high building at a speed of 80 feet
per second. The ball’s height above ground can be modeled by the equation

H (t) = —16t* + 80t + 40.

What is the maximum height of the ball?
When does the ball hit the ground?

To find the maximum height of the ball, we would need to know the vertex of the
quadratic.

2
h—_ 80 _8_5 szGj:_m(E] +80(§j+40=140
2(-16) 32 2 2 2 2

The ball reaches a maximum height of 140 feet after 2.5 seconds.

To find when the ball hits the ground, we need to determine when the height is zero —
when H(t) = 0. While we could do this using the transformation form of the quadratic,
we can also use the quadratic formula:

,_ ~80:£/80° ~4(-16)(40) _ 80 +/B96O
- 2(-16) 7

Since the square root does not simplify nicely, we can use a calculator to approximate

the values of the solutions:
—80 —+/8960 — 80 ++/8960
=—————~5458 or t=————

-32 -32

t ~ —0.458

The second answer is outside the reasonable domain of our model, so we conclude the
ball will hit the ground after about 5.458 seconds.
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4. For these two equations determine if the vertex will be a maximum value or a
minimum value.

a g(xX)=-8x+x>+7

b. g(x)=-3(3-x)*+2

[Important Topics of this Section

Quadratic functions

Standard form

Transformation form/Vertex form

Vertex as a maximum / Vertex as a minimum
Short run behavior

Vertex / Horizontal & Vertical intercepts
Quadratic formula

Try it Now Answers

1. The path passes through the origin with vertex at (-4, 7).

&
¥
@
&
&

h(x) = —%(x +4)? +7. To make the shot, h(-7.5) would |
need to be about 4. h(-7.5) ~1.64; he doesn’t make it. - SN — "

2. g(x) = x* —6x+13 in Standard form; g(x) = (x—3)* +4in Transformation form

3. Vertical intercept at (0, 13), NO horizontal intercepts.

4. a. Vertex is a minimum value
b. Vertex is a maximum value
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Section 6.2 Exercises

Write an equaﬁtion for the quadratic function graphed.

7412:I}2'_';i_% 7
2 i
-3 i
4 | I T I T N
54 -F -2 -} I 2 1 4 5
1 S5+ 2. : 1 i
94 i
o B A T T T
AE -1
4] 24
EE -3
24 -4
T -5
S i 2 3 h]
3. - f 4. 7]

3 2 - 12 3 ¥5 6 5 4 -3 27 12 3
g a3 4l
-2 21
5. -3 6. 31

For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and
c) the horizontal intercepts.

7. y(x)=2x*+10x+12 . z(p)=3x"+6x-9
9. f(x)=2x*-10x+4 10. g(x)=-2x*-14x+12
11. h(t)=—-4t* +6t-1 12, k(t):2x +4x-15

Rewrite the quadratic function into vertex form.
13. f(x)=x"-12x+32 14. g(x)=x*+2x-3

15. h(x)=2x*+8x-10 16. k(x)=3x*-6x-9
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17.
18.

Find the values of b and c so f (x)=-8x*+bx+c has vertex (2,-7)
Find the values of b and c so f (x)=6x*+bx+c has vertex (7,-9)

Write an equation for a quadratic with the given features

19.
20.
21.
22.
23.
24,
25.
26.

27.

28.

29.

30.

x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2)
x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3)
x-intercepts (2, 0) and (5, 0), and y intercept (0, 6)
x-intercepts (1, 0) and (3, 0), and y intercept (0, 4)
Vertex at (4, 0), and y intercept (0, -4)

Vertex at (5, 6), and y intercept (0, -1)

Vertex at (-3, 2), and passing through (3, -2)
Vertex at (1, -3), and passing through (-2, 3)

A rocket is launched in the air. Its height, in meters above sea level, as a function of
time, in seconds, is given by h(t)=—4.9t* + 229t + 234.

a. From what height was the rocket launched?

b. How high above sea level does the rocket reach its peak?

c. Assuming the rocket will splash down in the ocean, at what time does
splashdown occur?

A ball is thrown in the air from the top of a building. Its height, in meters above
ground, as a function of time, in seconds, is given by h(t)= —4.9t% + 24t + 8.

a. From what height was the ball thrown?
b. How high above ground does the ball reach its peak?
c. When does the ball hit the ground?

The height of a ball thrown in the air is given by h(x)= —% x* +6x+3, where X is

the horizontal distance in feet from the point at which the ball is thrown.
a. How high is the ball when it was thrown?
b. What is the maximum height of the ball?
c. How far from the thrower does the ball strike the ground?

A javelin is thrown in the air. Its height is given by h(x) = —2—10 x> +8x+6 , where x

is the horizontal distance in feet from the point at which the javelin is thrown.
a. How high is the javelin when it was thrown?
b. What is the maximum height of the javelin?
c. How far from the thrower does the javelin strike the ground?



31.

32.

33.

34.

35.

36.

37.

38.
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A box with a square base and no top is to be made from a square piece of cardboard
by cutting 6 in. squares out of each corner and folding up the sides. The box needs to
hold 1000 in®. How big a piece of cardboard is needed?

A box with a square base and no top is to be made from a square piece of cardboard
by cutting 4 in. squares out of each corner and folding up the sides. The box needs to
hold 2700 in®. How big a piece of cardboard is needed?

A farmer wishes to enclose two pens with fencing, as shown.
If the farmer has 500 feet of fencing to work with, what
dimensions will maximize the area enclosed?

A farmer wishes to enclose three pens with fencing, as shown.
If the farmer has 700 feet of fencing to work with, what
dimensions will maximize the area enclosed?

You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will
be bent into the shape of a square. The other piece will be bent into the shape of a
circle. Let A represent the total area enclosed by the square and the circle. What is the
circumference of the circle when A is a minimum?

You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will
be bent into the shape of a right triangle with legs of equal length. The other piece
will be bent into the shape of a circle. Let A represent the total area enclosed by the
triangle and the circle. What is the circumference of the circle when A is a minimum?

A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average
attendance has been 26,000. When the price dropped to $9, the average attendance
rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket
price would maximize revenue?

A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of
fruit. She estimates that for each additional tree planted per acre, the yield of each tree
will decrease by 3 bushels. How many trees should she plant per acre to maximize her
harvest?
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39.

40.

A hot air balloon takes off from the
edge of a mountain lake. Impose a
coordinate system as pictured and
assume that the path of the balloon
follows the graph of

f(x)= —ﬁ x? +45x . The land rises

-
height above lake (ft)

<= balloon

o}
S
(=]

-

- - _  _~balloon path

100

T T T T
N

N
~
~
~
~
N
\
\
’
s
-
-
7

—_

I I I A Y I |

lake ft)

at a constant incline from the lake at the 500 1000
rate of 2 vertical feet for each 20
horizontal feet. [UW]
a. What is the maximum height of the balloon above water level?
b. What is the maximum height of the balloon above ground level?
c. Where does the balloon land on the ground?
d. Where is the balloon 50 feet above the ground?
A hot air balloon takes off from height above plateau (feet)
the edge of a plateau. Impose a o balloon
coordinate system as pictured
below and assume that the path / \
the balloon follows is the graph \
of the quadratic function takeoff, |/ \ _ _
4 4 \ / \ _ hquzomal distance
( ) T 20Ty The from launch (feet)
2500 5 . ground incline

land drops at a constant incline
from the plateau at the rate of 1

vertical foot for each 5
horizontal feet. [UW]

a. What is the maximum height of the balloon above plateau level?
b. What is the maximum height of the balloon above ground level?
c. Where does the balloon land on the ground?

d. Where is the balloon 50 feet above the ground?
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Section 6.3 Graphs of Polynomial Functions

In the previous section we explored the short run behavior of quadratics, a special case of
polynomials. In this section we will explore the short run behavior of polynomials in
general.

Short run Behavior: Intercepts

As with any function, the vertical intercept can be found by evaluating the function at an
input of zero. Since this is evaluation, it is relatively easy to do it for a polynomial of any
degree.

To find horizontal intercepts, we need to solve for when the output will be zero. For
general polynomials, this can be a challenging prospect. While quadratics can be solved
using the relatively simple quadratic formula, the corresponding formulas for cubic and
4™ degree polynomials are not simple enough to remember, and formulas do not exist for
general higher-degree polynomials. In this section, we will limit ourselves to three cases:

1) The polynomial can be factored using known methods: greatest common

factor and trinomial factoring.
2) The polynomial is given in factored form.
3) Technology is used to determine the intercepts.

Other techniques for finding the intercepts of general polynomials will be explored in the
next section.

Example 1

Find the horizontal intercepts of f(x) = x°® —3x* +2x°.

We can attempt to factor this polynomial to find solutions for f(x) = 0.

x® —3x*+2x* =0 Factoring out the greatest common factor
xz(x4 —3x%* + 2): 0 Factoring the inside as a quadratic in x?
xz(x2 —1)x* - 2): 0 Then break apart to find solutions
(x*-1)=0 (x2-2)=0
X2 =0 2 2
or X =1 or X =2
x=0

This gives us 5 horizontal intercepts.

Find the vertical and horizontal intercepts of g(t) = (t —2)*(2t + 3)

The vertical intercept can be found by evaluating g(0).
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9(0) =(0-2)*(2(0) +3) =12

The horizontal intercepts can be found by solving g(t) =0

(t-2)*(2t+3)=0 Since this is already factored, we can break it apart:
(t-2)°=0 (2t+3)=0

t—-2=0 or -3

t=2 =7

We can always check our answers are reasonable by graphing the polynomial.

Find the horizontal intercepts of
h(t) =t +4t> +t -6 27

Since this polynomial is not in factored form, has
no common factors, and does not appear to be
factorable using techniques we know, we can turn
to technology to find the intercepts.

Graphing this function, it appears there are
horizontal intercepts at t = -3, -2, and 1.

We could check these are correct by plugging in 71
these values for t and verifying that h(-3) =h(-2) =h(1) =0.

1. Find the vertical and horizontal intercepts of the function f (t) =t* —4t>.

Graphical Behavior at Intercepts

If we graph the function

f(X) = (x+3)(x—2)*(x+1)*, notice that the
behavior at each of the horizontal intercepts is
different.

At the horizontal intercept x = -3, coming from 101
the (x +3) factor of the polynomial, the graph
passes directly through the horizontal intercept.
The factor is linear (has a power of 1), so the
behavior near the intercept is like that of a line - it
passes directly through the intercept. We call this 40t
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a single zero, since the zero corresponds to a single factor of the function.
At the horizontal intercept x = 2, coming from the (x —2)® factor of the polynomial, the

graph touches the axis at the intercept and changes direction. The factor is quadratic
(degree 2), so the behavior near the intercept is like that of a quadratic — it bounces off of

the horizontal axis at the intercept. Since (x—2)* = (x—2)(x—2), the factor is repeated
twice, so we call this a double zero.

At the horizontal intercept x = -1, coming from the (x +1)* factor of the polynomial, the

graph passes through the axis at the intercept, but flattens out a bit first. This factor is
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same

“S” type shape near the intercept that the toolkit x° has. We call this a triple zero.

By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial
function without needing technology.

Graphical Behavior of Polynomials at Horizontal Intercepts
If a polynomial contains a factor of the form (x—h)®, the behavior near the horizontal

intercept h is determined by the power on the factor.
p= 1 p= 2 p= 3

/ /

Single zero Double zero Triple zero

For higher even powers 4,6,8 etc.... the graph will still bounce off of the horizontal axis
but the graph will appear flatter with each increasing even power as it approaches and
leaves the axis.

For higher odd powers, 5,7,9 etc... the graph will still pass through the horizontal axis
but the graph will appear flatter with each increasing odd power as it approaches and
leaves the axis.

xample 4
Sketch a graph of f(x) =-2(x+3)*(x—5).

This graph has two horizontal intercepts. At x = -3, the factor is squared, indicating the
graph will bounce at this horizontal intercept. At x =5, the factor is not squared,
indicating the graph will pass through the axis at this intercept.
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Additionally, we can see the leading term, if this polynomial were multiplied out, would

be —2x*, so the long-run behavior is that of a vertically reflected cubic, with the
outputs decreasing as the inputs get large positive, and the inputs increasing as the
inputs get large negative.

To sketch this we consider the following:
As X — —oo the function f (x) — oo s0 we know the graph starts in the 2" quadrant
and is decreasing toward the horizontal axis.

At (-3, 0) the graph bounces off of the horizontal axis and so the function must start
increasing.

At (0, 90) the graph crosses the vertical axis at the vertical intercept.

Somewhere after this point, the graph must turn back down or start decreasing toward
the horizontal axis since the graph passes through the next intercept at (5,0).

: 1604
As x — oo the function f (x) > —o so rao!

we know the graph continues to decrease 1201
and we can stop drawing the graph in the 1001
4™ quadrant.

Using technology we can verify that the
resulting graph will look like:

}55?4’5\5

Solving Polynomial Inequalities

One application of our ability to find intercepts and sketch a graph of polynomials is the
ability to solve polynomial inequalities. It is a very common question to ask when a
function will be positive and negative. We can solve polynomial inequalities by either
utilizing the graph, or by using test values.

Example 5

Solve (x+3)(x+1)*(x—4)>0

As with all inequalities, we start by solving the equality (x +3)(x+1)°(x—4) =0,

which has solutions at x = -3, -1, and 4. We know the function can only change from
positive to negative at these values, so these divide the inputs into 4 intervals.
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We could choose a test value in each interval and evaluate the function
f(x) = (x+3)(x+1)*(x —4) at each test value to determine if the function is positive or
negative in that interval

Interval Test x in interval | f( test value) >0 or <0?
X<-3 -4 72 >0
-3<x<-1 -2 -6 <0
-1<x<4 0 -12 <0
X>4 5 288 >0
On a number line this would look like:
positive 0 negative 0 negative 0 positive
< > | ——>| <

> —>>
I

6 5 4 3 2 1 0 1 2 3 4 5 6

From our test values, we can determine this function is positive when x < -3 or x > 4, or
in interval notation, (—o0,—3) U (4,%0)

We could have also determined on which intervals the function was positive by sketching
a graph of the function. We illustrate that technique in the next example

Example 6

Find the domain of the function v(t) =6 -5t —t* .

A square root is only defined when the quantity we are taking the square root of, the
quantity inside the square root, is zero or greater. Thus, the domain of this function will

be when 6 -5t —t?>0.

Again we start by solving the equality 6 -5t —t> =0. While we could use the
quadratic formula, this equation factors nicely to (6 +t)(1-t) =0, giving horizontal
intercepts t =1 and t = -6. Sketching a graph of this quadratic will allow us to
determine when it is positive.

From the graph we can see this function is positive
for inputs between the intercepts. So 65t —t> >0
for —6 <t <1, and this will be the domain of the
v(t) function.
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2. Given the function g(x) = x*> —x* —6x use the methods that we have learned so far

to find the vertical & horizontal intercepts, determine where the function is negative and
positive, describe the long run behavior and sketch the graph without technology.

Writing Equations using Intercepts

Since a polynomial function written in factored form will have a horizontal intercept
where each factor is equal to zero, we can form a function that will pass through a set of
horizontal intercepts by introducing a corresponding set of factors.

Factored Form of Polynomials

If a polynomial has horizontal intercepts at x = x,, X,,..., X,, then the polynomial can be
written in the factored form

F(x) = a(x=%)" (X=X,) ™ (X = %,) ™
where the powers p; on each factor can be determined by the behavior of the graph at

the corresponding intercept, and the stretch factor a can be determined given a value of
the function other than the horizontal intercept.

xample 7
Write a formula Ior the polynomial function graphed here.

This graph has three horizontal intercepts: x = -3, 2, and 5. At x =-3 and 5 the graph
passes through the axis, suggesting the corresponding factors of the polynomial will be
linear. At x = 2 the graph bounces at the intercept, suggesting the corresponding factor
of the polynomial will be 2" degree (quadratic). Together, this gives us:

f(x)=a(x+3)(x—2)°(x-5)

To determine the stretch factor, we can utilize another point on the graph. Here, the
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a:
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-2=a(0+3)(0-2)*(0-5)
—-2=-60a

a=—
30

The graphed polynomial appears to represent the function

f(x):%(x+3)(x—2)2(x—5).

Try it Now
3. Given the graph, write a formula for the function shown.

ﬁ--

Estimating Extrema

With quadratics, we were able to algebraically find the maximum or minimum value of
the function by finding the vertex. For general polynomials, finding these turning points
is not possible without more advanced techniques from calculus. Even then, finding
where extrema occur can still be algebraically challenging. For now, we will estimate the
locations of turning points using technology to generate a graph.

xample 8
An open-top box is to be constructed by cutting out squares from each corner of a 14cm

by 20cm sheet of plastic then folding up the sides. Find the size of squares that should
be cut out to maximize the volume enclosed by the box.

w

We will start this problem by drawing a picture, labeling the W
width of the cut-out squares with a variable, w.
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Notice that after a square is cut out from each end, it leaves a (14-2w) cm by (20-2w)
cm rectangle for the base of the box, and the box will be w cm tall. This gives the
volume:

V (W) = (14 — 2w)(20 — 2w)w = 280w — 68W° + 4w®

Using technology to sketch a graph allows us to estimate the maximum value for the
volume, restricted to reasonable values for w: values from 0 to 7.

507
00T
2507
200+
1504
100+

304

-2 - I 23 13 6 & 9 jo I
ol

From this graph, we can estimate the maximum value is around 340, and occurs when
the squares are about 2.75cm square. To improve this estimate, we could use advanced
features of our technology, if available, or simply change our window to zoom in on our
graph.

40

At
EAAY

34
333
332
33
?_-fﬁ o 25 26 27 28 29
From this zoomed-in view, we can refine our estimate for the max volume to about 339,

when the squares are 2.7cm square.

4. Use technology to find the maximum and minimum values on the interval [-1, 4] of
the function f (x) = -0.2(x —2)3(x +1)*(x — 4).
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[Important Topics of this Section

Short Run Behavior
Intercepts (Horizontal & Vertical)
Methods to find Horizontal intercepts
Factoring Methods
Factored Forms
Technology
Graphical Behavior at intercepts
Single, Double and Triple zeros (or power 1, 2, and 3 behaviors)
Solving polynomial inequalities using test values & graphing techniques
Writing equations using intercepts
Estimating extrema

Try it Now Answers

1. Vertical intercept (0, 0), Horizontal intercepts (0, 0), (-2, 0), (2, 0)
2. Vertical intercept (0, 0), Horizontal intercepts (-2, 0), (0, 0), (3, 0)
The function is negative on (—oo, -2) and (0, 3)
The function is positive on (-2, 0) and (3, «)
The leading term is x*so asx — —0, g(X) = —cand asx — o, g(x) —» ©

6-
/%
R T2 4
24
4
-6 1
-8
_jﬂ_

3. f(x)= —%(x—2)3(x+1)2(x—4)

4. The minimum occurs at approximately the point (0, -6.5), and the maximum occurs
at approximately the point (3.5, 7).
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Section 6.3 Exercises

Find the C and t intercepts of each function.

1. C(t)=2(t—4)(t+1)(t-6) 2. C(t)=3(t+2)(t-3)(t+5)
3. C(t)=4t(t—2)" (t+1) 4. C(t)=2t(t-3)(t+1)
5. C(t)=2t"-8t°+6t> 6. C(t)=4t*+12t° — 40>

Use your calculator or other graphing technology to solve graphically for the zeros of the
function.

7. f(x)=x>-7x*+4x+30 8. g(x)=x>—6x"+x+28

Find the long run behavior of each functionas t - o and t - —

9. h(t)=3(t-5)’(t-3)’(t-2) 10. k(t)=2(t-3)" (t+1)’ (t +2)
11. p(t)=-2t(t-1)(3-t)’ 12. q(t)=—4t(2—t)(t+1)’

Sketch a graph of each equation.

13. f(x)=(x+3)2 (x—2) 14. g(x)=(x+4)(x—1)2
15. h(x)=(x—1)’ (x+3)’ 16. k(x)= (x - 3)*(x - 2)°
17. m(x)=-2x(x—1)(x+3) 18. n(x)=-3x(x+2)(x—4)

Solve each inequality.
19. (x=3)(x-2)" >0 20. (x=5)(x+1)°">0

21. (x-1)(x+2)(x-3)<0 22. (x—4)(x+3)(x+6)<0

Find the domain of each function.

23. f(x)=v—42+19x—2x’ 24. g(x)=/28-17x-3%*
25. h(x)=v4—5x+x* 26. k(X)=\2+7x+3¢
27. n(x)=/(x=3)(x+2)° 28. m(x) =y/(x-1)" (x+3)
29. p(t)= 5~ 30. q(t):ﬁ

t?+2t-8
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Write an equation for a polynomial the given features.
31. Degree 3. Zerosat x=-2,x=1, and x = 3. Vertical intercept at (0, -4)

32. Degree 3. Zeros at x =-5, x =-2, and x = 1. Vertical intercept at (0, 6)

33. Degree 5. Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at
x =-3. Vertical intercept at (0, 9)

34. Degree 4. Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x =1 and
x =-2. Vertical intercept at (0, -3)

35. Degree 5. Double zero at x = 1, and triple zero at x = 3. Passes through the point
(2, 15)

36. Degree 5. Single zero at x = -2 and x = 3, and triple zero at x = 1. Passes through the
point (2, 4)

Write a formula for each polynomial function graphed.
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Write a formula for each polynomial function graphed.

54
44
I
/)
ST 55 .}E 5 % 43 Si 50 .}E T 3§43
2 2
-4 -4
44 44
45, -5 46. -5
64 6
54 54
41 4
14 ]
21 2
AN '
oo R J\i
-1
2
-3
_a
-5
47. 48. 61

R S

i
2
3
s
49. M 50.

51. A rectangle is inscribed with its base on the x axis and its upper corners on the
parabola y =5—x*. What are the dimensions of such a rectangle that has the greatest
possible area?

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve
y=16—x*. What are the dimensions of such a rectangle that has the greatest
possible area?
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Section 6.4 Factor Theorem and Remainder Theorem

In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials
that factored simply, or we turned to technology. In this section, we will look at

algebraic techniques for finding the zeros of polynomials like h(t) =t° + 4t* +t —6.
Long Division

In the last section we saw that we could write a polynomial as a product of factors, each
corresponding to a horizontal intercept. If we know that x = 2 was an intercept of the

polynomial x* + 4x? —5x —14, we might guess that the polynomial could be factored as
x® +4x* —5x —14 = (x — 2)(something ) . To find that "something," we can use
polynomial division.

Divide x® +4x® —5x—14 by x—2

Start by writing the problem out in long division form

X — 2> x® +4x2-5x —14

Now we divide the leading terms: x* = x =x”. It is best to align it above the same-

powered term in the dividend. Now, multiply that x* by x —2 and write the result
below the dividend.

X2

X — 2) x® +4x°-5x —14 Now subtract that expression from the dividend.
2

x® —2x

X2

x—2> X3 + 4x2-5x —14
—(x3 —2x2)
6x> —5x —14

Again, divide the leading term of the remainder by the leading term of the divisor.
6x* = x =6x. We add this to the result, multiply 6x by x — 2, and subtract.
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x* + 6X
X — 2> x® + 4x*-5x - 14 Repeat the process one last time.
—(x® —2x?)
6x* —5x —14
—(6x2 —12x)
7x-14
x> +6X+7
X-2) x°+4x’-5x-14
—(x3 - 2x2)
6x* —5x —14
—(6x? —12x)
7x—-14
—(7x-14)
0
This tells us x* + 4x® —5x —14 divided by x —2 is x* + 6x + 7, with a remainder of
zero. This also means that we can factor x° + 4x? —5x —14 as (x —2)(x? +6x+7).

This gives us a way to find the intercepts of this polynomial.

Example 2
Find the horizontal intercepts of h(x) =x* +4x*> —5x—14.

To find the horizontal intercepts, we need to solve h(x) = 0. From the previous
example, we know the function can be factored as h(x) = (x — 2)(x2 + 6X + 7).

h(x) =(x — 2)(x2 +6X + 7): 0 when x =2 or when x* +6x+7=0. This doesn't factor
nicely, but we could use the quadratic formula to find the remaining two zeros.

_—614/6° —4(1)(7) —_3+42.

- 2(1)

1. Divide 2x® —7x+3 by x+3 using long division.
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The Factor and Remainder Theorems

When we divide a polynomial, p(x) by some divisor polynomial d(x), we will get a
quotient polynomial q(x) and possibly a remainder r(x). In other words,

p(x) =d(x)a(x)+r(x).

Because of the division, the remainder will either be zero, or a polynomial of lower
degree than d(x). Because of this, if we divide a polynomial by a term of the form x—c,
then the remainder will be zero or a constant.

If p(x)=(x-c)q(x)+r,then p(c)=(c—-c)q(c) +r=0+r=r, which establishes the
Remainder Theorem.

The Remainder Theorem
If p(x) is a polynomial of degree 1 or greater and c is a real number, then when p(x) is

divided by x —c, the remainder is p(c).

If x—c is a factor of the polynomial p, then p(x) =(x —c)q(x) for some polynomial g.
Then p(c)=(c—c)q(c) =0, showing c is a zero of the polynomial. This shouldn't
surprise us - we already knew that if the polynomial factors it reveals the roots.

If p(c) =0, then the remainder theorem tells us that if p is divided by x—c, then the
remainder will be zero, which means x —c is a factor of p.

The Factor Theorem
If p(x) is anonzero polynomial, then the real number c is a zero of p(x) if and only if

X —c is a factor of p(x).

Since dividing by x —c is a way to check if a number is a zero of the polynomial, it
would be nice to have a faster way to divide by x —c than having to use long division
every time. Happily, quick ways have been discovered.

Let's look back at the long division we did in Example 1 and try to streamline it. First,
let's change all the subtractions into additions by distributing through the negatives.
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X2 +6X+7
x—z) x% + 4x2-5x —14
—x3 4+ 2x?
6x? —5x —14
—6x% +12x

7x—14

—7x+14

0

Next, observe that the terms — 7x®, —6x°, and — 7x are the exact opposite of the terms
above them. The algorithm we use ensures this is always the case, so we can omit them
without losing any information. Also note that the terms we ‘bring down’ (namely the
—5X and —14) aren’t really necessary to recopy, so we omit them, too.

x> +6X+7
x—2) X3 + 4x*—5x —14
2x?
6x°
12x

X
14

0

Now, let’s move things up a bit and, for reasons which will become clear in a moment,
copy the x* into the last row.

x> +6X+7
x-2)x3+4x2—5x—14
2x*12x 14

x> 6x2 7x 0

Note that by arranging things in this manner, each term in the last row is obtained by
adding the two terms above it. Notice also that the quotient polynomial can be obtained
by dividing each of the first three terms in the last row by x and adding the results. If you
take the time to work back through the original division problem, you will find that this is
exactly the way we determined the quotient polynomial. This means that we no longer
need to write the quotient polynomial down, nor the x in the divisor, to determine our
answer.
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x—2> x® +4x°-5x —14
2x212x 14
x> 6x2 7x 0

We’ve streamlined things quite a bit so far, but we can still do more. Let’s take a
moment to remind ourselves where the 2x?, 12x and 14 came from in the second row.

Each of these terms was obtained by multiplying the terms in the quotient, x?, 6x and 7,
respectively, by the —2 in X — 2, then by —1 when we changed the subtraction to addition.
Multiplying by —2 then by —1 is the same as multiplying by 2, so we replace the —2 in the
divisor by 2. Furthermore, the coefficients of the quotient polynomial match the
coefficients of the first three terms in the last row, so we now take the plunge and write
only the coefficients of the terms to get

2] 1 4 5 -14
2 12 14
1 6 7 0

We have constructed a synthetic division tableau for this polynomial division problem.
Let’s re-work our division problem using this tableau to see how it greatly streamlines the

division process. To divide x* +4x* —5x—14 by x — 2, we write 2 in the place of the

divisor and the coefficients of x* + 4x* —5x —14 in for the dividend. Then "bring down"
the first coefficient of the dividend.

2] 1 4 5 -14 2] 1 4 5 -14

|
1

Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.
Write this underneath the 4, then add to get 6.

2] 1 4 5 -14 2] 1 4 5 -14
| 2 |2
1 1 6

Now take the 2 from the divisor times the 6 to get 12, and add it to the —5 to get 7.

2| 1 4 5 -14 2| 1 4 5 -14
| 2 12 | 2 12
1 6 1 6 7
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the —14 to get 0.

2] 1 4 5 -14 2] 1 4 5 -14
| 2 12 14 | 2 12 14

1 6 7 1 6 7 0

The first three numbers in the last row of our tableau are the coefficients of the quotient
polynomial. Remember, we started with a third degree polynomial and divided by a first
degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is

X% +6x + 7. The number in the box is the remainder. Synthetic division is our tool of
choice for dividing polynomials by divisors of the form x — c. It is important to note that
it works only for these kinds of divisors. Also take note that when a polynomial (of
degree at least 1) is divided by x — ¢, the result will be a polynomial of exactly one less
degree. Finally, it is worth the time to trace each step in synthetic division back to its
corresponding step in long division.

Example 3

Use synthetic division to divide 5x* —2x* +1 by x—3.

When setting up the synthetic division tableau, we need to enter O for the coefficient of
X in the dividend. Doing so gives

3] 5 2 0 1
| 15 39 117

5 13 39118

Since the dividend was a third degree polynomial, the quotient is a quadratic
polynomial with coefficients 5, 13 and 39. Our quotient is q(x) =5x* +13x +39 and
the remainder is r(x) = 118. This means

5x% —2x% +1=(x—3)(5x* +13x +39) +118 .

It also means that x —3 is not a factor of 5x° — 2x? +1.

Example 4
Divide x* +8 by x+2

For this division, we rewrite x +2 as x —(~—2) and proceed as before.

2| 1 0 0 8
| 2 4 -8

1 -2 4 0
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The quotient is x? —2x + 4 and the remainder is zero. Since the remainder is zero,
X + 2 is a factor of x® +8.

x* +8=(x+2)(x? - 2x+4)

Try it Now

| 2. Divide 4x* —8x? —5x by x -3 using synthetic division.

Using this process allows us to find the real zeros of polynomials, presuming we can
figure out at least one root. We'll explore how to do that in the next section.

Example 5

The polynomial p(x) =4x* —4x® —11x* +12x — 3 has a horizontal intercept at x =%

with multiplicity 2. Find the other intercepts of p(x).

. 1. . . . 1. .
Since x = 5 is an intercept with multiplicity 2, then x — 5 is a factor twice. Use

synthetic division to divide by x —% twice.

12| 4 -4 -11 12 -3
| 2 -1 -6 3
4 2 -1 6| 0
172 4 -2 -1 -6
| 2 0 -6
4 0 -12] 0

From the first division, we get

4x* —4x° —11x* +12x — 3=(x —%)(4x3 —2x? -~ x—6). The second division tells us

4x% —4x3 —11x%? +12x - 3= x—l x—1 (4x2—12).
2 2

To find the remaining intercepts, we set 4x> —12 =0 and get x = +3.

Note this also means 4x* —4x® —11x? +12x —3= (x - %J[x - %)(X - \/§Xx + \/5)




370 Chapter 6

Important Topics of this Section

Long division of polynomials
Remainder Theorem

Factor Theorem

Synthetic division of polynomials

Try it Now Answers

1.
2x% —6x +11
X + 3) 2x3 +0x°~7x+3 The quotient is 2x? —6x+11 with remainder -30.
—(2x3 + 6x2)
—6x* —7x+3
—(— 6x? —18x)
11x+3
—(11x +33)
-30
2.
3] 4 0 -8 -5 0
| 12 36 84 237
4 12 28 79237
4x* —8x? —5x divided by x -3 is 4x® +12x” +28x + 79 with remainder 237



6.4 Factor Theorem and Remainder Theorem 371

Section 6.4 Exercises

Use polynomial long division to perform the indicated division.

1. (4x2+3x—1)+(x—3) 2. (2x3—x+1)+(x2+x+1)
3. (5x4 -3x3+2x2 —1)+ (x2 +4) 4, (— X +7x° - x)+(x3 —x? +1)
5. (9x° +5)+(2x—3) 6. (ax* —x—23)+(x* -1)

Use synthetic division to perform the indicated division.

7. (3x% —2x+1)+(x-1) 8. (x? ~5)=(x—5)

9. (3-ax—2x?)=(x+1) 10. (4x? —5x+3)+ (x+3)

11, (x*+8)+(x+2) 12. (ax® +2x-3)+(x—3)

13. (18x2 —15x—25)+(x—§) 14. (4x2 —1)+[x—%j

15. (2x3+x2+2x+1)+[x+%j 16. (3x3—x+4)+[x—§]

17. (Zx3 —3x +1)+(x—%) 18. (4x4 —12x3 +13x? —12x+9)+(x—§j
19. (x“ —6x2 +9)+(x—\/§) 20. (x® —6x* +12x2 —8)+(x+\/§)

Below you are given a polynomial and one of its zeros. Use the techniques in this section
to find the rest of the real zeros and factor the polynomial.

21. x®*—6x2+11x—6, c=1 22. x® —24x% +192x—512, c=8
23. 3% +4x2 —x-2, czg 24. 2x3 —3x% —11x + 6, c=%
25. x3+2x>-3x-6, c=-2 26. 2x3 —x2 —10x +5, czé

27. 4x* —28x° +61x* —42x+9, C =% is a zero of multiplicity 2

28. x® +2x* —12x® -38x? —37x-12, ¢ = -1 is a zero of multiplicity 3
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Section 6.5 Real Zeros of Polynomials

In the last section, we saw how to determine if a real
number was a zero of a polynomial. In this section, we
will learn how to find good candidates to test using
synthetic division. In the days before graphing I
technology was commonplace, mathematicians /)\
discovered a lot of clever tricks for determining the

likely locations of zeros. Technology has provided a
much simpler approach to narrow down potential It
candidates, but it is not always sufficient by itself. For
example, the function shown to the right does not have
any clear intercepts.

24

34

There are two results that can help us identify where the zeros of a polynomial are. The
first gives us an interval on which all the real zeros of a polynomial can be found.

Cauchy's Bound
Given a polynomial f(x)=a,x" +a, ,Xx"" +---+a,Xx +a,, let M be the largest of the
coefficients in absolute value. Then all the real zeros of f lie in the interval

[_ﬂ_l, ﬂﬂ}
al " fa

Example 1
Let f(x)=2x"+4x® —x* —6x—3. Determine an interval which contains all the real
zeros of f.

To find the M from Cauchy's Bound, we take the absolute value of the coefficients and
pick the largest, in this case |— 6| =6. Divide this by the absolute value of the leading

coefficient, 2, to get 3. All the real zeros of f lie in the interval

6 6
2 2 4q|=[-3-1 3+1]=[-4,4].
{ 277 } [ ]

Knowing this bound can be very helpful when using a graphing calculator, since we can
use it to set the display bounds. This helps avoid missing a zero because it is graphed
outside of the viewing window.

1. Determine an interval which contains all the real zeros of f(x) =4x®-12x* +6x—8
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Now that we know where we can find the real zeros, we still need a list of possible real
zeros. The Rational Roots Theorem provides us a list of potential integer and rational
Zeros.

Rational Roots Theorem

Given a polynomial f(x)=a x" +a, ,x"" +---+a,x +a, with integer coefficients, if
r is a rational zero of f, then r is of the form r = J_rB , Where p is a factor of the constant

term a,, and q is a factor of the leading coefficient, a, .

This gives us a list of numbers to try in our synthetic division, which is a nicer place to
start than simply guessing. If none of the numbers in the list are zeros, then either the
polynomial has no real zeros at all, or all the real zeros are irrational numbers.

Example 2

Let f(x)=2x"+4x® —x* —6x—3. Use the Rational Roots Theorem to list all the
possible rational zeros of f.

To generate a complete list of rational zeros, we need to take each of the factors of the
constant term, a, =-3, and divide them by each of the factors of the leading coefficient

a, =2. The factors of =3 are +1 and £3. Since the Rational Roots Theorem tacks on a

+ anyway, for the moment, we consider only the positive factors 1 and 3. The factors of
2 are 1 and 2, so the Rational Roots Theorem gives the list

i},il,igi§ , or il,il,i&ig
1 2 1 2 2 2

Now we can use synthetic division to test these possible zeros. To narrow the list first,
we could use graphing technology to help us identify some good possibilities.

Find the horizontal intercepts of f(x)=2x* +4x® —x* —6x—3.

From Example 1, we know that the real zeros lie in the interval [-4, 4]. Using a
graphing calculator, we could set the window accordingly and get the graph below.

W IKOOW
amin= -4 \ l

amax=d
Ascl=1
Ymin=-d
Ymax=d
VYecl=1
ares=10




374 Chapter 6

From Example 2, we learned that any rational zero must be on the list
1 . . . ot
{J_r 1+ 5 13+ g} From the graph, it looks like —1 is a good possibility, so we try that

using synthetic division.

1] 2 4 -1 -6 -3
| 2 -2 3 3
2

2 -3 -3 0

Success! Remembering that f was a fourth degree polynomial, we know that our
quotient is a third degree polynomial. If we can do one more successful division, we
will have knocked the quotient down to a quadratic, and, if all else fails, we can use the
quadratic formula to find the last two zeros. Since there seems to be no other rational
zeros to try, we continue with —1. Also, the shape of the crossing at x = —1 leads us to
wonder if the zero x = —1 has multiplicity 3.

-1 2 2 -3 -3
| -2
2

0 3
0 -3 0

Success again! Our quotient polynomial is now 2x* —3. Setting this to zero gives
2x* —3=0, giving x= J_r\/g = i? . Since a fourth degree polynomial can have at

most four zeros, including multiplicities, then the intercept x = -1 must only have
multiplicity 2, which we had found through division, and not 3 as we had guessed.

It is interesting to note that we could greatly improve on the graph of y = f(x) in the
previous example given to us by the calculator. For instance, from our determination of

J6

the zeros of f and their multiplicities, we know the graph crosses at x = —7z —-1.22

then turns back upwards to touch the x—axis at X =—1. This tells us that, despite what the
calculator showed us the first time, there is a relative maximum occurring at X = —1 and
not a "flattened crossing" as we originally believed. After resizing the window, we see
not only the relative maximum but also a relative minimum just to the left of x = —1.

W IHOOL

amin=-1.5

amax=-.5

Ascl=1 .
Ymin=-.@1

Ymax=.H1

Ve l=1

sres=11
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In this case, mathematics helped reveal something that was hidden in the initial graph.

Find the real zeros of f(x)=4x> —10x* —2x+2.

Cauchy's Bound tells us that the real zeros lie in

the interval {—Q—L 10 +1} =[-3.5,3.5].
4 M

Graphing on this interval reveals no clear integer
zeros. Turning to the rational roots theorem, we
need to take each of the factors of the constant

term, a, =2, and divide them by each of the
factors of the leading coefficient a, =4. The

factors of 2 are 1 and 2. The factors of 4 are 1, 2, and 4, so the Rational Roots Theorem
gives the list

1,1 .1 2 2 2 1.1
-ttt F—F—p,0r £l — £— 42
1 2 4 1 2 4 2 4

The two likely candidates are i%. Trying % :

12| 4 -10 -2 2
| 2 -4 -3

4 -8 6| -1

. . L. . 1
The remainder is not zero, so this is not a zero. Trying — 5

12| 4 10 -2 2
| 2 6 -2

4 -12 4 0

Success! This tells us 4x® —10x* —2x+ 2= (x + %j(4x2 —12x+4), and that the

. . 1
graph has a horizontal intercept at x = 5

To find the remaining two intercepts, we can use the quadratic equation, setting
4x* ~12x+4=0. First we might pull out the common factor, 4(x2 —3x +1)= 0

3N 40O 35 2,618, 0.382

2(1) 2
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Try it Now

’ 2. Find the real zeros of f(x) =3x® —x? —6x+2

Important Topics of this Section
Cauchy’s Bound for all real zeros of a polynomial
Rational Roots Theorem
Finding real zeros of a polynomial

Try it Now Answers

1. The maximum coefficient in absolute value is 12. Cauchy’s Bound for all real zeros

|12 12
is |[—-==-1 —=41|=[-44]
kR

4

2. Cauchy’s Bound tells us the zeros lie in the interval {—%—1, §+1:| =[-3,3].
The rational roots theorem tells us the possible rational zeros of the polynomial are on

the list i},il,ig,ig = il,il,iZ,ig )
1 3 1 3 3 3

Looking at a graph, the only likely candidate is % .

Using synthetic division, 5
73| 3 -1 -6 2
I 1 0 -2

3 0 6] 0 -+
3x3—x2—6x+2:(x—%j(3x2—6):3(x—%j( =)

Solving x2 -2 =0 gives zeros x = +~/2 .

The real zeros of the polynomial are x =+/2, —+/2, %
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For each of the following polynomials, use Cauchy’s Bound to find an interval containing
all the real zeros, then use Rational Roots Theorem to make a list of possible rational

Zeros.

f(x)=x*—2x*-5x+6
f(x)=x*—9x* —4x+12
fX)=x3—7x*+x-7

f(x) =—17x3 +5x? +34x—-10
f(x) =3x +3x* —11x—10

© N wE

Find the real zeros of each polynomial.
11. f(x)=x*-2x*-5x+6

13. f(x)=x*—9x? —4x+12

15. f(X)=x*—7x*+x—-7

17. f(x)=-17x> +5x% +34x-10

19. f(x)=3x®+3x*-11x-10

21. f(x)=9x> -5x? —x

23. f(x)=x*+2x*-15

25. f(x)=3x*-14x*-5

27. f(x)=x®-3x*-10

29. f(x)=x>—2x*—4x+8

31. f(x)=x>—60x>—80x? +960x + 2304

S

10.

12.
14.
16.
18.
20.
22.
24.
26.
28.
30.

32. f(x)=25x"—105x* +174x® —142x* +57x—9

f(x) = x* +2x® —12x* —40x — 32
f(x)= x> +4x? -11x+6

f(x) =—2x3 +19x% —49x + 20
f(x) =36x* —12x° —11x% + 2x +1

f(x)=2x* +x* —7x* -3x+3

f(x) = x* +2x® —12x* —40x —32
f(x)=x>+4x* -11x+6

f(x) =—2x3 +19x% —49x + 20
f(x) =36x* —12x° —11x% + 2x +1
f(x)=2x* +x* —7x* —-3x+3

f (x) = 6x* —5x° —9x?
f(x)=x*-9x*+14
f(x)=2x*—7x*+6
f(x)=2x°-9x3+10

f(x) = 2x° +3x* —18x—27
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Section 6.6 Complex Zeros

When finding the zeros of polynomials, at some point you're faced with the problem

x> =—1. While there are clearly no real numbers that are solutions to this equation,

leaving things there has a certain feel of incompleteness. To address that, we will need
utilize the imaginary unit, i.

Imaginary Number i

The most basic complex number is i, defined to be i =+/—1, commonly called an
imaginary number. Any real multiple of i is also an imaginary number.

Simplify +/-9.

We can separate v—9 as J9/=1. We can take the square root of 9, and write the
square root of -1 as i.

J-9=49/-1=3i

A complex number is the sum of a real number and an imaginary number.

Complex Number

A complex number is a number z =a+bi, where a and b are real numbers
a is the real part of the complex number
b is the imaginary part of the complex number

i=—1

Arithmetic on Complex Numbers

Before we dive into the more complicated uses of complex numbers, let’s make sure we
remember the basic arithmetic involved. To add or subtract complex numbers, we simply
add the like terms, combining the real parts and combining the imaginary parts.

Example 3
Add 3—4i and 2+5i.

Adding (3—4i) + (2+5i), we add the real parts and the imaginary parts
3+2—4i+5i
5+i
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| 1. Subtract 2+5i from 3—4i.

We can also multiply and divide complex numbers.

Multiply: 4(2+5i) .

To multiply the complex number by a real number, we simply distribute as we would
when multiplying polynomials.

4(2+5i)
=4.2+4.5i
=8+ 20i

Example 5
Divide 2+
(4-1)

To divide two complex numbers, we have to devise a way to write this as a complex
number with a real part and an imaginary part.

We start this process by eliminating the complex number in the denominator. To do
this, we multiply the numerator and denominator by a special complex number so that
the result in the denominator is a real number. The number we need to multiply by is
called the complex conjugate, in which the sign of the imaginary part is changed.
Here, 4+i is the complex conjugate of 4-i. Of course, obeying our algebraic rules, we
must multiply by 4+i on both the top and bottom.

(2+5i) (4+1)

4-i) (4+1i)

To multiply two complex numbers, we expand the product as we would with
polynomials (the process commonly called FOIL — “first outer inner last”). In the
numerator:

(2+5i)(4+1) Expand

=8+ 20i + 2i +5i? Since i=+/-1,i?=-1
=8+ 20i + 2i +5(-1) Simplify

=3+22i

Following the same process to multiply the denominator
(4-1)(4+1) Expand




380 Chapter 6

(16 — 4i + 4i —i%) Since i:J__]_, i2=-1
(16-(-1)
=17
Combining this we get 3+ 221 :i+@
17 17 17

Try it Now

| 2. Multiply 3—4i and 2+3i.

In the last example, we used the conjugate of a complex number

Complex Conjugate

The conjugate of a complex number a + bi is the number a — bi.

The notation commonly used for conjugation is a bar: a +bi=a —bi

Complex Zeros

Complex numbers allow us a way to write solutions to quadratic equations that do not
have real solutions.

Example 6

Find the zeros of f(x)=x*—2x+5.

Using the quadratic formula,
2t V22 -40(B) 244216 2+4i
2(2) 2 2

1+2i.

3. Find the zeros of f(x)=2x*+3x+4.

Two things are important to note. First, the zeros 1+ 2i and 1— 2i are complex
conjugates. This will always be the case when we find non-real zeros to a quadratic
function with real coefficients. Second, we could write

f(x) =x> —2x+5=(x—(L+2i))x — (L - 2i)) if we really wanted to, so the Factor and
Remainder Theorems hold.
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How do we know if a general polynomial has any complex zeros? We have seen
examples of polynomials with no real zeros; can there be polynomials with no zeros at
all? The answer to that last question, which comes from the Fundamental Theorem of
Algebra, is "No."

Fundamental Theorem of Algebra

If a non-constant polynomial f with real or complex coefficients will have at least one
real or complex zero.

This theorem is an example of an "existence™ theorem in mathematics. It guarantees the
existence of at least one zero, but provides no algorithm to use for finding it.

Now suppose we have a polynomial f(x) of degree n. The Fundamental Theorem of
Algebra guarantees at least one zero z,, then the Factor Theorem guarantees that f can be
factored as f (x) =(x —z, ), (x) , where the quotient g, (x) will be of degree n-1. If this

function is non-constant, than the Fundamental Theorem of Algebra applies to it, and we
can find another zero. This can be repeated n times.

Complex Factorization Theorem
If f is a polynomial f with real or complex coefficients with degree n > 1, then f has
exactly n real or complex zeros, counting multiplicities.

If z,,2,,...,z, are the distinct zero of f with multiplicities m,,m,,...,m, respectively,
then f(x)=a(x—z,)"(x-z,)™ - (x—z, )™

xample 7
Find all the real and complex zeros of f(x) =12x> —20x* +19x> —6x* —2x+1.

roots are A \/

Using the Rational Roots Theorem, the possible real rational i
) i

il,il il,il,il,+i T

3 4 6 27

17 2° 12

.1
Testing —,
g 2

/2| 12 20 19 -6 -2 1
| 6 -7 6 0 -1

12 -14 12 0 -2 0
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Success! Because the graph bounces at this intercept, it is likely that this zero has
multiplicity 2. We can try synthetic division again to test that.

12| 12 -14 12 0 -2
| 6 -4 4 2

12 -8 8 -4 0

The other real root appears to be —% or —%. Testing —%,

13| 12 -8 8 -4
| 4 4 -4

12 -12 12 0

Excellent! So far, we have factored the polynomial to

f(X) :(x—%j [x+%j(12x2 —12x+12):12(x—%j (x+%j(x2 —x+1)

We can use the quadratic formula to find the two remaining zeros by setting
x® —x+1=0, which are likely complex zeros.

. 1+/(=1)2 - 4()() _1:4-3 _1#iV3

2(1) 2 2
The zeros of the function are x :%,—%,1“2\/5,1_'2\/5 . We could write the function
fully factored as f (x) zlz(x_%) (X+%](X_l+|2\/§][x_l—|2\/§)

When factoring a polynomial like we did at the end of the last example, we say that it is
factored completely over the complex numbers, meaning it is impossible to factor the
polynomial any further using complex numbers. If we wanted to factor the function over

2
the real numbers, we would have stopped at f (x) :12(x—%j (x+%)(x2 —x+l). Since

the zeros of x> —x+1 are nonreal, we call x*> —x+1 an irreducible quadratic meaning
it is impossible to break it down any further using real numbers.

It turns out that a polynomial with real number coefficients can be factored into a product
of linear factors corresponding to the real zeros of the function and irreducible quadratic
factors which give the nonreal zeros of the function. Consequently, any nonreal zeros
will come in conjugate pairs, so if z is a zero of the polynomial, sois Z.
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Try it Now

’ 4. Find the real and complex zeros of f(x)=x®—4x? +9x-10.

Important Topics of This Section
Complex numbers
Imaginary numbers

Try it Now Answers

1. (3—4i)—(2+5i)=1-09i
2. (3—4i)(2+3i)=18+i
3 oo 3V -4 _-3xy-23 -3:iV23 -3 V23,
2(2) 4 4 47 4
4. Cauchy’s Bound limits us to the interval [-11, 11]. The rational roots theorem gives a
list of potential zeros: {+1,+2,45+10}. A quick graph shows that the likely rational root

isx=2.

20T
15T
flia

S

"+
Al o 8§ 7 6 5 4 3 -2 -!_5_;//;r”’5 3 4 5 a6 7 &8 & o fi

iy
Ml

Verifying this,
2| 1 -4 9 -10
| 2 -4 10

1 -2 5 0

So f(x)=(x—2)(x*—2x+5)

Using quadratic formula, we can find the complex roots from the irreducible quadratic.

(DD AOE) _2+4-16 _ —2:+4i _
- 2(1) 2 2
The zeros of this polynomial are x =2, -1+2i, -1-2i

-1+2i.
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Section 6.6 Exercises

Simplify each expression to a single complex number.

1. J-9 2. J-16 3. J-6-24
4. J=3J=75 5 2+v12 “2_12 g 21V=20 “2_20
Simplify each expression to a single complex number.
7. (3+2i)+(5-3i) 8. (—2—4i)+(1+6i)
9. (-5+3i)—(6-1) 10. (2—3i)—(3+2i)
11. (2+3i)(4i) 12. (5-2i)(3i)
13. (6-2i)(5) 14. (—2+4i)(8)
15. (2+3i)(4—i) 16. (—1+2i)(-2+3i)
17. (4-2i)(4+2i) 18. (3+4i)(3-4i)
19, 34 20, 822

2 3
21 _5JT3I 29 6+_4|

21 I
23. 2_3i 24, 3+4.i

4+ 3i 2-i

Find all of the zeros of the polynomial then completely factor it over the real numbers
and completely factor it over the complex numbers.

25. f(x)=x*—-4x+13 26. f(x)=x*—-2x+5

27. f(x)=3x*+2x+10 28. f(x)=x*-2x*>+9x-18

29. f(x)=x3+6x*+6x+5 30. f(x)=3x>-13x?+43x-13

31 f(X)=x®*+3x*+4x+12 32. f(x)=4x*-6x*—-8x+15

33. f(X)=x3+7x*+9x-2 34, f(x)=9x> +2x+1

35. f(x)=4x*—4x* +13x* —12x+3 36. f(x)=2x*-7x*+14x* -15x+6

37. f()=x*+x3+7x*+9x-18 38. f(x)=6x*+17x* —55x* +16x+12
39. f(x)=-3x*-8x3-12x*-12x-5 40. f(x)=8x"+50x>+43x? +2x—4

41, f(x)=x*+9x*+20 42. f(x)=x*+5x*—24
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Section 6.7 Rational Functions

In the last few sections, we have built polynomials based on the positive whole number
power functions. In this section we explore functions based on power functions with
negative integer powers, called rational functions.

You plan to drive 100 miles. Find a formula for the time the trip will take as a function
of the speed you drive.

You may recall that multiplying speed by time will give you distance. If we let t
represent the drive time in hours, and v represent the velocity (speed or rate) at which
we drive, then vt =distance . Since our distance is fixed at 100 miles, vt =100.
Solving this relationship for the time gives us the function we desired:

100

t(v) = — =100v*
v

While this type of relationship can be written using the negative exponent, it is more
common to see it written as a fraction.

This particular example is one of an inversely proportional relationship — where one

quantity is a constant divided by the other quantity, like y = > .
X

Notice that this is a transformation of the reciprocal toolkit function, f(x)==
X

Several natural phenomena, such as gravitational force and volume of sound, behave in a

manner inversely proportional to the square of another quantity. For example, the
: k

volume, V, of a sound heard at a distance d from the source would be related by V = 37

for some constant value k.

. . . . . 1
These functions are transformations of the reciprocal squared toolkit function f(x)=—.
X

We have seen the graphs of the basic reciprocal function and the squared reciprocal
function from our study of toolkit functions. These graphs have several important
features.
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B S
R

1 2 3 4 4 3 2 1 2 3 4
1 -4 f (X) — i
2
X 2 X
3
4

Let’s begin by looking at the reciprocal function, f(x)= 1 . As you well know, dividing
X

by zero is not allowed and therefore zero is not in the domain, and so the function is
undefined at an input of zero.

Short run behavior:

As the input values approach zero from the left side (taking on very small, negative
values), the function values become very large in the negative direction (in other words,
they approach negative infinity).

We write: asx > 07, f(x) > —o.

As we approach zero from the right side (small, positive input values), the function
values become very large in the positive direction (approaching infinity).

We write: asx — 07, f(x) = oo,

This behavior creates a vertical asymptote. An asymptote is a line that the graph
approaches. In this case the graph is approaching the vertical line x = 0 as the input
becomes close to zero.

Long run behavior:

As the values of x approach infinity, the function values approach 0.

As the values of x approach negative infinity, the function values approach 0.
Symbolically: asx — o, f(x) > 0

Based on this long run behavior and the graph we can see that the function approaches 0

but never actually reaches 0, it just “levels off” as the inputs become large. This behavior
creates a horizontal asymptote. In this case the graph is approaching the horizontal line
f (x) =0 as the input becomes very large in the negative and positive directions.

Vertical and Horizontal Asymptotes

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards
positive or negative infinity as the inputs approach a. Asx —a, f(x) > $w.

A horizontal asymptote of a graph is a horizontal line y =b where the graph
approaches the line as the inputs get large. Asx — +oo, f(X) > b.
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Try it Now:
1. Use symbolic notation to describe the long run behavior
and short run behavior for the reciprocal squared function. 2

xample 2
Sketch a graph of the reciprocal function shifted two units to the left and up three units.
Identify the horizontal and vertical asymptotes of the graph, if any.

Transforming the graph left 2 and up 3 would result in the function
f(x) = ﬁ + 3, or equivalently, by giving the terms a common denominator,
+

3X+7
X+ 2

f(x) =

Shifting the toolkit function would give us
this graph. Notice that this equation is
undefined at x = -2, and the graph also is
showing a vertical asymptote at x = -2.
Asx —> -2, f(x) > —0,and as

X—-2",f(x) >

BEEBEEREE
As the inputs grow large, the graph appears 24
to be leveling off at output values of 3, 37
indicating a horizontal asymptote at y =3.

As X — too, f(x)—> 3.

Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the
function.

2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal
squared function that has been shifted right 3 units and down 4 units.

In the previous example, we shifted a toolkit function in a way that resulted in a function
3X+7

X+ 2

of the form f(x) =

. This is an example of a more general rational function.
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Rational Function

A rational function is a function that can be written as the ratio of two polynomials,
P(x) and Q(X).

(x) = P(x) 8 +ax+ax’ +-+ax’
T Q(X) by +bx+b,x? +-+b,x"

Example 3

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of
sugar have been mixed. A tap will open pouring 10 gallons per minute of water into the
tank at the same time sugar is poured into the tank at a rate of 1 pound per minute. Find
the concentration (pounds per gallon) of sugar in the tank after t minutes.

Notice that the amount of water in the tank is changing linearly, as is the amount of
sugar in the tank. We can write an equation independently for each:

water =100 +10t

sugar=5+1t

The concentration, C, will be the ratio of pounds of sugar to gallons of water

C(t) = _ 5+t
100 +10t

Finding Asymptotes and Intercepts

Given a rational function, as part of investigating the short run behavior we are interested
in finding any vertical and horizontal asymptotes, as well as finding any vertical or
horizontal intercepts, as we have done in the past.

To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur
when the denominator of the function is undefined. With one exception, a vertical
asymptote will occur whenever the denominator is undefined.

Example 4

5+ 2x2

Find the vertical asymptotes of the function k(x) = 5 5
—X—X

To find the vertical asymptotes, we determine where this function will be undefined by
setting the denominator equal to zero:

2-x-x%=0
2+x)@-x)=0
x=-2,1
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This indicates two vertical asymptotes, which a
look at a graph confirms.

n._mﬁ:

7 -6 -3 & -3 -F -l I 1 4 F a7

ST S

The exception to this rule can occur when both the numerator and denominator of a
rational function are zero at the same input.

xample 5
-2

Find the vertical asymptotes of the function k(x) = X2
X

To find the vertical asymptotes, we determine where this function will be undefined by
setting the denominator equal to zero:

x*—4=0
x> =4
X=-2,2

However, the numerator of this function is also
equal to zero when x = 2. Because of this, the

function will still be undefined at 2, since % is

undefined, but the graph will not have a vertical L]
asymptote at x = 2. : 3

The graph of this function will have the vertical
asymptote at x = -2, but at x = 2 the graph will
have a hole: a single point where the graph is not
defined, indicated by an open circle.

Aod o L

Vertical Asymptotes and Holes of Rational Functions
The vertical asymptotes of a rational function will occur where the denominator of the
function is equal to zero and the numerator is not zero.

A hole might occur in the graph of a rational function if an input causes both numerator
and denominator to be zero. In this case, factor the numerator and denominator and
simplify; if the simplified expression still has a zero in the denominator at the original
input the original function has a vertical asymptote at the input, otherwise it has a hole.




390 Chapter 6

To find horizontal asymptotes, we are interested in the behavior of the function as the
input grows large, so we consider long run behavior of the numerator and denominator
separately. Recall that a polynomial’s long run behavior will mirror that of the leading
term. Likewise, a rational function’s long run behavior will mirror that of the ratio of the
leading terms of the numerator and denominator functions.

There are three distinct outcomes when this analysis is done:

Case 1: The degree of the denominator > degree of the numerator

3X+2
Example: f(X) = ———
P ) x> +4x-5
In this case, the long run behavior is f (x) z3—)2(=§. This tells us that as the inputs grow
XX

large, this function will behave similarly to the function g(x) = §. As the inputs grow
X

large, the outputs will approach zero, resulting in a horizontal asymptote at y =0.
As x > 1o, f(Xx) >0

Case 2: The degree of the denominator < degree of the numerator
3x*+2
X—5

Example: f(x) =

2
In this case, the long run behavior is f (x) ~ X =3x. This tells us that as the inputs
X

grow large, this function will behave similarly to the function g(x) = 3x. As the inputs

grow large, the outputs will grow and not level off, so this graph has no horizontal
asymptote.
Asx — oo, f(X) - +oo, respectively.

Ultimately, if the numerator is larger than the denominator, the long run behavior of the

graph will mimic the behavior of the reduced long run behavior fraction. As another
5 2

example if we had the function f(x) =

with long run behavior

5
f(x) = 3 =3x", the long run behavior of the graph would look similar to that of an
X

even polynomial, and as x — £, f(X) > .

Case 3: The degree of the denominator = degree of the numerator
3x*+2

Example: f(X) = ———
P ) x? +4x—5
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2

In this case, the long run behavior is f(x) = 312 =3. This tells us that as the inputs grow
X

large, this function will behave like the function g(x) =3, which is a horizontal line. As

X — o, f(x) — 3, resulting in a horizontal asymptote at y = 3.

Horizontal Asymptote of Rational Functions
The horizontal asymptote of a rational function can be determined by looking at the
degrees of the numerator and denominator.
Degree of denominator > degree of numerator: Horizontal asymptote at y =0
Degree of denominator < degree of numerator: No horizontal asymptote
Degree of denominator = degree of numerator: Horizontal asymptote at ratio of leading
coefficients.

In the sugar concentration problem from earlier, we created the equation
cty=—>"t

100 +10t

Find the horizontal asymptote and interpret it in context of the scenario.

Both the numerator and denominator are linear (degree 1), so since the degrees are
equal, there will be a horizontal asymptote at the ratio of the leading coefficients. In the
numerator, the leading term is t, with coefficient 1. In the denominator, the leading
term is 10t, with coefficient 10. The horizontal asymptote will be at the ratio of these

values: As t >, C(t) > % . This function will have a horizontal asymptote at

y=1
10°

This tells us that as the input gets large, the output values will approach 1/10. In

context, this means that as more time goes by, the concentration of sugar in the tank will

approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon.

Example 7

Find the horizontal and vertical asymptotes of the function
F(x) = (Xx—=2)(x+3)
(Xx=D(x+2)(x-5)

First, note this function has no inputs that make both the numerator and denominator
zero, so there are no potential holes. The function will have vertical asymptotes when
the denominator is zero, causing the function to be undefined. The denominator will be
zeroatx =1, -2, and 5, indicating vertical asymptotes at these values.
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The numerator has degree 2, while the denominator has degree 3. Since the degree of
the denominator is greater than the degree of the numerator, the denominator will grow
faster than the numerator, causing the outputs to tend towards zero as the inputs get
large, and so as x — too, f(x) —> 0. This function will have a horizontal asymptote at

y=0.

3. Find the vertical and horizontal asymptotes of the function

2x-1D(2x+1)
(x=2)(x+3)

f(x) =

Intercepts

As with all functions, a rational function will have a vertical intercept when the input is
zero, if the function is defined at zero. It is possible for a rational function to not have a
vertical intercept if the function is undefined at zero.

Likewise, a rational function will have horizontal intercepts at the inputs that cause the
output to be zero (unless that input corresponds to a hole). It is possible there are no
horizontal intercepts. Since a fraction is only equal to zero when the numerator is zero,
horizontal intercepts will occur when the numerator of the rational function is equal to
zero.

(x=2)(x+3)
(x=D(x+2)(x-5)

Find the intercepts of f(x) =

We can find the vertical intercept by evaluating the function at zero
£(0) = (0-2)(0+3) _-6_ 3
(0-1)(0+2)(0-5) 10 5

The horizontal intercepts will occur when the function is equal to zero:
_ (x=2)(x+3)
~ (x=1)(x+2)(x-5)
0=(x-2)(x+3)
X=2,-3

This is zero when the numerator is zero

4. Given the reciprocal squared function that is shifted right 3 units and down 4 units,
write this as a rational function and find the horizontal and vertical intercepts and the
horizontal and vertical asymptotes.



6.7 Rational Functions 393

From the previous example, you probably noticed that the numerator of a rational
function reveals the horizontal intercepts of the graph, while the denominator reveals the
vertical asymptotes of the graph. As with polynomials, factors of the numerator may
have integer powers greater than one. Happily, the effect on the shape of the graph at
those intercepts is the same as we saw with polynomials.

When factors of the denominator have integer powers greater than one, the behavior at
the corresponding vertical asymptote will mirror one of the two toolkit reciprocal

functions.

We get this behavior when the degree of the factor in the
denominator is odd. The distinguishing characteristic is that
on one side of the vertical asymptote the graph heads towards
positive infinity, and on the other side the graph heads

4 . . -
towards negative infinity.

We get this behavior when the degree of the factor in the
denominator is even. The distinguishing characteristic is
that the graph either heads toward positive infinity on both

2

-3

4

For example, the graph of it

+ sides of the vertical asymptote, or heads toward negative
infinity on both sides.

f(x)= (4D (x=3) is shown here. T
(x+3)*(x—2) f_J

At the horizontal intercept x = -1 T T R R
corresponding to the (x +1)?factor of 765 A432d 1 i34 5467
the numerator, the graph bounces at the AT

intercept, consistent with the quadratic 1
nature of the factor. B

AT

At the horizontal intercept x = 3 corresponding to the (x —3) factor of the numerator, the
graph passes through the axis as we’d expect from a linear factor.

At the vertical asymptote x = -3 corresponding to the (x +3)* factor of the denominator,
the graph heads towards positive infinity on both sides of the asymptote, consistent with

the behavior of the iz toolkit.
X
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At the vertical asymptote x = 2 corresponding to the (x —2) factor of the denominator,
the graph heads towards positive infinity on the left side of the asymptote and towards

negative infinity on the right side, consistent with the behavior of the — toolkit.
X

Example 9

~ (x+2)(x=3)
Sketch a graph of f(x) = —(x+1)2(x—2) :

We can start our sketch by finding intercepts and asymptotes. Evaluating the function
at zero gives the vertical intercept:

£(0)= (O+22(O—3) _3
(0+1)°(0-2)

Looking at when the numerator of the function is zero, we can determine the graph will
have horizontal intercepts at x = -2 and x = 3. At each, the behavior will be linear, with
the graph passing through the intercept.

Looking at when the denominator of the function is zero, we can determine the graph
will have vertical asymptotes at x = -1 and x = 2.

Finally, the degree of denominator is larger than the degree of the numerator, telling us
this graph has a horizontal asymptote aty = 0.

To sketch the graph, we might start by plotting the 13
three intercepts. Since the graph has no horizontal

intercepts between the vertical asymptotes, and the
vertical intercept is positive, we know the function i
must remain positive between the asymptotes,
letting us fill in the middle portion of the graph.

Since the factor associated with the vertical 4
asymptote at x = -1 was squared, we know the
graph will have the same behavior on both sides
of the asymptote. Since the graph heads towards
positive infinity as the inputs approach the
asymptote on the right, the graph will head
towards positive infinity on the left as well. For ] . ]
the vertical asymptote at x = 2, the factorwasnot = + = =2 < ,| {1 273 4 3
squared, so the graph will have opposite behavior
on either side of the asymptote.

b b .
P W s

e bta oW
PR

After passing through the horizontal intercepts, the graph will then level off towards an
output of zero, as indicated by the horizontal asymptote.
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(x+2)°(x-2)
2(x=1)*(x-3)
and rational functions to describe its behavior and sketch the function .

5. Given the function f(x) = , use the characteristics of polynomials

Since a rational function written in factored form will have a horizontal intercept where
each factor of the numerator is equal to zero, we can form a numerator that will pass
through a set of horizontal intercepts by introducing a corresponding set of factors.
Likewise, since the function will have a vertical asymptote where each factor of the
denominator is equal to zero, we can form a denominator that will produce the vertical
asymptotes by introducing a corresponding set of factors.

Writing Rational Functions from Intercepts and Asymptotes

If a rational function has horizontal intercepts at x = x;, X,,..., X, , and vertical

e Xy
asymptotes at X =v,,Vv,,...,v,, then the function can be written in the form

(X= %) " (X =%,) ™ - (X = X,) ™

(X=V)® (X=V)* e (X =V )™

where the powers p; or g; on each factor can be determined by the behavior of the graph
at the corresponding intercept or asymptote, and the stretch factor a can be determined

given a value of the function other than the horizontal intercept, or by the horizontal
asymptote if it is nonzero.

f(x)=a

Example 10

Write an equation for the rational function
graphed here.

R T
—t——

The graph appears to have horizontal SRS
intercepts at x = -2 and x = 3. At both, the ' f 4
graph passes through the intercept, suggesting ;
linear factors.

The graph has two vertical asymptotes. The
one at x = -1 seems to exhibit the basic

behavior similar to % , with the graph heading toward positive infinity on one side and

heading toward negative infinity on the other. The asymptote at x = 2 is exhibiting a

behavior similar to iz , with the graph heading toward negative infinity on both sides
X

of the asymptote.
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Utilizing this information indicates an function of the form
f(0-a (x+2)(x—3)2
(X+1)(x-2)

To find the stretch factor, we can use another clear point on the graph, such as the
vertical intercept (0,-2):
_o_g (0+2)(0—3)2

(0+1)(0-2)

—228._—6
4

8 4
a=—=—
-6 3

4(x+2)(x—13)
3(x+1)(x—2)?

This gives us a final function of f(x) =

Important Topics of this Section

Inversely proportional; Reciprocal toolkit function
Inversely proportional to the square; Reciprocal squared toolkit function
Horizontal Asymptotes
Vertical Asymptotes
Rational Functions
Finding intercepts, asymptotes, and holes.
Given equation sketch the graph
Identifying a function from its graph

Try it Now Answers

1. Long run behavior, as x — towo, f(x) > 0
Short run behavior, as x — 0, f (x) — o (there are no horizontal or vertical
intercepts)

2.

54
The function and the asymptotes are shifted 3 units right and 4 units down.
As x >3, f(xX) >x andas X - +o, f(x) > -4
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3. Vertical asymptotes at x = 2 and x = -3; horizontal asymptote aty = 4

4. For the transformed reciprocal squared function, we find the rational form.
_ _ 2 _ 2 _ 2 _
F(x) = 1 4_1 4(x-3) 1 4(x 6x+9): 4x° +24x-35

(x-3% = (x-3)° (x—3)(x—3) X2 —6X+9
Since the numerator is the same degree as the denominator we know that as
X — 1o, f(X) > —4. y=-4isthe horizontal asymptote. Next, we set the
denominator equal to zero to find the vertical asymptote at x = 3, because as x — 3,
f (x) > . We set the numerator equal to 0 and find the horizontal intercepts are at

(2.5,0) and (3.5,0), then we evaluate at 0 and the vertical intercept is at (0, _T%j

5.

Horizontal asymptote at y = 1/2.

Vertical asymptotes are at x =1, and x = 3.
Vertical intercept at (0, 4/3),

Horizontal intercepts (2, 0) and (-2, 0) o
(-2, 0) is a double zero and the graph bounces off 4
the axis at this point. B A N B T N T R
(2, 0) is a single zero and crosses the axis at this -H
point.

6
54
4
3

o9
h

o
.
'

un
1
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Section 6.7 Exercises

Match each equation form with one of the graphs.

1.f(x):§:g 2.g(x):% 3.h(x):(;__BA)2 4.k(x):2§::;2
-

A\ B,_\ C D

For each function, find the horizontal intercepts, the vertical intercept, the vertical
asymptotes, and the horizontal asymptote. Use that information to sketch a graph.

2X—-3 X-5
5. = 6_ =
p(x) X+4 q(x) 3x-1
4 5
7. 5(x)= 8. r(x)=
3x* —-14x-5 2x* +7x-15
9. f = 10. - - -
(%) 3x* +8x—16 9(x) 3x* -14+15
11 a(x)= X+ 2x=8 12, b(x)= X X8
' X2l ' X2 -4
2 2
13. h(x)= 2 +*1 14, k(x)= X =20
X—4 X-5
3x* +4x—4 5-x
000 == 18- m(X) = 7x+3
2
17 W(X):(x—l)(x+3)(x—5) 18, 2(x) = (x+2)"(x-5)

(x+2) (x~4) (x=3)(x+1)(x+4)
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Write an equation for a rational function with the given characteristics.

19. Vertical asymptotes at x=5 and x=-5
x intercepts at (2,0) and (~1,0) y intercept at (0,4)

20. Vertical asymptotes at x=—4 and x=-1
x intercepts at (1,0) and (5,0) y intercept at (0,7)

21. Vertical asymptotes at x=—4 and x=-5
x intercepts at (4,0) and (—6,0) Horizontal asymptote at y =7

22. Vertical asymptotesat x=-3 and x=6
x intercepts at (-2,0) and (1,0) Horizontal asymptote at y = -2

23. Vertical asymptote at x=-1
Double zero at x=2 y intercept at (0,2)

24. Vertical asymptote at x =3
Double zero at x=1 y intercept at (0,4)

Write an equation for the function graphed.

54
44
EE
4

1
1
7 6 -3 4 A 2 -l 1 2 N4 Y g 7

-1

24
-3+
44
54

25.

6 -5 4

“at

27.
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Write an equation for the function graphed.

'
-
S

6

5

3

3

i i

5

4

;
ooy S, 3 U AR

5 -

'
=
=4

# 2
2l
nig
44 i
sl

-

-6

e ——— _‘t_
36. )
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Write an equation for the function graphed.

39.

40.

41.

38, 5

A scientist has a beaker containing 20 mL of a solution containing 20% acid. To
dilute this, she adds pure water.
a. Write an equation for the concentration in the beaker after adding n mL of
water.
Find the concentration if 10 mL of water has been added.
How many mL of water must be added to obtain a 4% solution?
d. What is the behavior as n — oo, and what is the physical significance of this?

A scientist has a beaker containing 30 mL of a solution containing 3 grams of
potassium hydroxide. To this, she mixes a solution containing 8 milligrams per mL
of potassium hydroxide.
a. Write an equation for the concentration in the tank after adding n mL of the
second solution.
Find the concentration if 10 mL of the second solution has been added.
How many mL of water must be added to obtain a 50 mg/mL solution?
d. What is the behavior as n — oo, and what is the physical significance of this?

Oscar is hunting magnetic fields with his gauss meter, a device for measuring the
strength and polarity of magnetic fields. The reading on the meter will increase as
Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a
room containing an extremely strong magnet. When he is far down the hallway from
the room, the meter reads a level of 0.2. He then walks down the hallway and enters
the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into
the room, the meter reads 4.4. [UW]
a. Give a rational model of form m(x)= ax+b
cx+d
to how many feet x Oscar has gone into the room.
How far must he go for the meter to reach 10? 100?
Considering your function from part (a) and the results of part (b), how far
into the room do you think the magnet is?

relating the meter reading m(x)
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42. The more you study for a certain exam, the better your performance on it. If you
study for 10 hours, your score will be 65%. If you study for 20 hours, your score will
be 95%. You can get as close as you want to a perfect score just by studying long
enough. Assume your percentage score, p(n), is a function of the number of hours, n,

that you study in the form p(n) = %. If you want a score of 80%, how long do
+

you need to study? [UW]

43. A street light is 10 feet north of a

) ) (Top View—looking down) \/
straight bike path that runs east- d

west. Olav is bicycling down the SN
path at a rate of 15 miles per hour. olav  lom
At noon, Olav is 33 feet west of path { )

the point on the bike path closest P 3T

to the street light. (See the
picture). The relationship between the intensity C of light (in candlepower) and the

distance d (in feet) from the light source is given by C = LZ , Where k is a constant
d

depending on the light source. [UW]
a. From 20 feet away, the street light has an intensity of 1 candle. What is k?
b. Find a function which gives the intensity of the light shining on Olav as a
function of time, in seconds.
c. When will the light on Olav have maximum intensity?
d. When will the intensity of the light be 2 candles?
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Section 6.8 Inverses and Radical Functions

In this section, we will explore the inverses of polynomial and rational functions, and in
particular the radical functions that arise in the process.

Example 1

A water runoff collector is built in the shape of a parabolic trough as shown below.
Find the surface area of the water in the trough as a function of the depth of the water.

12 in

3ft

18in

Since it will be helpful to have an equation for the parabolic cross-sectional shape, we
will impose a coordinate system at the cross section, with x measured horizontally and y
measured vertically, with the origin at the vertex of the parabola.

y
18+

X

6 6

From this we find an equation for the parabolic shape. Since we placed the origin at the
vertex of the parabola, we know the equation will have form y(x) = ax*. Our equation

will need to pass through the point (6,18), from which we can solve for the stretch
factor a:

18 = a6’
18 1

a=—=—
36 2

Our parabolic cross section has equation y(x) = %xz

Since we are interested in the surface area of the water, we are interested in determining
the width at the top of the water as a function of the water depth. For any depth y the
width will be given by 2x, so we need to solve the equation above for x. However
notice that the original function is not one-to-one, and indeed given any output there are
two inputs that produce the same output, one positive and one negative.
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To find an inverse, we can restrict our original function to a limited domain on which it
is one-to-one. In this case, it makes sense to restrict ourselves to positive x values. On
this domain, we can find an inverse by solving for the input variable:

2

y=x
2

2y = x°

X =1,/2y

This is not a function as written. Since we are limiting ourselves to positive x values,
we eliminate the negative solution, giving us the inverse function we’re looking for

x(y) = 2y

Since x measures from the center out, the entire width of the water at the top will be 2x.
Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2x), or in
terms of y:

Area =72x =T72,/2y

The previous example illustrated two important things:
1) When finding the inverse of a quadratic, we have to limit ourselves to a domain
on which the function is one-to-one.
2) The inverse of a quadratic function is a square root function. Both are toolkit
functions and different types of power functions.

Functions involving roots are often called radical functions.

Exgmple 2

Find the inverse of f(x)=(x—2)*-3=x"—-4x+1

From the transformation form of the function, we can see this is a transformed quadratic
with vertex at (2,-3) that opens upwards. Since the graph will be decreasing on one
side of the vertex, and increasing on the other side, we can restrict this function to a
domain on which it will be one-to-one by limiting the domainto x > 2.

To find the inverse, we will use the vertex form of the quadratic. We start by replacing
the f(x) with a simple variable y, then solve for x.

y=(x-2)*-3 Add 3 to both sides
y+3=(x—-2)° Take the square root
+Jy+3=x-2 Add 2 to both sides

2+,y+3=x
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Of course, as written this is not a function. Since we restricted our original function to a
domain of x > 2, the outputs of the inverse should be the same, telling us to utilize the
+ case:

x=f(y)=2+.y+3

If the quadratic had not been given in vertex form, rewriting it into vertex form is
probably the best approach. Alternatively, we could have taken the standard equation
and rewritten it equal to zero:

0=x*—4x+1-y

We would then be able to use the quadratic formula with a=1, b=—4,and c=(1-Y),
resulting in the same solutions we found above:

=9 i\/(—4)22 ~40@A-y) _ Zi_\/l22+4y _2+ 31

y

Try it Now

’ 1. Find the inverse of the function f(x)=x*+1, on the domain x>0.

While it is not possible to find an inverse of most polynomial functions, some other basic
polynomials are invertible.

Example 3
Find the inverse of the function f(x) =5x° +1.

This is a transformation of the basic cubic toolkit function, and based on our knowledge
of that function, we know it is one-to-one. Solving for the inverse by solving for x

y=5x>+1
y —1=5x°
y-1_;

=X
5
-1
X:f_l :3y
(y) ,/ c

Notice that this inverse is also a transformation of a power function with a fractional
power, x'=.

2. Which toolkit functions have inverse functions without restricting their domain?
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Besides being important as an inverse function, radical functions are common in
important physical models.

Example 4

The velocity, v in feet per second, of a car that slammed on its brakes can be determined
based on the length of skid marks that the tires left on the ground. This relationship is
given by

v(d) = /2gfd

In this formula, g represents acceleration due to gravity (32 ft/sec?), d is the length of
the skid marks in feet, and f is a constant representing the friction of the surface. A car
lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid
marks. How fast was the car travelling when it lost control?

Using the given values of f = 0.5 and d = 200, we can evaluate the given formula:
v(200) = \/2(32)(0.5)(200) =80 ft/sec, which is about 54.5 miles per hour.

When radical functions are composed with other functions, determining domain can
become more complicated.

xample 5

Find the domain of the function f(x) = /W .
X j—

Since a square root is only defined when the quantity under the radical is non-negative,
(x+2)(x—23)
(x-1)
(change from positive to negative or vice versa) at horizontal intercepts and at vertical

asymptotes. For this equation, the graph could change signs at x =-2, 1, and 3.

we need to determine where > 0. A rational function can change signs

To determine on which intervals the rational expression is positive, we could evaluate
the expression at test values, or sketch a graph. While both approaches work equally
well, for this example we will use a graph.

This function has two horizontal intercepts, both of which exhibit linear behavior,
where the graph will pass through the intercept. There is one vertical asymptote,
corresponding to a linear factor, leading to a behavior similar to the basic reciprocal
toolkit function. There is a vertical intercept at (0, 6). This graph does not have a
horizontal asymptote, since the degree of the numerator is larger than the degree of the
denominator.
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From the vertical intercept and horizontal intercept at x = -2, we can sketch the left side
of the graph. From the behavior at the asymptote, we can sketch the right side of the
graph.

From the graph, we can now tell on which /

intervals this expression will be non-negative, N S
so the original function f(x) will be defined.
f(x) has domain —2<x<l1lor x>3, orin

interval notation, [-2,1) U[3,).

A4 547

S ko b

o
=

Like with finding inverses of quadratic functions, it is sometimes desirable to find the
inverse of a rational function, particularly of rational functions that are the ratio of linear
functions, such as our concentration examples.

xample 6

. 2 4 . . .
The function C(n) = % was used in the previous section to represent the
+n

concentration of an acid solution after n mL of 40% solution has been added to 100 mL
of a 20% solution. We might want to be able to determine instead how much 40%
solution has been added based on the current concentration of the mixture.

To do this, we would want the inverse of this function:

C= 20+04n multiply both sides by the denominator
100 +n

C(100 +n) = 20 +0.4n distribute
100C+Cn=20+0.4n group everything with n on one side
100C-20=0.4n—-Cn factor out n
100C -20 =(0.4—-C)n divide to find the inverse
n(C) = 100C - 20
04-C

If, for example, we wanted to know how many mL of 40% solution need to be added to
obtain a concentration of 35%, we can simply evaluate the inverse rather than solving
an equation involving the original function:

n(0.35) = 100(0.35)-20 15

= = 300 mL of 40% solution would need to be added.
0.4-0.35 0.05

3. Find the inverse of the function f(x) = XL;
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[Important Topics of this Section

Imposing a coordinate system

Finding an inverse function
Restricting the domain

Invertible toolkit functions

Radical Functions

Inverses of rational functions

Try it Now Answers

1. x=fYy)=4y-1

2. identity, cubic, square root, cube root
3. Fi(y) =13
y-1
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Section 6.8 Exercises

For each function, find a domain on which the function is one-to-one and non-decreasing,
then find an inverse of the function on this domain.

1. f(x)=(x—4)2 2. f(x)=(x+2)2
3. f(x)=12-x? 4. f(x)=9-x°
5. f(x)=3x*+1 6. f(x)=4-2x°

Find the inverse of each function.

7. f(X)=9+4x—4 8. f(x)=v6x—-8+5
9. f(x)=9+2%x 10. f(x)=3-%/x

2 3
11 f(X):X—+8 12 f(X):m

X+3 X—2
13 f(X)=m 14 f(X)=m
15. f(x):gx*;‘x‘ 16. f(x)=gxgi

Police use the formula v =+/20L to estimate the speed of a car, v, in miles per hour,
based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt
road.

17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet
long. Approximately how fast was the car traveling?

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet
long. Approximately how fast was the car traveling?

The formula v =+/2.7r models the maximum safe speed, v, in miles per hour, at which a
car can travel on a curved road with radius of curvature 7, in feet.

19. A highway crew measures the radius of curvature at an exit ramp on a highway as
430 feet. What is the maximum safe speed?

20. A highway crew measures the radius of curvature at a tight corner on a highway as
900 feet. What is the maximum safe speed?
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21.

22.

23.

A drainage canal has a cross- 4 )
section in the shape of a parabola. 20 feetN - Cemerlme

Suppose that the canal is 10 feet ‘
deep and 20 feet wide at the top. If ﬁ\

the water depth in the ditch is 5 4;1 0 feet [ T]
feet, how wide is the surface of the
water in the ditch? [UW] [T TTT |

Brooke is located 5 miles out from the

nearest point A along a straight shoreline in Brooke —

her sea kayak. Hunger strikes and she wants o oeean
to make it to Kono’s for lunch; see picture. 1o o

Brooke can paddle 2 mph and walk 4 mph. omi kayalk reaches shore here
[U\N] shore A ‘i‘;-/;";'_"/; = ___1Konos

a. If she paddles along a straight line
course to the shore, find an
expression that computes the total time to reach lunch in terms of the location
where Brooke beaches her kayak.

b. Determine the total time to reach Kono’s if she paddles directly to the point A.

. Determine the total time to reach Kono’s if she paddles directly to Kono’s.

d. Do you think your answer to b or ¢ is the minimum time required for Brooke
to reach lunch?

e. Determine the total time to reach Kono’s if she paddles directly to a point on
the shore half way between point A and Kono’s. How does this time compare
to the times in parts b or ¢? Do you need to modify your answer to part d?

6 mi

Clovis is standing at the edge of a dropoff, which slopes 4 feet downward from him
for every 1 horizontal foot. He launches a small model rocket from where he is
standing. With the origin of the coordinate system located where he is standing, and
the x-axis extending horizontally, the path of the rocket is described by the formula
y =—2x> +120x. [UW]
a. Give afunction h= f(x) relating the height h of the rocket above the sloping
ground to its x-coordinate.
b. Find the maximum height of the rocket above the sloping ground. What is its
x-coordinate when it is at its maximum height?
c. Clovis measures the height h of the rocket above the sloping ground while it is
going up. Give a function x = g (h) relating the x-coordinate of the rocket to

h.
d. Does the function from (c) still work when the rocket is going down? Explain.



6.8 Inverses and Radical Functions 411

24. A trough has a semicircular
cross section with a radius 7
of 5 feet. Water starts N water
flowing into the trough in
such a way that the depth of
the water is increasing at a
rate of 2 inches per hour. 77 7 7 S5t TN N N N
[UW]

a. Give afunction
w= f(t) relating

cross-section of
trough

the width w of the surface of the water to the time t, in hours. Make sure to
specify the domain and compute the range too.
b. After how many hours will the surface of the water have width of 6 feet?

c. Giveafunction t=f ™ (w) relating the time to the width of the surface of the

water. Make sure to specify the domain and compute the range too.
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Section 7.1 Exponential Functions

India is the second most populous country in the world, with a population in 2008 of
about 1.14 billion people. The population is growing by about 1.34% each year'. We
might ask if we can find a formula to model the population, P, as a function of time, t, in
years after 2008, if the population continues to grow at this rate.

In linear growth, we had a constant rate of change — a constant number that the output
increased for each increase in input. For example, in the equation f (x) =3x+4, the
slope tells us the output increases by three each time the input increases by one. This
population scenario is different — we have a percent rate of change rather than a constant
number of people as our rate of change. To see the significance of this difference
consider these two companies:

Company A has 100 stores, and expands by opening 50 new stores a year

Company B has 100 stores, and expands by increasing the number of stores by 50% of
their total each year.

Looking at a few years of growth for these companies:

Year | Stores, company A Stores, company B
0 100 Starting with 100 each | 100
1 100 + 50 =150 They both grow by 50 100 + 50% of 100

stores in the first year. 100 + 0.50(100) = 150

2 150 + 50 = 200 Store A grows by 50, 150 + 50% of 150
Store B grows by 75 150 + 0.50(150) = 225

3 200 + 50 = 250 Store A grows by 50, 225 + 50% of 225
Store B grows by 112.5 | 225 + 0.50(225) = 337.5

! World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved
August 20, 2010

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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Notice that with the percent growth, each year the company is grows by 50% of the
current year’s total, so as the company grows larger, the number of stores added in a year
grows as well.

To try to simplify the calculations, notice that after 1 year the number of stores for
company B was:
100 + 0.50(100) or equivalently by factoring

100(1+ 0.50) =150

We can think of this as “the new number of stores is the original 100% plus another
50%”.

After 2 years, the number of stores was:
150 + 0.50(150) or equivalently by factoring

150(1+ 0.50) now recall the 150 came from 100(1+0.50). Substituting that,
100 (1+ 0.50)(1+0.50) =100(1+0.50)* = 225

After 3 years, the number of stores was:
225 +0.50(225) or equivalently by factoring

225(1+0.50) now recall the 225 came from 100(1+ 0.50)?. Substituting that,
100(L+ 0.50)% (L + 0.50) =100(L+ 0.50)® = 337.5

From this, we can generalize, noticing that to show a 50% increase, each year we
multiply by a factor of (1+0.50), so after n years, our equation would be

B(n) =100(1+0.50)"

In this equation, the 100 represented the initial quantity, and the 0.50 was the percent
growth rate. Generalizing further, we arrive at the general form of exponential functions.

Exponential Function

An exponential growth or decay function is a function that grows or shrinks at a
constant percent growth rate. The equation can be written in the form
f(x)=all+r)* or f(x)=ab* whereb=1+r
Where
a is the initial or starting value of the function
r is the percent growth or decay rate, written as a decimal
b is the growth factor or growth multiplier. Since powers of negative numbers behave
strangely, we limit b to positive values.

To see more clearly the difference between exponential and linear growth, compare the
two tables and graphs below, which illustrate the growth of company A and B described
above over a longer time frame if the growth patterns were to continue
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years | Company A | Company B
2 200 225
4 300 506
6 400 1139
8 500 2563
10 600 5767

Example 1

Write an exponential function for India’s population, and use it to predict the population
in 2020.

At the beginning of the chapter we were given India’s population of 1.14 billion in the
year 2008 and a percent growth rate of 1.34%. Using 2008 as our starting time (t = 0),
our initial population will be 1.14 billion. Since the percent growth rate was 1.34%, our
value for r is 0.0134.

Using the basic formula for exponential growth f (x) =a(l+r)* we can write the
formula, f(t) =1.14(1+0.0134)"

To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12
years after 2008.

f(12) =1.14(1+ 0.0134)* ~1.337 billion people in 2020

Try it Now

1. Given the three statements below, identify which represent exponential functions.

A. The cost of living allowance for state employees increases salaries by 3.1% each
year.

B. State employees can expect a $300 raise each year they work for the state.

C. Tuition costs have increased by 2.8% each year for the last 3 years.

xample 2
A certificate of deposit (CD) is a type of savings account offered by banks, typically
offering a higher interest rate in return for a fixed length of time you will leave your
money invested. If a bank offers a 24 month CD with an annual interest rate of 1.2%
compounded monthly, how much will a $1000 investment grow to over those 24
months?

First, we must notice that the interest rate is an annual rate, but is compounded monthly,
meaning interest is calculated and added to the account monthly. To find the monthly
interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a
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year: 1.2%/12 = 0.1%. Each month we will earn 0.1% interest. From this, we can set
up an exponential function, with our initial amount of $1000 and a growth rate of r =
0.001, and our input m measured in months.

f (m) =1ooo(1+ %j
12

f (m) =1000 (1+0.001)"
After 24 months, the account will have grown to f (24) =1000(1+0.001)** =$1024.28

2. Looking at these two equations that represent the balance in two different savings
accounts, which account is growing faster, and which account will have a higher
balance after 3 years?

A(t) =1000(1.05)' B(t) = 900(1.075)

In all the preceding examples, we saw exponential growth. Exponential functions can
also be used to model quantities that are decreasing at a constant percent rate. An
example of this is radioactive decay, a process in which radioactive isotopes of certain
atoms transform to an atom of a different type, causing a percentage decrease of the
original material over time.

xample 3

Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning
13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this
case) each day. If you begin with 100 mg of Bismuth-210, how much remains after one
week?

With radioactive decay, instead of the quantity increasing at a percent rate, the quantity
is decreasing at a percent rate. Our initial quantity is a = 100 mg, and our growth rate
will be negative 13%, since we are decreasing: r =-0.13. This gives the equation:

Q(d) =100(1-0.13)* =100(0.87)"
This can also be explained by recognizing that if 13% decays, then 87 % remains.

After one week, 7 days, the quantity remaining would be
Q(7) =100(0.87)" = 37.73 mg of Bismuth-210 remains.

3. A population of 1000 is decreasing 3% each year. Find the population in 30 years.
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Example 4

T(q) represents the total number of Android smart phone contracts, in thousands, held
by a certain Verizon store region measured quarterly since January 1, 2010,

Interpret all of the parts of the equation T (2) = 86(1.64)° = 231.3056 .

Interpreting this from the basic exponential form, we know that 86 is our initial value.
This means that on Jan. 1, 2010 this region had 86,000 Android smart phone contracts.
Since b =1 + r = 1.64, we know that every quarter the number of smart phone contracts
grows by 64%. T(2) = 231.3056 means that in the 2™ quarter (or at the end of the
second quarter) there were approximately 231,305 Android smart phone contracts.

Finding Equations of Exponential Functions

In the previous examples, we were able to write equations for exponential functions since
we knew the initial quantity and the growth rate. 1f we do not know the growth rate, but
instead know only some input and output pairs of values, we can still construct an
exponential function.

In 2002, 80 deer were reintroduced into a wildlife refuge area from which the
population had previously been hunted to elimination. By 2008, the population had
grown to 180 deer. If this population grows exponentially, find a formula for the
function.

By defining our input variable to be t, years after 2002, the information listed can be
written as two input-output pairs: (0,80) and (6,180). Notice that by choosing our input
variable to be measured as years after the first year value provided, we have effectively
“given” ourselves the initial value for the function: a =80. This gives us an equation
of the form

f (t) =80b".
Substituting in our second input-output pair allows us to solve for b:
180 = 80b° Divide by 80
¢ 180 9 th .
b® = 80 2 Take the 6™ root of both sides.

b= i/g =1.1447
4

This gives us our equation for the population:
f (t) =80(1.1447)"

Recall that since b = 1+r, we can interpret this to mean that the population growth rate
is r = 0.1447, and so the population is growing by about 14.47% each year.

In this example, you could also have used (9/4)*(1/6) to evaluate the 6" root if your
calculator doesn’t have an n™ root button.



418 Chapter 7

In the previous example, we chose to use the f(x) =ab* form of the exponential

function rather than the f(x) =a(l+r)* form. This choice was entirely arbitrary — either
form would be fine to use.

When finding equations, the value for b or r will usually have to be rounded to be written
easily. To preserve accuracy, it is important to not over-round these values. Typically,
you want to be sure to preserve at least 3 significant digits in the growth rate. For
example, if your value for b was 1.00317643, you would want to round this no further
than to 1.00318.

In the previous example, we were able to “give” ourselves the initial value by clever
definition of our input variable. Next we consider a situation where we can’t do this.

Find a formula for an exponential function passing through the points (-2,6) and (2,1).

Since we don’t have the initial value, we will take a general approach that will work for
any function form with unknown parameters: we will substitute in both given input-

output pairs in the function form f(x) = ab* and solve for the unknown values, a and b.
Substituting in (-2, 6) gives 6 = ab™
Substituting in (2, 1) gives 1= ab?

We now solve these as a system of equations. To do so, we could try a substitution
approach, solving one equation for a variable, then substituting that expression into the
second equation.
Solving 6 = ab™ for a:

6

a:F:6b2

In the second equation, 1= ab?*, we substitute the expression above for a:
1= (6b*)b?

1=6b*
Ezb“
6

b= zi/i ~ 0.6389
6

Going back to the equation a = 6b? lets us find a:
a=6b’ =6(0.6389)* = 2.4492

Putting this together gives the equation f (x) = 2.4492(0.6389)*
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Try it Now
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function
that passes through these two points.

xample 7
Find an equation for the exponential function graphed below.

5 4 3 2 I I 2 3 4 5

2

The initial value for the function is not clear in this graph, so we will instead work using
two clearer points. There are three fairly clear points: (-1, 1), (1, 2), and (3, 4). As we
saw in the last example, two points are sufficient to find the equation for a standard
exponential, so we will use the latter two points.

Substituting in (1,2) gives 2 = ab*
Substituting in (3,4) gives 4 = ab®

Solving the first equation for a gives a = %

Substituting this expression for a into the second equation:

4 = ab®
3
4=%b3 =% Simplify the right-hand side

4 = 2h?
2 =h?
b=+2

Since we restrict ourselves to positive values of b, we will use b = V2. We can then go
back and find a:

2 2
a=—:—:’\/5
b V2

This gives us a final equation of f(x) = «/E(ﬁ)x.
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Compound Interest

In the bank certificate of deposit (CD) example earlier in the section, we encountered
compound interest. Typically bank accounts and other savings instruments in which
earnings are reinvested, such as mutual funds and retirement accounts, utilize compound
interest. The term compounding comes from the behavior that interest is earned not on
the original value, but on the accumulated value of the account.

In the example from earlier, the interest was compounded monthly, so we took the annual
interest rate, usually called the nominal rate or annual percentage rate (APR) and
divided by 12, the number of compounds in a year, to find the monthly interest. The
exponent was then measured in months.

Generalizing this, we can form a general formula for compound interest. If the APR is
written in decimal form as r, and there are k compounding periods per year, then the
interest per compounding period will be r/k. Likewise, if we are interested in the value
after t years, then there will be kt compounding periods in that time.

Compound Interest Formula

Compound Interest can be calculated using the formula

r kt

Where

A(t) is the account value

t is measured in years

a is the starting amount of the account, often called the principal
r is the annual percentage rate (APR), also called the nominal rate
k is the number of compounding periods in one year

If you invest $3,000 in an investment account paying 3% interest compounded
quarterly, how much will the account be worth in 10 years?

Since we are starting with $3000, a = 3000

Our interest rate is 3%, so r = 0.03

Since we are compounding quarterly, we are compounding 4 times per year, so k =4
We want to know the value of the account in 10 years, so we are looking for A(10), the
value when t = 10.

4(10)
A(L0) = 3000 (1 + 0'%3) = $4045 .05

The account will be worth $4045.05 in 10 years.
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Example 9

A 529 plan is a college savings plan in which a relative can invest money to pay for a
child’s later college tuition, and the account grows tax free. If Lily wants to set up a
529 account for her new granddaughter, wants the account to grow to $40,000 over 18
years, and she believes the account will earn 6% compounded semi-annually (twice a
year), how much will Lily need to invest in the account now?

Since the account is earning 6%, r = 0.06
Since interest is compounded twice a year, k = 2

In this problem, we don’t know how much we are starting with, so we will be solving
for a, the initial amount needed. We do know we want the end amount to be $40,000,
so we will be looking for the value of a so that A(18) = 40,000.

2(18)
40,000 = A(18) = a[1+ %)
40,000 = a(2.8983)
40,000
a J—

= ~ $13,801
2.8983

Lily will need to invest $13,801 to have $40,000 in 18 years.

| 5. Recalculate example 2 from above with quarterly compounding.

Because of compounding throughout the year, with compound interest the actual increase
in a year is more than the annual percentage rate. 1f $1,000 were invested at 10%, the
table below shows the value after 1 year at different compounding frequencies:

Frequency Value after 1 year
Annually $1100
Semiannually $1102.50
Quarterly $1103.81
Monthly $1104.71

Daily $1105.16

If we were to compute the actual percentage increase for the daily compounding, there
was an increase of $105.16 from an original amount of $1,000, for a percentage increase

of —1230;6 = 0.10516 = 10.516% increase. This quantity is called the annual percentage

yield (APY).
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Notice that given any starting amount, the amount after 1 year would be
k
AQQ) = a(1+ ﬁj . To find the total change, we would subtract the original amount, then

to find the percentage change we would divide that by the original amount:

k
a(l'i':;j —a K
—:(1+£j 1
k

a

Annual Percentage Yield

The annual percentage yield is the actual percent a quantity increases in one year. It
can be calculated as

k
APY =(1+£) 1

Notice this is equivalent to finding the value of $1 after 1 year, and subtracting the
original dollar.

xample 10

Bank A offers an account paying 1.2% compounded quarterly. Bank B offers an
account paying 1.1% compounded monthly. Which is offering a better rate?

We can compare these rates using the annual percentage yield — the actual percent
increase in a year.

4
Bank A: APY :(1+ #j —-1=0.012054 =1.2054%

12
Bank B: APY = (1+ %j —1=0.011056 =1.1056%

Bank B’s monthly compounding is not enough to catch up with Bank A’s better APR.
Bank A offers a better rate.

A Limit to Compounding

As we saw earlier, the amount we earn increases as we increase the compounding
frequency. The table, though, shows that the increase from annual to semi-annual
compounding is larger than the increase from monthly to daily compounding. This might
lead us to believe that although increasing the frequency of compounding will increase
our result, there is an upper limit to this process.
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To see this, let us examine the value of $1 invested at 100% interest for 1 year.

Frequency Value
Annual $2
Semiannually $2.25
Quarterly $2.441406
Monthly $2.613035
Daily $2.714567
Hourly $2.718127
Once per minute $2.718279
Once per second $2.718282

These values do indeed appear to be approaching an upper limit. This value ends up
being so important that it gets represented by its own letter, much like how 7 represents a
number.

Euler’s Number: e

k
e is the letter used to represent the value that £1+ %) approaches as k gets big.

e~ 2.718282

Because e is often used as the base of an exponential, most scientific and graphing
calculators have a button that can calculate powers of e, usually labeled €*. Some
computer software instead defines a function exp(x), where exp(x) = €.

Because e arises when the time between compounds becomes very small, e allows us to
define continuous growth and allows us to define a new toolkit function, f(x)=e".

Continuous Growth Formula

Continuous Growth can be calculated using the formula
f(x) =ae™
where

a is the starting amount
r is the continuous growth rate

This type of equation is commonly used when describing quantities that change more or
less continuously, like chemical reactions, growth of large populations, and radioactive
decay.
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Example 11
Radon-222 decays at a continuous rate of 17.3% per day. How much will 200mg of
Radon-222 decay to in 3 days?

Since we are given a continuous decay rate, we use the continuous growth formula.
Since the substance is decaying, we know the growth rate will be negative: r =-0.173

f (3) =100e %" ~ 59,512 mg of Radon-222 will remain.

Try it Now
6. Interpret the following: S(t) =20e*'*'if S(t) represents the growth of a substance in
grams, and time is measured in days.

Continuous growth is also often applied to compound interest, allowing us to talk about
continuous compounding.

Example 12

If $1000 is invested in an account earning 10% compounded continuously, find the
value after 1 year.

Here, the continuous growth rate is 10%, so r = 0.10. We start with $1000, so a = 1000.
To find the value after 1 year,

f (1) =1000e*1°® ~ $1105.17

Notice this is a $105.17 increase for the year. As a percent increase, this is

105.17 _ 0.10517 =10.517% increase over the original $1000.

1000

Notice that this value is slightly larger than the amount generated by daily compounding
in the table computed earlier.

The continuous growth rate is like the nominal growth rate (or APR) — it reflects the
growth rate before compounding takes effect. This is different than the annual growth

rate used in the formula f (x) = a(l+r)*, which is like the annual percentage yield — it
reflects the actual amount the output grows in a year.

While the continuous growth rate in the example above was 10%, the actual annual yield
was 10.517%. This means we could write two different looking but equivalent formulas
for this account’s growth:

f (t) =1000e%** using the 10% continuous growth rate
f (t) =1000(1.10517)" using the 10.517% actual annual yield rate.
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mportant Topics of this Section

Percent growth

Exponential functions
Finding formulas
Interpreting equations
Graphs

Exponential Growth & Decay

Compound interest

Annual Percent Yield

Continuous Growth

Try it Now Answers

1. A & C are exponential functions, they grow by a % not a constant number.
2. B(t) is growing faster, but after 3 years A(t) still has a higher account balance

3. 1000(0.97)* = 401.0071
4. f(x)=2(15)

5. $1024.25
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day.
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Section 7.1 Exercises

For each table below, could the table represent a function that is linear, exponential, or

neither?
1. x |1 ]2 |3 |4 2. x (1 ]2 (3 |4
f(x) | 70 | 40 | 10 | -20 g(x) | 40 | 32| 26 | 22
3. Xx |1 |2 |3 4 4. Xx |1 ]2 |3 |4
h(x) | 70 | 49 | 34.3 | 24.01 k(x) |90 | 80 | 70 | 60
5. x (1 12 |3 4 6. Xx |1 |2 |3 4
m(x) | 80 | 61 | 42.9 | 25.61 n(x) | 90 | 81 | 72.9 | 65.61
7. A population numbers 11,000 organisms initially and grows by 8.5% each year.

10.

11.

12.

Write an exponential model for the population.

A population is currently 6,000 and has been increasing by 1.2% each day. Write an
exponential model for the population.

The fox population in a certain region has an annual growth rate of 9 percent per year.
It is estimated that the population in the year 2010 was 23,900. Estimate the fox
population in the year 2018.

The amount of area covered by blackberry bushes in a park has been growing by 12%
each year. It is estimated that the area covered in 2009 was 4,500 square feet.
Estimate the area that will be covered in 2020.

A vehicle purchased for $32,500 depreciates at a constant rate of 5% each year.
Determine the approximate value of the vehicle 12 years after purchase.

A business purchases $125,000 of office furniture which depreciates at a constant rate
of 12% each year. Find the residual value of the furniture 6 years after purchase.
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Find a formula for an exponential function passing through the two points.

13. (0,6), (3,750) 14. (0,3), (2,75)
15. (0,2000), (2,20) 16. (0,9000), (3,72)
17(1,}324 18(1,)110
19. (-2,6),(3.1) 20. (-3,4), (3.2)
21. (31), (5.4) 22.(2,5), (6,9)

23. A radioactive substance decays exponentially. A scientist begins with 100 milligrams
of a radioactive substance. After 35 hours, 50 mg of the substance remains. How
many milligrams will remain after 54 hours?

24. A radioactive substance decays exponentially. A scientist begins with 110 milligrams
of a radioactive substance. After 31 hours, 55 mg of the substance remains. How
many milligrams will remain after 42 hours?

25. A house was valued at $110,000 in the year 1985. The value appreciated to $145,000
by the year 2005. What was the annual growth rate between 1985 and 2005?
Assume that the house value continues to grow by the same percentage. What did the
value equal in the year 2010?

26. An investment was valued at $11,000 in the year 1995. The value appreciated to
$14,000 by the year 2008. What was the annual growth rate between 1995 and 2008?
Assume that the value continues to grow by the same percentage. What did the value
equal in the year 2012?

27. A car was valued at $38,000 in the year 2003. The value depreciated to $11,000 by
the year 2009. Assume that the car value continues to drop by the same percentage.
What will the value be in the year 2013?

28. A car was valued at $24,000 in the year 2006. The value depreciated to $20,000 by
the year 2009. Assume that the car value continues to drop by the same percentage.
What will the value be in the year 2014?

29. If $4,000 is invested in a bank account at an interest rate of 7 per cent per year, find
the amount in the bank after 9 years if interest is compounded annually, quarterly,
monthly, and continuously.
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30.

31.

32.

33.

34.

35.

36.

If $6,000 is invested in a bank account at an interest rate of 9 per cent per year, find
the amount in the bank after 5 years if interest is compounded annually, quarterly,
monthly, and continuously.

Find the annual percentage yield (APY) for a savings account with annual percentage
rate of 3% compounded quarterly.

Find the annual percentage yield (APY) for a savings account with annual percentage
rate of 5% compounded monthly.

A population of bacteria is growing according to the equation P(t)=1600e**"", with t
measured in years. Estimate when the population will exceed 7569.

A population of bacteria is growing according to the equation P(t)=1200e*'"*, with t
measured in years. Estimate when the population will exceed 3443.

In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage
was $2.30 per hour. Assume the minimum wage grows according to an exponential
model w(t), where t represents the time in years after 1960. [UW]

a. Find a formula for w(t).

b. What does the model predict for the minimum wage in 1960?
c. If the minimum wage was $5.15 in 1996, is this above, below or equal to what
the model predicts?

In 1989, research scientists published a model for predicting the cumulative number
t—1980 js

of AIDS cases (in thousands) reported in the United States: a(t) :155(

where t is the year. This paper was considered a “relief”, since there was a fear the
correct model would be of exponential type. Pick two data points predicted by the
research model a(t) to construct a new exponential model b(t) for the number of

cumulative AIDS cases. Discuss how the two models differ and explain the use of the
word “relief.” [UW]



37. You have a chess board as pictured, with
squares numbered 1 through 64. You also have 63
a huge change jar with an unlimited number of
dimes. On the first square you place one dime.
On the second square you stack 2 dimes. Then
you continue, always doubling the number
from the previous square. [UW]
a.

Section 7.1 Exponential Functions 429

64

How many dimes will you have

stacked on the 10th square?

How many dimes will you have
stacked on the nth square? 10

How many dimes will you have 1

2
-

stacked on the 64th square?
Assuming a dime is 1 mm thick, how
high will this last pile be?

The distance from the earth to the sun is approximately 150 million km.
Relate the height of the last pile of dimes to this distance.
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Section 7.2 Graphs of Exponential Functions

Like with linear functions, the graph of an exponential function is determined by the
values for the parameters in the function’s formula.

To get a sense for the behavior of exponentials, let us begin by looking more closely at
the function f (x) = 2*. Listing a table of values for this function:

X -3 -2 -1 0 1 2 3
f(x) 1 1 1 1 2 4 8
8 4 2
Notice that:

1)  This function is positive for all values of x.

2)  Asxincreases, the function grows faster and faster (the rate of change
increases).

3)  As x decreases, the function values grow smaller, approaching zero.

4)  This is an example of exponential growth.

Looking at the function g(x) = 6)

X -3 -2 -1 0 1 2 3
1 1 1

X 8 4 2 1 = = =
g(x) 5 2 A

Note this function is also positive for all values of x, but in this case grows as x decreases,
and decreases towards zero as x increases. This is an example of exponential decay. You
may notice from the table that this function appears to be the horizontal reflection of the

f (x) = 2* table. This is in fact the case:

f(x)=27 = (27) = (gj - g(x)

Looking at the graphs also confirms this relationship:
41
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Consider a function for the form f (x) =ab*. Since a, which we called the initial value
in the last section, is the function value at an input of zero, a will give us the vertical
intercept of the graph. From the graphs above, we can see that an exponential graph will
have a horizontal asymptote on one side of the graph, and can either increase or decrease,
depending upon the growth factor. This horizontal asymptote will also help us determine
the long run behavior and is easy to determine from the graph.

The graph will grow when the growth rate is positive, which will make the growth factor
b larger than one. When it’s negative, the growth factor will be less than one.

Graphical Features of Exponential Functions

Graphically, in the function f(x) = ab”*
a is the vertical intercept of the graph
b determines the rate at which the graph grows
the function will increase if b > 1
the function will decrease if 0 <b <1
The graph will have a horizontal asymptote at y = 0
The graph will be concave up if a > 0; concave down if a<0.

The domain of the function is all real numbers
The range of the function is (0, )

When sketching the graph of an exponential function, it can be helpful to remember that
the graph will pass through the points (0, a) and (1, ab).

The value b will determine the function’s long run behavior:
Ifb>1as x—>w, f(X) >o andas x - -0, f(x)—>0.

IfO0<b<1,a Xx—>o, f(X) >0andas x - —0, f(X) > x.

xample 1

Sketch a graph of f(x) = 4[%}

This graph will have a vertical intercept at (0,4), and
pass through the point (1, gj Since b < 1, the graph

will be decreasing towards zero. Since a > 0, the graph
will be concave up.

We can also see from the graph the long run behavior:
as X —»>oo, f(x) >0andas x » -0, f(X) > x.
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs
below. The first set shows various graphs, where a remains the same and we only change
the value for b.

Notice that the closer the value of b is to 1, the less steep the graph will be.

In the next set of graphs, a is altered and our value for b remains the same.

4(12* 12x
,5_
5-/
________
5 4 3 2 'Ij; 3+ 4 3

Notice that changing the value for a changes the vertical intercept. Since a is multiplying
the b term, a acts as a vertical stretch factor, not as a shift. Notice also that the long run
behavior for all of these functions is the same because the growth factor did not change
and none of these a values introduced a vertical flip.



Section 7.2 Graphs of Exponential Functions 433

Example 2
Match each equation with its graph.
f(x) =2(1.3)"

g(x) =2(1.8)"
h(x) = 4(1.3)"
k(x) =4(0.7)"

-54';-_'%-,'?-';; I 2 3 4 5

The graph of k(x) is the easiest to identify, since it is the only equation with a growth
factor less than one, which will produce a decreasing graph. The graph of h(x) can be
identified as the only growing exponential function with a vertical intercept at (0,4).
The graphs of f(x) and g(x) both have a vertical intercept at (0,2), but since g(x) has a
larger growth factor, we can identify it as the graph increasing faster.

1. Graph the following functions on the same axis: f(x) =(2)" ; g(x) =2(2)*;
h(x) =2(1/2)".

Transformations of Exponential Graphs

While exponential functions can be transformed following the same rules as any function,
there are a few interesting features of transformations that can be identified. The first
was seen at the beginning of the section — that a horizontal reflection is equivalent to a
change in the growth factor. Likewise, since a is itself a stretch factor, a vertical stretch
of an exponential corresponds with a change in the initial value of the function.
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Next consider the effect of a horizontal shift on an exponential function. Shifting the
function f(x) =3(2)* four units to the left would give f (x +4) = 3(2)***. Employing
exponent rules, we could rewrite this:

f (x+4)=3(2)"* =3(2)*(2*) = 48(2)*

Interestingly, it turns out that a horizontal shift of an exponential function corresponds
with a change in initial value of the function.

Lastly, consider the effect of a vertical shift on an exponential function. Shifting
f (x) =3(2)* down 4 units would give the equation f(x) =3(2)* —4, yielding the graph
54

— ha e R
1

5 5 4 3 2 J 3 § 4 § &

Notice that this graph is substantially different than the basic exponential graph. Unlike a
basic exponential, this graph does not have a horizontal asymptote at y = 0; due to the
vertical shift, the horizontal asymptote has also shifted to y = -4. We can see that as
X—o, f(X) > andas X - —oo, f(x) > 4.

We have determined that a vertical shift is the only transformation of an exponential
function that changes the graph in a way that cannot be achieved by altering the

parameters a and b in the basic exponential function f(x)=ab"*.

Transformations of Exponentials
Any transformed exponential can be written in the form
f(x)=ab* +c
where
y = c is the horizontal asymptote.

Note that, due to the shift, the vertical intercept is shifted to (0, a+c).

Try it Now

2. Write the equation and graph the exponential function described as follows:
f (x) = eis vertically stretched by a factor of 2, flipped across the y axis and shifted up
4 units.
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Example 3

Sketch a graph of f(x) = —3@) +4.

Notice that in this exponential function, the negative in the stretch factor -3 will cause a
vertical reflection, and the vertical shift up 4 will move the horizontal asymptote to

y = 4. Sketching this as a transformation of g(x) = [%) :

: 1" .

The basic g(x) = Ej Vertically reflected and stretched by 3
5 54
4 44
3 i
2 24
.

S R 2 § 4 3 54§ 2 2 3

4 —j4
-2 -2
-7 -3
/

Notice that while the domain of this function is unchanged, due to the reflection and
shift, the range of this function is (-, 4).

As X —>oo, f(X) >4 andas x — -0, f(X) > -0,

Functions leading to graphs like the one above are common as models for learning and
models of growth approaching a limit.
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Example 4

Find an equation for the graph sketched below.
5

Looking at this graph, it appears to have a horizontal asymptote at y = 5, suggesting an
equation of the form f(x) =ab* +5. To find values for a and b, we can identify two

other points on the graph. It appears the graph passes through (0,2) and (-1,3), so we
can use those points. Substituting in (0,2) allows us to solve for a

2=ab’+5
2=a+5
a=-3

Substituting in (-1,3) allows us to solve for b
3=-30"+5

_-3

b

-2b=-3

-2

b=§=1.5
2

The final formula for our function is f(x) =-3(1.5)* +5.

Try it Now

3. Given the graph of the transformed exponential function, find a formula and describe
the long run behaviors
4..
3__
2
gan
T2 54
g4
24
34
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[Important Topics of this Section
Graphs of exponential functions
Intercept
Growth factor
Exponential Growth
Exponential Decay
Horizontal intercepts
Long run behavior
Transformations

Try it Now Answers

2. f(x)=—-2e"+4; 4]
3. f(x)=3(.5) " -1or f(x)=3(2)-1;
As X >, f(X) >0 andas x > —o, f(x)—>-1
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Section 7.2 Exercises

Match each function with one of the graphs below.

1. f(x)=2(0.69)" \

2. f(x)=2(1.28)" & a
3. f(x)=2(0.81)"

4. f(x)=4(1.28)"

5 f(x)=2(1.59)"

6. f(x)=4(0.69)"

If all the graphs to the right have equations with form

f(x)=ab", N c

7. Which graph has the largest value for b? A x ',5,
8. Which graph has the smallest value for b? P F

9. Which graph has the largest value for a?

10. Which graph has the smallest value for a?

Sketch a graph of each of the following transformations of f (x)=2"

11. f(x)=2" 12. g(x)=-2"
13. h(x)=2"+3 14, f(x)=2"-4
15. f(x)=2"" 16. k(x)=2""

Starting with the graph of f (x)=4", find a formula for the function that results from

17. Shifting f(x) 4 units upwards
18. Shifting f(x) 3 units downwards
19. Shifting f(x) 2 units left

20. Shifting f(x) 5 units right

21. Reflecting f(x) about the x-axis
22. Reflecting f (x) about the y-axis
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Describe the long run behavior, as x — o and x — —oo of each function

23. f(x)=-5(4")-1 24. f(x)=-2(3)+2
25, f(x)zs@x_z 26, f(x):4@X+1
27. £(x)=3(4) " +2 28. f(x)=-2(3) " -1

Find a formula for each function graphed as a transformation of f (x)=2".

30. 5

32.

Find an equation for the exponential function graphed.
6‘_
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Section 7.3 Logarithmic Functions

A population of 50 flies is expected to double every week, leading to a function of the
form f(x) =50(2)*, where X represents the number of weeks that have passed. When
will this population reach 500? Trying to solve this problem leads to:

500 =50(2)" Dividing both sides by 50 to isolate the exponential

10=2"

While we have set up exponential models and used them to make predictions, you may
have noticed that solving exponential equations has not yet been mentioned. The reason
is simple: none of the algebraic tools discussed so far are sufficient to solve exponential

equations. Consider the equation 2* =10 above. We know that 2° =8 and 2* =16, so

it is clear that x must be some value between 3 and 4 since g(x) =2" is increasing. We

could use technology to create a table of values or graph to better estimate the solution.
124

I 2 3 4 3

From the graph, we could better estimate the solution to be around 3.3. This result is still
fairly unsatisfactory, and since the exponential function is one-to-one, it would be great
to have an inverse function. None of the functions we have already discussed would
serve as an inverse function and so we must introduce a new function, named log as the
inverse of an exponential function. Since exponential functions have different bases, we
will define corresponding logarithms of different bases as well.

The logarithm (base b) function, written log b(x), is the inverse of the exponential
function (base b), b*.

Since the logarithm and exponential are inverses, it follows that:

Properties of Logs: Inverse Properties




Section 7.3 Logarithmic Functions 441

Recall also from the definition of an inverse function that if f(a)=c,then f *(c)=a.
Applying this to the exponential and logarithmic functions:

Logarithm Equivalent to an Exponential
The statement b® = c is equivalent to the statement log, (c) =a.

Alternatively, we could show this by starting with the exponential functionc =b?, then
taking the log base b of both sides, giving log, (c) =log, b®. Using the inverse property

of logs we see that log, (c) =a.

Since log is a function, it is most correctly written as log , (C) , using parentheses to

denote function evaluation, just as we would with f(c). However, when the input is a
single variable or number, it is common to see the parentheses dropped and the
expression written as log , c.

Example 1

Write these exponential equations as logarithmic equations:

2°=8 52 = 25 1041
10000

2° =8 is equivalent to log, (8) =3

52 =25 is equivalent to log , (25) = 2

1 . . 1
0'=—n— is equivalent to log,,| ——— |=—
10000 q o (10000)

Example 2

Write these logarithmic equations as exponential equations:
1

o0, (5)- 1 09,(6)-2
1 - - 1/2

log 6(\/5): 5 is equivalent to 6“2 = /6

log ,(9) =2 is equivalent to 3° =9

Write the exponential equation 4° =16 as a logarithmic equation.
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By establishing the relationship between exponential and logarithmic functions, we can
now solve basic logarithmic and exponential equations by rewriting.

Example 3

Solve log,(x)= 2 for x.

By rewriting this expression as an exponential, 4° = x, so x = 16

Example 4
Solve 2* =10 for x.

By rewriting this expression as a logarithm, we get x = log, (10)

While this does define a solution, and an exact solution at that, you may find it somewhat
unsatisfying since it is difficult to compare this expression to the decimal estimate we
made earlier. Also, giving an exact expression for a solution is not always useful — often
we really need a decimal approximation to the solution. Luckily, this is a task calculators
and computers are quite adept at. Unluckily for us, most calculators and computers will
only evaluate logarithms of two bases. Happily, this ends up not being a problem, as
we’ll see briefly.

Common and Natural Logarithms
The common log is the logarithm with base 10, and is typically written log( x) .

The natural log is the logarithm with base e, and is typically written In(x) .

Example 5

Evaluate log(1000) using the definition of the Values of the common log
common log. number | number as | log(number)
exponential
To evaluate log(1000), we can say 1000 10° 3
X = log(1000) , then rewrite into exponential 100 102 2
form using the common log base of 10. 10 10! 1
10* =1000 1 10° 0
From this, we might recognize that 1000 is the 0.1 10" -1
cube of 10, so x = 3. 0.01 10 -2
We also can use the inverse property of logs to 0.001 |10 -3
write log,,(10°)=3
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| 2. Evaluate log(1000000 ).

Example 6
Evaluate In (\/E )

We can rewrite In (JE) as In (e”z). Since In is a log base e, we can use the inverse
1
property for logs: In (el’2 ): log e(el’z ): 5

Evaluate log(500) using your calculator or computer.

Using a computer, we can evaluate log(500) ~ 2.69897

To utilize the common or natural logarithm functions to evaluate expressions like
log, (10), we need to establish some additional properties.

Properties of Logs: Exponent Property
” log, (A" )=rlog , (A)

To show why this is true, we offer a proof.
Since the logarithmic and exponential functions are inverses, b"*®* = A,

So A" =(0"%*)

Utilizing the exponential rule that states ( x” )q =x",
A =(pomA) =priown

So then log, (A" )=log , (0"°**)

Again utilizing the inverse property on the right side yields the result
log b(Ar)z rlog, A

Example 8

Rewrite log ,(25) using the exponent property for logs.

Since 25 = 5%,
log ;(25) = log (5% )= 2log , 5
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Example 9

Rewrite 4In( x) using the exponent property for logs.

Using the property in reverse, 4In(x) =1In (x“)

3. Rewrite using the exponent property for logs: In (iz} .
X

The exponent property allows us to find a method for changing the base of a logarithmic
expression.

Properties of Logs: Change of Base
log.(A
og , (A) = 2=t
log . (b)

Proof:
Let log b(A): X . Rewriting as an exponential gives b* = A. Taking the log base c of
both sides of this equation gives

log.b*=log, A

Now utilizing the exponent property for logs on the left side,

xlog.b=1log A

Dividing, we obtain

X= log . A or replacing our expression for x, log, A= log . A
log. b log b

With this change of base formula, we can finally find a good decimal approximation to
our question from the beginning of the section.

Example 10

Evaluate log, (10) using the change of base formula.

According to the change of base formula, we can rewrite the log base 2 as a logarithm
of any other base. Since our calculators can evaluate the natural log, we might choose
to use the natural logarithm, which is the log base e:

log,10 Inl
log ,10 = 9.10 10

log.,2 In2
Using our calculators to evaluate this,
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In10 _ 2.30259

~ ~ 3.3219
In2  0.69315

This finally allows us to answer our original question — the population of flies we
discussed at the beginning of the section will take 3.32 weeks to grow to 500.

xample 11

Evaluate log . (100) using the change of base formula.

We can rewrite this expression using any other base. If our calculators are able to
evaluate the common logarithm, we could rewrite using the common log, base 10.

log,,100 2
log,,5  0.69897

log . (100) = = 2.861

While we were able to solve the basic exponential equation 2* =10 by rewriting in
logarithmic form and then using the change of base formula to evaluate the logarithm, the
proof of the change of base formula illuminates an alternative approach to solving
exponential equations.

Solving exponential equations:
1. Isolate the exponential expressions when possible
2. Take the logarithm of both sides
3. Utilize the exponent property for logarithms to pull the variable out of the exponent
4. Use algebra to solve for the variable.

Example 12

Solve 2* =10 for x.

Using this alternative approach, rather than rewrite this exponential into logarithmic
form, we will take the logarithm of both sides of the equation. Since we often wish to
evaluate the result to a decimal answer, we will usually utilize either the common log or
natural log. For this example, we’ll use the natural log:

In (2*)= In(20) Utilizing the exponent property for logs,
xIn(2) = In(10) Now dividing by In(2),
_In@0) _ 5 g61

In(2)

Notice that this result matches the result we found using the change of base formula.
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Example 13
In the first section, we predicted the population (in billions) of India t years after 2008

by using the function f(t) =1.14(1+0.0134)". If the population continues following
this trend, when will the population reach 2 billion?

We need to solve for the t so that f(t) = 2

2=1.14(1.0134)" Divide by 1.14 to isolate the exponential expression
——=1.0134" Take the logarithm of both sides of the equation

1
In [i) =In (1.0134t) Apply the exponent property on the right side

j =tIn(1.0134)  Divide both sides by In(1.0134)

4
1)
In
1.14

t=—2"""/ ~42.23
In(1.0134) years

If this growth rate continues, the model predicts the population of India will reach 2
billion about 42 years after 2008, or approximately in the year 2050.

4. Solve 5(0.93)* =10.

In addition to solving exponential equations, logarithmic expressions are common in
many physical situations.

Example 14
In chemistry, pH is a measure of the acidity or basicity of a liquid. The pH is related to
the concentration of hydrogen ions, [H'], measured in moles per liter, by the equation

pH :—Iog([H+]).

If a liquid has concentration of 0.0001 moles per liber, determine the pH.
Determine the hydrogen ion concentration of a liquid with pH of 7.

To answer the first question, we evaluate the expression —log(0.0001). While we could

use our calculators for this, we do not really need them here, since we can use the
inverse property of logs:

—10g (0.0001) = —log (10* )= —~(-4) = 4
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To answer the second question, we need to solve the equation 7 = —log ([H *}) . Begin
by isolating the logarithm on one side of the equation by multiplying both sides by -1:

—7:Iog([H*])

Rewriting into exponential form yields the answer
[H *] =10"" = 0.0000001 moles per liter.

Logarithms also provide us a mechanism for finding continuous growth models for
exponential growth given two data points.

xample 15

A population grows from 100 to 130 in 2 weeks. Find the continuous growth rate.

Measuring t in weeks, we are looking for an equation P(t) = ae" so that P(0) = 100 and
P(2) = 130. Using the first pair of values,
100 =ae"’, so a = 100.

Using the second pair of values,

130 =100e"? Divide by 100

% —e" Take the natural log of both sides
In(1.3) =1In (erz) Use the inverse property of logs
In(1.3) =2r

=23 01310

This population is growing at a continuous rate of 13.12% per week.

In general, we can relate the standard form of an exponential with the continuous growth
form by noting (using k to represent the continuous growth rate to avoid the confusion of
using r in two different ways in the same formula):

a(l+r)* = ae®

@+r) =e"

1+r =e"

Using this, we see that it is always possible to convert from the continuous growth form
of an exponential to the standard form and vice versa. Remember that the continuous
growth rate k represents the nominal growth rate before accounting for the effects of

continuous compounding, while r represents the actual percent increase in one time unit
(one week, one year, etc.).
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Example 16

A company’s sales can be modeled by the function S(t) =5000e%*, with t measured in
years. Find the annual growth rate.

Noting that 1+r =e*, then r =e®? —1=0.1275, so the annual growth rate is 12.75%.
The sales function could also be written in the form S(t) =5000 (1+0.1275)".

[Important Topics of this Section

The Logarithmic function as the inverse of the exponential function
Writing logarithmic & exponential expressions
Properties of logs
Inverse properties
Exponential properties
Change of base
Common log
Natural log
Solving exponential equations

Try it Now Answers

1. log,(16)=2=log, 4’ =2log , 4

2. 6

3. —2In(x)
4.

(2 | _g&513
In(0.93)




Section 7.3 Logarithmic Functions 449

Section 7.3 Exercises

Rewrite each equation in exponential form

1. log,(q)=m 2. log,(t) =k 3. log,(b)=c 4. log,(z)=u
5.log(v) =t 6. log(r)=s 7. In(w)=n 8. In(x)=y
Rewrite each equation in logarithmic form.

9. 4=y 10. 5¥ =x 11. ¢® =k 12. n* =L
13.10* =b 14. 10° =v 15. e“=h 16. & =X
Solve for x.

17. log,(x) =2 18. log,(x) =3 19. log,(x) =-3 20. log,(x) =-1
21. log(x)=3 22. log(x)=5 23. In(x)=2 24. In(x)=-2

Simplify each expression using logarithm properties.

1 1
25. log, (25) 26. log, (8) 27. Iog{Ej 28. |095(£j
29. log, (V6 30. log, (¥5) 31. log(10,000)  32. log(100)
33. log(0.001) 34. 10g(0.00001)  35.In(e?) 36. In(e°)

Evaluate using your calculator.

37. log(0.04) 38. log(1045) 39. In(15) 40. In(0.02)
Solve each equation for the variable.
41. 5" =14 42.3°=23 3. 7%= 1 40,3 =1

15 4
45, e =17 46. e =12 47. 3% =38 48. 47 =44
49. 1000(1.03)' =5000 50. 200(1.06) =550
51. 3(1.04)" =8 52. 2(1.08)" =7
53. 50e " =10 54. 10e % = 4

55. 10—8(—j =5 56. 100-100 %j =70
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Convert the equation into continuous growth form, f (t)=ae".

S7.

59.

f (t)=300(0.91) 58. f (t)=120(0.07)

f (t)=10(1.04) 60. f(t)=1400(1.12)

Convert the equation into annual growth form, f (t)=ab'.

61.

63.

65.

66.

67.

68.

69.

70.

71.

72.

f (t)=150e""" 62. f (t)=100e"

f () = 50e 64. f (t)=80e "™

The population of Kenya was 39.8 million in 2009 and has been growing by about
2.6% each year. If this trend continues, when will the population exceed 45 million?

The population of Algeria was 34.9 million in 2009 and has been growing by about
1.5% each year. If this trend continues, when will the population exceed 45 million?

The population of Seattle grew from 563,374 in 2000 to 608,660 in 2010. If the
population continues to grow exponentially at the same rate, when will the population
exceed 1 million people?

The median household income (adjusted for inflation) in Seattle grew from $42,948
in 1990 to $45,736 in 2000. If it continues to grow exponentially at the same rate,
when will median income exceed $50,000?

A scientist begins with 100 mg of a radioactive substance. After 4 hours, it has
decayed to 80 mg. How long after the process began will it take to decay to 15 mg?

A scientist begins with 100 mg of a radioactive substance. After 6 days, it has
decayed to 60 mg. How long after the process began will it take to decay to 10 mg?

If $1000 is invested in an account earning 3% compounded monthly, how long will it
take the account to grow in value to $1500?

If $1000 is invested in an account earning 2% compounded quarterly, how long will it
take the account to grow in value to $1300?
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Section 7.4 Logarithmic Properties

In the previous section, we derived two important properties of logarithms, which
allowed us to solve some basic exponential and logarithmic equations.

Properties of Logs

Inverse Properties:
log b(bx): X
blogox =X

Exponential Property:
log,(A")=rlog , (A)

Change of Base:
log . (A)
log,(A)=—=

While these properties allow us to solve a large number of problems, they are not
sufficient to solve all problems involving exponential and logarithmic equations.

Properties of Logs

Sum of Logs Property:
log ,(A)+log,,(C)=1log,, (AC)

Difference of Logs Property:

log ,(A)—log , (C) = log b(é)

It’s just as important to know what properties logarithms do not satisfy as to memorize
the valid properties listed above. In particular, the logarithm is not a linear function,
which means that it does not distribute: log(A + B) # log(A) + log(B).

To help in this process we offer a proof to help solidify our new rules and show how they
follow from properties you’ve already seen.

Let a=log,(A) and ¢ =log,(C), so by definition of the logarithm, b® = A and b® =C
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Using these expressions, AC =b®b®
Using exponent rules on the right, AC =b*"°
Taking the log of both sides, and utilizing the inverse property of logs,

log,,(AC)=log , (b*"¢)=a-+c
Replacing a and c with their definition establishes the result
log ,(AC)=log, A+log, C

The proof for the difference property is very similar.

With these properties, we can rewrite expressions involving multiple logs as a single log,
or break an expression involving a single log into expressions involving multiple logs.

Example 1

Write log ,(5)+ log ,(8)—log ,(2) as a single logarithm.

Using the sum of logs property on the first two terms,
log 3(5)"' log 3(8) = log 3(5'8) = log 3(40)

This reduces our original expression to log ,(40)—log ,(2)

Then using the difference of logs property,
40
log 3(40)_ log 3(2) = log 3(?) = log 3(20)

Example 2
Evaluate 2log(5)+ log(4) without a calculator by first rewriting as a single logarithm.

On the first term, we can use the exponent property of logs to write
210g (5) = log (5% ) = log (25)

With the expression reduced to a sum of two logs, log(25)+ log(4), we can utilize the

sum of logs property
log(25)+ log(4) = log(4 - 25) = log(100)

Since 100 = 102, we can evaluate this log without a calculator:
log(100) = log (10? )= 2

1. Without a calculator evaluate by first rewriting as a single logarithm:
log,,(8)+log,,(4)
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Example 3

4
Rewrite In (%} as a sum or difference of logs

First, noticing we have a quotient of two expressions, we can utilize the difference
property of logs to write

4
In [%) =1In (x“y)— In(7)
Then seeing the product in the first term, we use the sum property
In(x*y)-In(7) = In(x* )+ In(y) - In(7)

Finally, we could use the exponent property on the first term
In(x* )+ In( y) = In(7) = 4In(x) + In( y) - In(7)

Interestingly, solving exponential equations was not the reason

logarithms were originally developed. Historically, up until the ~ |-Y2lué | log(value)
advent of calculators and computers, the power of logarithms was 1 | 0.0000000
that these log properties reduced multiplication, division, roots, or 2 | 0.3010300
powers to be evaluated using addition, subtraction, division and 304771213
multiplication, respectively, which are much easier to compute 4 | 0.6020600
without a calculator. Large books were published listing the 5 | 0.6989700
logarithms of numbers, such as in the table to the right. To find 6| 0.7781513
the product of two numbers, the sum of log property was used. 71 0.8450980
Suppose for example we didn’t know the value of 2 times 3. 8 | 0.9030900
Using the sum property of logs: 9 1 0.9542425

10 | 1.0000000

log(2-3) =log(2) + log( 3)

Using the log table,
log( 2-3) = log(2) + log( 3) = 0.3010300 -+ 0.4771213 = 0.7781513

We can then use the table again in reverse, looking for 0.7781513 as an output of the
logarithm. From that we can determine:
log(2-3) = 0.7781513 = log(6).

By doing addition and the table of logs, we were able to determine2-3=6.

Likewise, to compute a cube root like 38

log(%/8) = log (8"° ) = L10g(8) = %(0.9030900 ) = 0.3010300 = log(2)

"3
So 3/8=2.
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Although these calculations are simple and insignificant they illustrate the same idea that
was used for hundreds of years as an efficient way to calculate the product, quotient,
roots, and powers of large and complicated numbers, either using tables of logarithms or
mechanical tools called slide rules.

These properties still have other practical applications for interpreting changes in
exponential and logarithmic relationships.

Recall that in chemistry, pH =—log ([H *]) . If the concentration of hydrogen ions in a
liquid is doubled, what is the affect on pH?

Suppose C is the original concentration of hydrogen ions, and P is the original pH of the
liquid, so P =—log(C). If the concentration is doubled, the new concentration is 2C.
Then the pH of the new liquid is

pH =—log(2C)

Using the sum property of logs,
pH = —log(2C) = —(log(2) + log(C)) = —log(2) — log(C)

Since P =-log(C), the new pH is
pH =P —log(2) = P -0.301

When the concentration of hydrogen ions is doubled, the pH decreases by 0.301.

Log properties in solving equations
The logarithm properties often arise when solving problems involving logarithms.

Example 5

Solve log(50x + 25) —log( x) = 2.

In order to rewrite in exponential form, we need a single logarithmic expression on the
left side of the equation. Using the difference property of logs, we can rewrite the left
side:

Iog(50X+25) )
X

Rewriting in exponential form reduces this to an algebraic equation:

leoz —-100
X
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Solving,
50x + 25 =100 x

25 =50x
25 1

X=—=—
50 2

Checking this answer in the original equation, we can verify there are no domain issues,
and this answer is correct.

‘ 2. Solve log(x* —4) =1+log(x+2).

More complex exponential equations can often be solved in more than one way. In the
following example, we will solve the same problem in two ways — one using logarithm
properties, and the other using exponential properties.

In 2008, the population of Kenya was approximately 38.8 million, and was growing by
2.64% each year, while the population of Sudan was approximately 41.3 million and
growing by 2.24% each year?. If these trends continue, when will the population of
Kenya match that of Sudan?

We start by writing an equation for each population in terms of t, the number of years
after 2008.

Kenya(t) = 38.8(1+0.0264)"
Sudan(t) = 41.3(1+0.0224)'

To find when the populations will be equal, we can set the equations equal
38.8(1.0264)" =41.3(1.0224)"

For our first approach, we take the log of both sides of the equation
log (38.8(1.0264)' ) = log (41.3(1.0224)' )

Utilizing the sum property of logs, we can rewrite each side,
log(38.8) +log (1.0264' ) = log(41.3) +log (1.0224' )

Then utilizing the exponent property, we can pull the variables out of the exponent

2 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved
August 24, 2010
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log(38.8) +tlog(1.0264) = log(41.3) + tlog (1.0224)

Moving all the terms involving t to one side of the equation and the rest of the terms to
the other side,

tlog(1.0264)—tlog(1.0224) = log(41.3) —log(38.8)
Factoring out the t on the left,
t(log(1.0264)—log (1.0224)) = log(41.3) - log(38.8)

Dividing to solve for t
log(41.3) —10g(38.8)

" log (1.0264)— log (1.0224)

~15.991years until the populations will be equal.

xample 6b

Solve the problem above by rewriting before taking the log.

Starting at the equation
38.8(1.0264)"' = 41.3(1.0224)"

Divide to move the exponential terms to one side of the equation and the constants to
the other side

1.0264° 413
1.0224°  38.8

Using exponent rules to group on the left,

1.0264) 413
1.0224) 3838

Taking the log of both sides
(1.0264)t (41.3)
og|| —— | |=log| —
1.0224 38.8
Utilizing the exponent property on the left,
1.0264 41.3
tlog (—J =log (—j
1.0224 38.8
Dividing gives
_ 38.8

= ~15.991 years
1.0264
09| (55
1.0224
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While the answer does not immediately appear identical to that produced using the
previous method, note that by using the difference property of logs, the answer could be
rewritten:

ol
(- 38.8) _ log(41.3)-log(38.8)
o (1.0264j log(1.0264) —log(1.0224)
1.0224

While both methods work equally well, it often requires fewer steps to utilize algebra
before taking logs, rather than relying solely on log properties.

3. Tank A contains 10 liters of water, and 35% of the water evaporates each week.
Tank B contains 30 liters of water, and 50% of the water evaporates each week. In how
many weeks will the tanks contain the same amount of water?

Important Topics of this Section
Inverse
Exponential
Change of base
Sum of logs property
Difference of logs property
Solving equations using log rules

Try it Now Answers
1.5
2. 12
3. 4.1874 weeks
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Section 7.4 Exercises

Simplify to a single logarithm, using logarithm properties.

1. log, (28)—log,(7)

3. —log, Gj

5. Ioga(%)+ log, (50)

1
7. glog7 (8)

9. log(2x")+log(3x°)
11. In(6x°)~In(3x*)

13. 2log(x)+3log(x+1)

15. Iog(x)—%log(y)+3log(z)

2. log, (32)-log, (4)

4. —log, (%j

6. log, (3)+1log,(7)
8. %Iog5 (36)
10. In(4x*)+1In(3x°)

12. log(12x*)—log(4x)

14. 3log(x)+2log(x*)

16. 2log(x)+%log(y)—log(z)

Use logarithm properties to expand each expression.

15,,13
17. Iog(X y j
a—2

21. Iog(W)

25. Iog(xzy33 X y5)

2153
18. Iog( a’b J

—2 3
20. In( b ]

22. Iog(ﬁ)

24'In(JE§§7J

26. Iog(x3y47 X yg)



Solve each equation for the variable.

27

29

31.

33.

35.

37.

39.

41.

43.

45,

47.

4T =300

.17(1.14)" =19(1.16)"

5e%12 =10e%

log, (7x+6)=3
2In(3x)+3=1

log (x*) =2
log(x)+log(x+3)=3
log(x+4)—log(x+3)=1
log, (x*)—log, (x+1) =1
log(x+12)=log(x)+log(12)

In(x)+In(x—3)=In(7x)
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28.

30.

32.

34.

36.

38.

40.

42.

44,

46.

48.

225 — 73T

20(1.07)" =8(1.13)"

3% =™

log,(2x+4) =2
4In(5x)+5=2

log(x°)=3
log(x+4)+log(x)=9
log(x+5)—log(x+2)=2
log,(x*)—log,(x+2) =5
log(x+15)=1log(x)+log(15)

In(x)+In(x—6)=In(6x)
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Section 7.5 Graphs of Logarithmic Functions

Recall that the exponential function f(x) =2 produces this table of values
X -3 -2 -1 0 1 2 3

f(x) %

1 2 4 8

ANk
N |-

Since the logarithmic function is an inverse of the exponential, g(x)=1log,(x) produces
the table of values

X 1 1 1 1 2 4 8
8 4 2
9(x) -3 -2 -1 0 1 2 3

In this second table, notice that
1) As the input increases, the output increases.
2) As input increases, the output increases more slowly.
3) Since the exponential function only outputs positive values, the logarithm can
only accept positive values as inputs, so the domain of the log function is (0, ).

4) Since the exponential function can accept all real numbers as inputs, the logarithm
can output any real number, so the range is all real numbers or (—oo, ).

Sketching the graph, notice that as the input 41
approaches zero from the right, the output of 31
the function grows very large in the negative 24
direction, indicating a vertical asymptote at ol
x=0.
In symbolic notation we write D04 25456 7 8 01
as x —» 0", f(x) > —0, and 17
asx — oo, f(X) > 27
-3
4

Graphical Features of the Logarithm

Graphically, in the function g(x) = log, (x)

The graph has a horizontal intercept at (1, 0)
The graph has a vertical asymptote at x =0
The graph is increasing and concave down
The domain of the function is x > 0, or (0,x)

The range of the function is all real numbers, or (—o0, )

When sketching a general logarithm with base b, it can be helpful to remember that the
graph will pass through the points (1, 0) and (b, 1).
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To get a feeling for how the base affects the shape of the graph, examine the graphs
below.

log, (x)
In(x)

(LA ERLY TR -

log(x)

T/ 2 3 456 7 & 0101

TS

Notice that the larger the base, the slower the graph grows. For example, the common
log graph, while it grows without bound, it does so very slowly. For example, to reach an
output of 8, the input must be 100,000,000.

Another important observation made was the domain of the logarithm. Like the
reciprocal and square root functions, the logarithm has a restricted domain which must be
considered when finding the domain of a composition involving a log.

Find the domain of the function f (x) = log(5— 2x)

The logarithm is only defined with the input is positive, so this function will only be
defined when 5—2x > 0. Solving this inequality,
—-2X>-5

5
X<—
2

The domain of this function is x < g or in interval notation, (_w'gj

1. Find the domain of the function f (x) = log( x —5) + 2; before solving this as an
inequality, consider how the function has been transformed.
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Transformations of the Logarithmic Function

Transformations can be applied to a logarithmic function using the basic transformation
techniques, but as with exponential functions, several transformations result in interesting
relationships.

log, x 1
log b log, b
From this, we can see that log, x is a vertical stretch or compression of the graph of the
log . x graph. This tells us that a vertical stretch or compression is equivalent to a change

of base. For this reason, we typically represent all graphs of logarithmic functions in
terms of the common or natural log functions.

First recall the change of base property tells us that log, x =

log . x

c

Next, consider the effect of a horizontal compression on the graph of a logarithmic
function. Considering f (x) = log( cx), we can use the sum property to see

f (x) = log( cx) = log(c) + log( x)

Since log(c) is a constant, the effect of a horizontal compression is the same as the effect
of a vertical shift.

Sketch f(x) =In(x) and g(x) =In(x)+2.

Graphing these,
5.
4 g(x) =In(x)+2
3
2] f (x) = In(x)
i
R
-4
-2
-3
-4

Note that, this vertical shift could also be written as a horizontal compression:
g(x) = In(x) + 2 = In(x) + In(e?) = In(e*x) .

While a horizontal stretch or compression can be written as a vertical shift, a horizontal
reflection is unique and separate from vertical shifting.

Finally, we will consider the effect of a horizontal shift on the graph of a logarithm
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Example 3

Sketch a graph of f(x) =In(x+2).

This is a horizontal shift to the left by 2 units. Notice that none of our logarithm rules

allow us rewrite this in another form, so the effect of this transformation is unique.

Shifting the graph,
4-

3

2-

f—//
LR EEV:NIREREER

-

3

4

Notice that due to the horizontal shift, the vertical asymptote shifted to x = -2, and the
domain shifted to (—2,).

Combining these transformations,

Example 4

Sketch a graph of f(x) =5log(—x+2).

Factoring the inside as f (x) =5log(—(x —2)) reveals that this graph is that of the

common logarithm, horizontally reflected, vertically stretched by a factor of 5, and
shifted to the right by 2 units.

The vertical asymptote will be shifted to
X = 2, and the graph will have domain
(0,2). A rough sketch can be created by
using the vertical asymptote along with a
couple points on the graph, such as

f() =5log(-1+2) =5log(1) =0

f (-8) =5log(—(-8) + 2) =5log(10) =5

2. Sketch a graph of the function f(x) =-3log(x—2)+1.
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Transformations of Logs

Any transformed logarithmic function can be written in the form
f(x)=alog(x—b)+k, or f(x)=alog(—(x~b))+k if horizontally reflected,

where

X = b is the vertical asymptote.

Find an equation for the logarithmic function graphed below.
_')..

2 3 45 6 7

This graph has a vertical asymptote at x = —2 and has been vertically reflected. We do
not know yet the vertical shift (equivalent to horizontal stretch) or the vertical stretch
(equivalent to a change of base). We know so far that the equation will have form
f(x)=-alog(x+2)+k

It appears the graph passes through the points (-1, 1) and (2, —1). Substituting in (-1, 1),
1=-alog(-1+2)+k

1=-alog(1) +k
1=Kk

Next, substituting in (2, -1),
—1l=-alog(2+2)+1

—2=-alog(4)
2
a=
log(4)

This gives us the equation f(x)=— log(x+2)+1.

log(4)
This could also be written as f (x) =-2log,(x+2)+1.

3. Write the domain and range of the function graphed in Example 5, and describe its
long run behavior.
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Important Topics of this Section

Graph of the logarithmic function (domain and range)
Transformation of logarithmic functions

Creating graphs from equations

Creating equations from graphs

Try it Now Answers
1. Domain: {x| x> 5}

L R T
! | 1 f
T T T T

HIREERER R EERENEE:

Flashback Answers
3. Domain: {x|x>-2}, Range: all real numbers; As x — -2", f (x) — coand as
X — o, f(X) > —o0.
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Section 7.5 Exercises

For each function, find the domain and the vertical asymptote.

1. f(x)=log(x-5)

Sketch a graph of each pair of function.

9. f(x)=log(x),g(x)=In(x)

Sketch each transformation.
11. f(x)=2log(x)

13. f(x)=In(-x)

15. f(x)=log,(x+2)

Find a formulaT for the transformed logarithm graph shown.

2.

12.

14.

16.

f (x)=log(x+2)

f (x)=1log,(x),g9(x)=1log, (x)

f(x)=3In(x)
f (x)=-log(x)
f (x)=log, (x+4)

5
N \i\.
3 :
24 24
ia iz
'si._'«.'z.}flrz'.}i% 'si'«'z.'zfxz 13
-2 -2
- -1
e 4
17. 5 18. 5
54 54
4 4
B R 3
24 21
1 1
5 -I?-}E;'z'_}i% Sk }E}:}_}i%
_2_ -7
3 -_f-\
4—\ 4
19 -5 20. -5
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Find a formula for the transformed logarithm graph shown.

12 3 43 S R S i 2 343

Lo
£ od s L \»\\ by Ly 4 Un
il N | 5l | I

21. -5 22. 5

L LI S P
L LI S P

B -}E 2 4 3 I T B I T

23. 5] 24,
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Section 7.6 Exponential and Logarithmic Models

While we have explored some basic applications of exponential and logarithmic
functions, in this section we explore some important applications in more depth.

Radioactive Decay

In an earlier section, we discussed radioactive decay — the idea that radioactive isotopes
change over time. One of the common terms associated with radioactive decay is half-
life.

The half-life of a radioactive isotope is the time it takes for half the substance to decay.

Given the basic exponential growth/decay equation h(t) = ab', half-life can be found by

solving for when half the original amount remains; by solving %a =a(b)", or more

simply % =b'. Notice how the initial amount is irrelevant when solving for half-life.

xample 1

Bismuth-210 is an isotope that decays by about 13% each day. What is the half-life of
Bismuth-210?

We were not given a starting quantity, so we could either make up a value or use an
unknown constant to represent the starting amount. To show that starting quantity does
not affect the result, let us denote the initial quantity by the constant a. Then the decay

of Bismuth-210 can be described by the equation Q(d) = a(0.87)".

To find the half-life, we want to determine when the remaining quantity is half the

original: %a . Solving,

%a - 2(0.87)° Dividing by a,
% =0.87¢ Take the log of both sides
log Gj =log (0.87 ¢ ) Use the exponent property of logs

log (%) =d log(0.87) Divide to solve for d
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log (2)
=——"2_~4.977 days
log(0.87)

This tells us that the half-life of Bismuth-210 is approximately 5 days.

xample 2

Cesium-137 has a half-life of about 30 years. If you begin with 200mg of cesium-137,
how much will remain after 30 years? 60 years? 90 years?

Since the half-life is 30 years, after 30 years, half the original amount, 200mg, will
remain.

After 60 years, another 30 years have passed, so during that second 30 years, another
half of the substance will decay, leaving 50mg.

After 90 years, another 30 years have passed, so another half of the substance will
decay, leaving 25mg.

Example 3
Cesium-137 has a half-life of about 30 years. Find the annual decay rate.

Since we are looking for an annual decay rate, we will use an equation of the form

Q(t) =a(l+r)". We know that after 30 years, half the original amount will remain.
Using this information

%a:a(1+ r)*° Dividing by a
% =@+r)% Taking the 30" root of both sides

3@% =1+r Subtracting one from both sides,

r= 34% -1~ -0.02284

This tells us cesium-137 is decaying at an annual rate of 2.284% per year.

Chlorine-36 is eliminated from the body with a biological half-life of 10 days®. Find the
daily decay rate.

% http://www.ead.anl.gov/pub/doc/chlorine.pdf
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Example 4

Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly
used for dating historical artifacts. Carbon-14 has a half-life of 5730 years. If a bone
fragment is found that contains 20% of its original carbon-14, how old is the bone?

To find how old the bone is, we first will need to find an equation for the decay of the
carbon-14. We could either use a continuous or annual decay formula, but opt to use
the continuous decay formula since it is more common in scientific texts. The half life
tells us that after 5730 years, half the original substance remains. Solving for the rate,

r5730

a=ae Dividing by a

r5730

=e Taking the natural log of both sides

NI N

[EY

In (—J =1In (e’573°) Use the inverse property of logs on the right side

N

In Gj _5730r  Divide by 5730
In (;j
_ \2)_ 5000121
5730

Now we know the decay will follow the equation Q(t) = ae *°°***. To find how old

the bone fragment is that contains 20% of the original amount, we solve for t so that
Q(t) = 0.20a.

0.20a = ge 000121
020 — e70.000121
In(0.20) = In (870.000121)
In(0.20) = —0.000121 t
In(0.20)

=— =7 13301 years
—0.000121

The bone fragment is about 13,300 years old.

2. In Example 2, we learned that Cesium-137 has a half-life of about 30 years. If you
begin with 200mg of cesium-137, will it take more or less than 230 years until only 1
milligram remains?
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Doubling Time
For decaying quantities, we asked how long it takes for half the substance to decay. For
growing quantities we might ask how long it takes for the quantity to double.

Doubling Time

The doubling time of a growing quantity is the time it takes for the quantity to double.

Given the basic exponential growth equation h(t) = ab', doubling time can be found by
solving for when the original quantity has doubled; by solving 2a = a(b)*, or more

simply 2 =b*. Again notice how the initial amount is irrelevant when solving for
doubling time.

Examples . . .
Cancer cells sometimes increase exponentially. If a cancerous growth contained 300
cells last month and 360 cells this month, how long will it take for the number of cancer
cells to double?

Defining t to be time in months, with t = 0 corresponding to this month, we are given
two pieces of data: this month, (0, 360), and last month, (-1, 300).

From this data, we can find an equation for the growth. Using the form C(t) = ab', we
know immediately a = 360, giving C(t) =360b". Substituting in (-1, 300),
300 = 360b ™"

300 =@
b
b= 17
300

This gives us the equation C(t) =360(1.2)

To find the doubling time, we look for the time until we have twice the original amount,
so when C(t) = 2a.

2a=a(L2)

2= (L2)

log(2) = log (1.2")
log(2) =tlog(1.2)

= Iog(2) ~ 3.802 months.
log (1.2)

It will take about 3.8 months for the number of cancer cells to double.
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Use of a new social networking website has been growing exponentially, with the
number of new members doubling every 5 months. If the site currently has 120,000
users and this trend continues, how many users will the site have in 1 year?

We can use the doubling time to find a function that models the number of site users,
and then use that equation to answer the question. While we could use an arbitrary a as
we have before for the initial amount, in this case, we know the initial amount was
120,000.

If we use a continuous growth equation, it would look like N (t) =120e", measured in

thousands of users after t months. Based on the doubling time, there would be 240
thousand users after 5 months. This allows us to solve for the continuous growth rate:

240 =120e"™

2 =er5

In2=>5r

r =|n—2z 0.1386
5

Now that we have an equation, N(t) =120e%'*%*

after 12 months:
N (12) =120e%38%2 — 633,140 thousand users.

, We can predict the number of users

So after 1 year, we would expect the site to have around 633,140 users.

3. If tuition at a college is increasing by 6.6% each year, how many years will it take
for tuition to double?

Newton’s Law of Cooling

When a hot object is left in surrounding air that is at a lower temperature, the object’s
temperature will decrease exponentially, leveling off towards the surrounding air
temperature. This "leveling off" will correspond to a horizontal asymptote in the graph
of the temperature function. Unless the room temperature is zero, this will correspond to
a vertical shift of the generic exponential decay function.
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The temperature of an object, T, in surrounding air with temperature Ts will behave
according to the formula

T(t) =ae +T,

Where

tis time

a is a constant determined by the initial temperature of the object

k is a constant, the continuous rate of cooling of the object

While an equation of the form T (t) = ab' + T, could be used, the continuous growth form
IS more common.

xample 7

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees
Fahrenheit, and is placed into a 35 degree refrigerator. After 10 minutes, the
cheesecake has cooled to 150 degrees. If you must wait until the cheesecake has cooled
to 70 degrees before you eat it, how long will you have to wait?

Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s
temperature will decay exponentially towards 35, following the equation
T(t)=ae" +35

We know the initial temperature was 165, so T(0) =165 . Substituting in these values,
165 = ae*® + 35

165 =a+35

a=130

We were given another pair of data, T (10) =150 , which we can use to solve for k
150 =130€"*° +35
115 =130e**°

U5 _
130

In [%j =10k
130

115
In (130]
k =

Together this gives us the equation for cooling: T (t) =130e°%** +35.

=-0.0123
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Now we can solve for the time it will take for the temperature to cool to 70 degrees.
70 =130e %% 1 35
35 — 130e—0.0123

35 _ p-00123

130
In [3—5j = -0.0123t
130

35
In (130]
=—~"""~7 ~106.68

©-0.0123

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool.
Of course, if you like your cheesecake served chilled, you’d have to wait a bit longer.

4. A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One
hour later the temperature has risen to 45 degrees. How long will it take for the
temperature to rise to 60 degrees?

Logarithmic Scales

For quantities that vary greatly in magnitude, a standard scale of measurement is not
always effective, and utilizing logarithms can make the values more manageable. For
example, if the average distances from the sun to the major bodies in our solar system are
listed, you see they vary greatly.

Planet Distance (millions of km)
Mercury 58

Venus 108

Earth 150

Mars 228

Jupiter 779

Saturn 1430

Uranus 2880

Neptune 4500

Placed on a linear scale — one with equally spaced values — these values get bunched up.

Mercury )
Venus Jupiter Saturn Uranus Neptune

E.Gg%l::l.:::::l::::::lu

0 500 1000 1500 2000 2500 3000 3500 4000 4500
distance

A
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However, computing the logarithm of each value and plotting these new values on a

number line results in a more manageable graph, and makes the relative distances more
4

apparent.

Planet Distance (millions of km) | log(distance)
Mercury 58 1.76
Venus 108 2.03
Earth 150 2.18
Mars 228 2.36
Jupiter 779 2.89
Saturn 1430 3.16
Uranus 2880 3.46
Neptune 4500 3.65

Mercury Venus Mars  Jupiter Uranu

S
l Earth l Saturn l Neptune
ol | | ; Il | l | | | | ll | | | ; | | |
1 1 T 1 T 1T T 17 17 17 1T 17 1T 171 ]
15 175 2 225 25 275 3 325 35 3.75 4 log(distance)

4 3 4 4
10*=100 10°=100 10"=10000

v

Sometimes, as shown above, the scale on a logarithmic number line will show the log
values, but more commonly the original values are listed as powers of 10, as shown
below.

P A B C D
11ttt +¢+—+—+++++1—
102 10t 10° 10* 10% 10® 10* 10° 10° 10’

Estimate the value of point P on the log scale above

The point P appears to be half way between -2 and -1 in log value, so if V is the value of
this point,
log(V) ~-1.5 Rewriting in exponential form,

V ~107° =0.0316

% It is interesting to note the large gap between Mars and Jupiter on the log number line.
The asteroid belt, which scientists believe consists of the remnants of an ancient planet, is
located there.
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Example 9

Place the number 6000 on a logarithmic scale.

Since log(6000) ~ 3.8, this point would belong on the log scale about here:

6000
S e S ———————

102 10t 10° 10* 10% 10® 10* 10° 10° 10’

5. Plot the data in the table below on a logarithmic scale”.
Source of Sound/Noise Approxim_ate Sound Pressure
in pPa (micro Pascals)
Launching of the Space Shuttle 2,000,000,000
Full Symphony Orchestra 2,000,000
Diesel Freight Train at High Speed at 25 m | 200,000
Normal Conversation 20,000
Soft Whispering at 2 m in Library 2,000
Unoccupied Broadcast Studio 200
Softest Sound a human can hear 20

Notice that on the log scale above Example 8, the visual distance on the scale between
points A and B and between C and D is the same. When looking at the values these
points correspond to, notice B is ten times the value of A, and D is ten times the value of
C. Avvisual linear difference between points corresponds to a relative (ratio) change
between the corresponding values.

Logarithms are useful for showing these relative changes. For example, comparing
$1,000,000 to $10,000, the first is 100 times larger than the second.
1,000,000 _ 100 = 10?

10,000
Likewise, comparing $1000 to $10, the first is 100 times larger than the second.

1000 =100 =102
10

When one quantity is roughly ten times larger than another, we say it is one order of
magnitude larger. In both cases described above, the first number was two orders of
magnitude larger than the second.

% From http://www.epd.gov.hk/epd/noise education/web/ENG_EPD_HTML/m1/intro_5.html, retrieved
Oct 2, 2010



http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html
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Notice that the order of magnitude can be found as the common logarithm of the ratio of
the quantities. On the log scale above, B is one order of magnitude larger than A, and D
is one order of magnitude larger than C.

Orders of Magnitude
Given two values A and B, to determine how many orders of magnitude A is greater
than B,

Difference in orders of magnitude = log (gj

Example 10

On the log scale above Example 8, how many orders of magnitude larger is C than B?

The value B corresponds to 10° =100
The value C corresponds to 10° =100,000

5
00,000 _ 1509 — il =10°. The log of this value is 3.

The relative change is ! =
0

C is three orders of magnitude greater than B, which can be seen on the log scale by the
visual difference between the points on the scale.

6. Using the table from Try it Now #5, what is the difference of order of magnitude
between the softest sound a human can hear and the launching of the space shuttle?

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for
earthquakes. This scale is commonly and mistakenly called the Richter Scale, which was
a very similar scale succeeded by the MMS.

Moment Magnitude Scale
For an earthquake with seismic moment S, a measurement of earth movement, the
MMS value, or magnitude of the earthquake, is

2 S
M =—log| —
)

Where S, =10"° is a baseline measure for the seismic moment.
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Example 11

If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0,
how much more powerful (in terms of earth movement) is the second earthquake?

Since the first earthquake has magnitude 6.0, we can find the amount of earth

movement. The value of Sy is not particularly relevant, so we will not replace it with its
value.

6.0:glog[ij
3 So
3 S
6.0 — |=log| —
(zj Og(soj
S
9=log| —
Og(SOJ

i=:|.09
0

S
$=10°S,

Doing the same with the second earthquake with a magnitude of 8.0,

8.0= 2 log S
3 S,

S =10%s,

From this, we can see that this second value’s earth movement is 1000 times as large as
the first earthquake.

One earthquake has magnitude of 3.0. If a second earthquake has twice as much earth
movement as the first earthquake, find the magnitude of the second quake.

Since the first quake has magnitude 3.0,
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104.5 i
SO
S =10%55,

Since the second earthquake has twice as much earth movement, for the second quake,
S =2-10*°S,

Finding the magnitude,
4.5
M = 2 Iog 2-10"°S,
3 S,

M =§Iog (2-10%%)~ 3.201

The second earthquake with twice as much earth movement will have a magnitude of
about 3.2,

In fact, using log properties, we could show that whenever the earth movement doubles,
the magnitude will increase by about 0.201:

2 2S) 2 S
M=—log| — |=—=log| 2- —
a5 )-m2 5

2 S
M = g(log( 2) + log [S—OB

2 2 S
M ==log(2)+—=log| —
3 a( )+3 9[8]

0
M = 0.201+3Iog S
3 S

0

This illustrates the most important feature of a log scale: that multiplying the quantity
being considered will add to the scale value, and vice versa.
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mportant Topics of this Section

Radioactive decay

Half life

Doubling time

Newton’s law of cooling
Logarithmic Scales
Orders of Magnitude
Moment Magnitude scale

Try it Now Answers

l.r= 1€/g —1~-0.067 or 6.7% is the daily rate of decay.

2. Less than 230 years, 229.3157 to be exact
3. 1t will take 10.845 years, or approximately 11 years, for tuition to double.
4. 6.026 hours

5.
Broadcast  conversation
Softest r00M  Soft _ Symphony Space
Sound l Whisper Train l Shuttle
<« VI | | | ll | | | ll | | | | | | | ll L&
< 1 T 1 T T 1 — 1 1
10t 100 10° 10* 10° 10° 100 10° 10° 10%
2x10° 8 . . :
6. - =10" The sound pressure in pPa created by launching the space shuttle is 8
0

orders of magnitude greater than the sound pressure in pPa created by the softest sound
a human ear can hear.
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Section 7.6 Exercises

1. You go to the doctor and he injects you with 13 milligrams of radioactive dye. After
12 minutes, 4.75 milligrams of dye remain in your system. To leave the doctor's
office, you must pass through a radiation detector without sounding the alarm. If the
detector will sound the alarm whenever more than 2 milligrams of the dye are in your
system, how long will your visit to the doctor take, assuming you were given the dye
as soon as you arrived and the amount of dye decays exponentially?

2. You take 200 milligrams of a headache medicine, and after 4 hours, 120 milligrams
remain in your system. If the effects of the medicine wear off when less than 80
milligrams remain, when will you need to take a second dose, assuming the amount
of medicine in your system decays exponentially?

3. The half-life of Radium-226 is 1590 years. If a sample initially contains 200 mg,
how many milligrams will remain after 1000 years?

4. The half-life of Fermium-253 is 3 days. If a sample initially contains 100 mg, how
many milligrams will remain after 1 week?

5. The half-life of Erbium-165 is 10.4 hours. After 24 hours a sample still contains 2
mg. What was the initial mass of the sample, and how much will remain after another
3 days?

6. The half-life of Nobelium-259 is 58 minutes. After 3 hours a sample still contains10
mg. What was the initial mass of the sample, and how much will remain after another
8 hours?

7. A scientist begins with 250 grams of a radioactive substance. After 225 minutes, the
sample has decayed to 32 grams. Find the half-life of this substance.

8. A scientist begins with 20 grams of a radioactive substance. After 7 days, the sample
has decayed to 17 grams. Find the half-life of this substance.

9. A wooden artifact from an archeological dig contains 60 percent of the carbon-14 that
is present in living trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)
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10. A wooden artifact from an archeological dig contains 15 percent of the carbon-14 that
is present in living trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

11. A bacteria culture initially contains 1500 bacteria and doubles in size every half hour.
Find the size of the population after: a) 2 hours b) 100 minutes

12. A bacteria culture initially contains 2000 bacteria and doubles in size every half hour.
Find the size of the population after: a) 3 hours b) 80 minutes

13. The count of bacteria in a culture was 800 after 10 minutes and 1800 after 40
minutes.
a. What was the initial size of the culture?
b. Find the doubling time.
c. Find the population after 105 minutes.
d. When will the population reach 11000?

14. The count of bacteria in a culture was 600 after 20 minutes and 2000 after 35
minutes.
a. What was the initial size of the culture?
b. Find the doubling time.
c. Find the population after 170 minutes.
d. When will the population reach 12000?

15. Find the time required for an investment to double in value if invested in an account
paying 3% compounded quarterly.

16. Find the time required for an investment to double in value if invested in an account
paying 4% compounded monthly

17. The number of crystals that have formed after t hours is given by n(t)=20e****.
How long does it take the number of crystals to double?

18. The number of building permits in Pasco t years after 1992 roughly followed the
equation n(t)=400e***. What is the doubling time?
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19. A turkey is pulled from the oven when the internal temperature is 165° Fahrenheit,
and is allowed to cool in a 75° room. If the temperature of the turkey is 145° after

half an hour,
a. What will the temperature be after 50 minutes?
b. How long will it take the turkey to cool to 110°?

20. A cup of coffee is poured at 190° Fahrenheit, and is allowed to cool in a 70° room. If

the temperature of the coffee is 170° after half an hour,
a. What will the temperature be after 70 minutes?
b. How long will it take the coffee to cool to 120°?

21. The population of fish in a farm-stocked lake after t years could be modeled by the

1000
1+9e %%
Sketch a graph of this equation.
What is the initial population of fish?
What will the population be after 2 years?
How long will it take for the population to reach 900?

equation P(t)=

o0 o w

22. The number of people in a town who have heard a rumor after t days can be modeled

500
1+49e°
Sketch a graph of this equation.
How many people started the rumor?
How many people have heard the rumor after 3 days?
How long will it take until 300 people have heard the rumor?

by the equation N (t) =

oo o

Find the value of the number shown on each logarithmic scale

f t f f —— t t t e’ag=r.r) t t t f f t f ; t t EIe{sl‘?:r""} f
23. S5 4 3 2 4400 102 3 4 5 2 4.-5 4 -3 2 1 0 I 2 3 4 5
f t f f t t — t e’ag=r.r) t t t — ; f ; t f EIH‘?:MJ f
o5 S5 4 3 2 4400 102 3 4 5 265 4 -3 2 1 0 I 2 3 4 5

Plot each set of approximate values on a logarithmic scale.

27. Intensity of sounds: Whisper: 10™° W /m*, Vacuum: 10*W /m?, Jet: 10° W /m®

28. Mass: Amoeba: 10° g, Human: 10°g , Statue of Liberty: 10°g
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29.

30.

31.

32.

33.

34.

The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later
there was an earthquake with magnitude 4.7 that caused only minor damage. How
many times more intense was the San Francisco earthquake than the second one?

The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later
there was an earthquake with magnitude 6.5 that caused less damage. How many
times more intense was the San Francisco earthquake than the second one?

One earthquake has magnitude 3.9 on the MMS scale. If a second earthquake has 750
times as much energy as the first, find the magnitude of the second quake.

One earthquake has magnitude 4.8 on the MMS scale. If a second earthquake has
1200 times as much energy as the first, find the magnitude of the second quake.

A colony of yeast cells is estimated to contain 10° cells at time t = 0. After collecting
experimental data in the lab, you decide that the total population of cells at time t

hours is given by the function f (t)=10°e"****". [UW]

a. How many cells are present after one hour?

b. How long does it take of the population to double?.

c. Cherie, another member of your lab, looks at your notebook and says: “That
formula is wrong, my calculations predict the formula for the number of yeast

cells is given by the function. f (t)=10°(2.042727) """
worried by Cherie’s remark?
d. Anja, a third member of your lab working with the same yeast cells, took

these two measurements: 7.246 x10°cells after 4 hours; 16.504x10° cells
after 6 hours. Should you be worried by Anja’s results? If Anja’s
measurements are correct, does your model over estimate or under estimate
the number of yeast cells at time t?

. Should you be

As light from the surface penetrates water, its intensity is diminished. In the clear

waters of the Caribbean, the intensity is decreased by 15 percent for every 3 meters of

depth. Thus, the intensity will have the form of a general exponential function. [UW]
a. If the intensity of light at the water’s surface is |, find a formula for 1(d), the

intensity of light at a depth of d meters. Your formula should depend on I and

d.
b. At what depth will the light intensity be decreased to 1% of its surface
intensity?
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35. Myoglobin and hemoglobin are oxygen-carrying molecules in the human body.
Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles
through the bloodstream. Myoglobin is found in muscle cells. The function

Y=M (p) = 1L calculates the fraction of myoglobin saturated with oxygen at a
+P

given pressure p Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means

half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need

to use something called the “partial pressure”, but the distinction is not important for
2.8

ﬁ calculates the fraction
8 p?

of hemoglobin saturated with oxygen at a given pressure p. [UW]
a. The graphs of M(p) and H(p) are
given here on the domain
0 < p <100; which is which?
b. If the pressure in the lungs is 100 0.6
Torrs, what is the level of oxygen .

saturation of the hemoglobin in the
lungs?

this problem.) Likewise, the function Y = H ( p) =

fraction

0.2

20 40 50 g0 1o0F

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen
saturation of myoglobin in an active muscle? What is the level of hemoglobin
in an active muscle?

d. Define the efficiency of oxygen transport at a given pressure p to be
M (p)—H(p). What is the oxygen transport efficiency at 20 Torrs? At 40

Torrs? At 60 Torrs? Sketch the graph of M (p)—H (p) ; are there conditions
under which transport efficiency is maximized (explain)?

36. The length of some fish are modeled by a von Bertalanffy growth function. For
Pacific halibut, this function has the form L(t)= 200(1—0.957e’°'18‘) where L(t) is

the length (in centimeters) of a fish t years old. [UW]
a. What is the length of a newborn halibut at birth?
b. Use the formula to estimate the length of a 6-year—old halibut.
c. Atwhat age would you expect the halibut to be 120 cm long?
d. What is the practical (physical) significance of the number 200 in the formula
for L(t)?
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37.

38.

39.

A cancer cell lacks normal biological growth regulation and can divide continuously.
Suppose a single mouse skin cell is cancerous and its mitotic cell cycle (the time for
the cell to divide once) is 20 hours. The number of cells at time t grows according to
an exponential model. [UW]
a. Findaformula C(t) for the number of cancerous skin cells after t hours.
b. Assume a typical mouse skin cell is spherical of radius 50x10* cm. Find the
combined volume of all cancerous skin cells after t hours. When will the
volume of cancerous cells be 1 cm®?

A ship embarked on a long voyage. At the start of the voyage, there were 500 ants in
the cargo hold of the ship. One week into the voyage, there were 800 ants. Suppose
the population of ants is an exponential function of time. [UW]

a. How long did it take the population to double?

b. How long did it take the population to triple?

c. When were there be 10,000 ants on board?

d. There also was an exponentially growing population of anteaters on board. At
the start of the voyage there were 17 anteaters, and the population of anteaters
doubled every 2.8 weeks. How long into the voyage were there 200 ants per
anteater?

The populations of termites and spiders in a certain house are growing exponentially.
The house contains 100 termites the day you move in. After 4 days, the house
contains 200 termites. Three days after moving in, there are two times as many
termites as spiders. Eight days after moving in, there were four times as many
termites as spiders. How long (in days) does it take the population of spiders to
triple? [UW]
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Section 7.7 Fitting Exponential Models to Data

In the previous section, we saw number lines using logarithmic scales. It is also common
to see two dimensional graphs with one or both axes using a logarithmic scale.

One common use of a logarithmic scale on the vertical axis is to graph quantities that are

changing exponentially, since it helps reveal relative differences. This is commonly used
in stock charts, since values historically have grown exponentially over time. Both stock
charts below show the Dow Jones Industrial Average, from 1928 to 2010.

Jul 1, 1929 :  wm ~DIT 343.45

14K
12K

10K

[ .
1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1085 1900 19495 2000 005 2010

Ockt 1, 1928 : == ™~DIT 300

13K

10K

6K
4K

2K

1920 1035 1040 1945 1950 1955 1960 1065 1970 1975 1980 1085 1900 1995 2000 2005 2010

Both charts have a linear horizontal scale, but the first graph has a linear vertical scale,

while the second has a logarithmic vertical scale. The first scale is the one we are more
familiar with, and shows what appears to be a strong exponential trend, at least up until
the year 2000.
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Example 1

There were stock market drops in 1929 and 2008. Which was larger?

In the first graph, the stock market drop around 2008 looks very large, and in terms of
dollar values, it was indeed a large drop. However the second graph shows relative
changes, and the drop in 2009 seems less major on this graph, and in fact the drop
starting in 1929 was, percentage-wise, much more significant.

Specifically, in 2008, the Dow value dropped from about 14,000 to 8,000, a drop of
6,000. This is obviously a large value drop, and amounts to about a 43% drop. In 1929,
the Dow value dropped from a high of around 380 to a low of 42 by July of 1932.
While value-wise this drop of 338 is much smaller than the 2008 drop, it corresponds to
a 89% drop, a much larger relative drop than in 2008. The logarithmic scale shows
these relative changes.

The second graph above, in which one axis uses a linear scale and the other axis uses a
logarithmic scale, is an example of a semi-log graph.

A semi-log graph is a graph with one axis using a linear scale and one axis using a
logarithmic scale.
A log-log graph is a graph with both axes using logarithmic scales.

Plot 5 points on the graph of f (x) =3(2)* on a semi-log graph with a logarithmic scale
on the vertical axis.

To do this, we need to find 5 points on the graph, then calculate the logarithm of the
output value. Arbitrarily choosing 5 input values,

X f(x) log(f(x))
K 32)° =3

8 |-0426
1 3(2)t = 3

2 10.176
0 32°=3 |0477
2 3(2° =12 |1.079
S 3(2)°=96 |1.982
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Plotting these values on a semi-log graph,
log(f(x))
1 L 3
L 4
* o X
-4 T 2 1 2 3 4 5

Notice that on this semi-log scale, values from the exponential function appear linear.
We can show this behavior is expected by utilizing logarithmic properties. For the

function f(x) =ab”, finding log(f(x)) gives

log (f (x))=log (abx) Utilizing the sum property of logs,
log (f (x))=log(a)+ log (bx) Now utilizing the exponent property,
log(f (x))=log(a)+ xlog(b)

This relationship is linear, with log(a) as the vertical intercept, and log(b) as the slope.
This relationship can also be utilized in reverse.

Example 3

An exponential graph is plotted on a semi-log graph below. Find a formula for the
exponential function g(x) that generated this graph.

199(3(¥)

= N W A

W N B P

The graph is linear, with vertical intercept at (0, 1). Looking at the change between the

points (0, 1) and (4, 4), we can determine the slope of the line is % . Since the output is

log(g(x)), this leads to the equation log(g(x))=1+ % X.
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We can solve this formula for g(x) by rewriting in exponential form and simplifying:
log (g(x))=1+ % X Rewriting as an exponential,

g(x) = 101+ZX Breaking this apart using exponent rules,

g(x) =10 -10%X Using exponent rules to group the second factor,

g(x) =10" -[10‘3‘]X Evaluating the powers of 10,

g(x) =10(5.623)"

1. An exponential graph is plotted on a semi-log graph below. Find a formula for the
exponential function g(x) that generated this graph.

10g(g0)

4
4

2
£

r'

D

Fitting Exponential Functions to Data

Some technology options provide dedicated functions for finding exponential functions
that fit data, but many only provide functions for fitting linear functions to data. The
semi-log scale provides us with a method to fit an exponential function to data by
building upon the techniques we have for fitting linear functions to data.

To fit an exponential function to a set of data using linearization
1. Find the log of the data output values
2. Find the linear equation that fits the (input, log(output)) pairs. This equation will be
of the form log(f(x)) = b + mx
3. Solve this equation for the exponential function f(x)
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Example 4

The table below shows the cost in dollars per megabyte of storage space on computer
hard drives from 1980 to 2004°, and the data is shown on a standard graph to the right,
with the input changed to years after 1980

Year Cost per MB 250

1980 192.31 200 4

1984 87.86

1988 15.98 1501

1992 4 100 .

1996 0.173 50

2000 0.006849 .

2004 | 0.001149 0 A

0

4

8

12

16

20 24

This data appears to be decreasing exponentially. To find a function that models this
decay, we would start by finding the log of the costs.

Year Cost per MB | log(Cost) 3

1980 | 192.31 2.284002 23 e

1984 | 87.86 1.943791 1 * .

1988 | 15.98 1.203577 0 —
1992 |4 0.60206 19 4 8 12 ® 2 2
1996 | 0.173 -0.76195 2] .
2000 | 0.006849 -2.16437 3

2004 | 0.001149 -2.93952 4

As expected, the graph of the log of costs appears fairly linear, suggesting an
exponential function will fit the original data will fit reasonably well. Using
technology, we can find a linear equation to fit the log(Cost) values. Using t as years
after 1980, linear regression gives the equation:

log( C(t)) = 2.794 — 0.231t

Solving for C(t),

C(t) — 10 2.794-0.231t

C(t) — 10 2.794 . 1070.23]1
C(t) — 10 2.794 . (1070.231)t
C(t) =622 -(0.5877 )

This equation suggests that the cost per megabyte for storage on computer hard drives is
decreasing by about 41% each year.

® Selected values from http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-
Space, retrieved Aug 26, 2010



http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-Space
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Using this function, we could predict the cost of storage in the future. Predicting the
cost in the year 2020 (t = 40):

C(40) = 622 -(0.5877)"° ~ 0.000000364 dollars per megabyte, a really small number.
That is equivalent to $0.36 per terabyte of hard drive storage.

Comparing the values predicted by this model to the actual data, we see the model
matches the original data in order of magnitude, but the specific values appear quite
different. This is, unfortunately, the best exponential model that can fit the data. It is
possible that a non-exponential model would fit the data better, or there could just be
wide enough variability in the data that no relatively simple model would fit the data
any better.

Actual Cost | Cost predicted
Year per MB by model
1980 192.31 622.3
1984 87.86 74.3
1988 15.98 8.9
1992 4 1.1
1996 0.173 0.13
2000 0.006849 0.015
2004 0.001149 0.0018

Try it Now

2. The table below shows the value V, in billions of dollars, of US imports from China

t years after 2000.
year 2000 2001 2002 2003 2004 2005
t 0 1 2 3 4 5
V 100 102.3 125.2 152.4 196.7 243.5

This data appears to be growing exponentially. Linearize this data and build a model to
predict how many billions of dollars of imports were expected in 2011.

Important Topics of this Section
Semi-log graph
Log-log graph
Linearizing exponential functions
Fitting an exponential equation to data

Try it Now Answers
1. f(x)=100(0.3162)"
2. V(t) =90.545(1.2078)". Predicting in 2011, V (11) = 722.45 billion dollars
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Section 7.7 Exercises

Graph each function on a semi-log scale, then find a formula for the linearized function in the
form log( f (x))=mx+b.

1. f(x)=4(13)
3. f(x)=10(0.2)"

The graph below is on a semi-log scale, as indicated. Find a formula for the exponential function
y(x).
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Use regression to find an exponential function that best fits the data given.
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12.

13.

14.

15.

16.

1 2 3 4 5 6
y | 699 | 701 | 695 | 668 | 683 | 712

x

Total expenditures (in billions of dollars) in the US for nursing home care are shown below.
Use regression to find an exponential function that models the data. What does the model
predict expenditures will be in 2015?

Year 1990 1995 2000 2003 2005 2008
Expenditure | 53 74 95 110 121 138

Light intensity as it passes through water decreases exponentially with depth. The data
below shows the light intensity (in lumens) at various depths. Use regression to find an
function that models the data. What does the model predict the intensity will be at 25 feet?

Depth (ft) | 3 6 9 12 15 18

Lumen 115 8.6 6.7 5.2 3.8 2.9

The average price of electricity (in cents per kilowatt hour) from 1990 through 2008 is given
below. Determine if a linear or exponential model better fits the data, and use the better
model to predict the price of electricity in 2014.

Year | 1990 | 1992 | 1994 | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008

Cost | 7.83 | 8.21 |8.38 | 8.36 |8.26 |8.24 |8.44 |8.95 |10.40|11.26

The average cost of a loaf of white bread from 1986 through 2008 is given below. Determine
if a linear or exponential model better fits the data, and use the better model to predict the
price of a loaf of bread in 2016.

Year | 1986 | 1988 | 1990 | 1995 | 1997 | 2000 | 2002 | 2004 | 2006 | 2008

Cost [0.57 |0.66 |[0.70 |0.84 [0.88 |0.99 |1.03 |0.97 |1.14 |1.42




CHAPTER 8

SYSTEMS OF EQUATIONS

8.1 SYSTEMS OF LINEAR EQUATIONS: (GAUSSIAN ELIMINATION

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(z) = g(z), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The z-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(z) and y = g(z), where both the solution to z and y are of interest, we have
what is known as a system of equations, usually written as

{vz2 18

The ‘curly bracket’ notation means we are to find all pairs of points (z,y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a,x+a.y = ¢
where a,, a, and c are real numbers and at least one of a, and a, is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3z — 5 = 0.1 is a linear equation in two variables with a, = 3, a, = —%
and ¢ = 0.1. We can also consider z = 5 to be a linear equation in two variables! by identifying
a, =1, a, = 0, and ¢ = 5. If a; and a, are both 0, then depending on ¢, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If ¢ = 0, then we get 0 = 0, which is always true. If ¢ # 0, then we’d have
0 # 0, which is never true.) Even though identities and contradictions have a large role to play

1 Critics may argue that z = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.

This chapter is part of College Algebra (©)Stitz & Zeager 2013.
This material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are z?>+y = 1, zy = 5 and
e?® +In(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 7?7 and 77, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

_y = 4 _ 7 _
| J2e-y =1 5 g = I 6r+3y = 9
y = 3 R N | dr +2y = 12

9 T3 2
rT—y = 0
9 3r+4y = -2 4 20 —4y = 6 6 r+y = 2
' —3r—y = 5 ) 3r—6y = 9 2r+y = —2
Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2z — 3 =1, so that = 2. Our solution to the system is (2,3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) =3 =1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x —y =1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3r+4y = -2
+ (-3z—y = 5
Jy = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say —3z—y = 5,
to get —3z — 1 =5 so that z = —2. Our solution is (—2,1). Substituting z = —2 and y = 1
into the first equation gives 3(—2) + 4(1) = —2, which is true, and, likewise, when we check
(—2,1) in the second equation, we get —3(—2) — 1 = 5, which is also true. Geometrically, the
lines 3x + 4y = —2 and —3xz — y = 5 intersect at (—2,1).
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20 —y=1
y=

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system

5z — 12y 21
dr+6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by —5, we will be in a position to
eliminate the = term

20x — 48y = 84

+ (—20z—30y = -—45)

—T8y = 39
From this we get y = —%. We can temporarily avoid too much unpleasantness by choosing to
substitute y = —% into one of the equivalent equations we found by clearing denominators,

say into 5z — 12y = 21. We get 5z + 6 = 21 which gives z = 3. Our answer is (3,—3).
At this point, we have no choice — in order to check an answer algebraically, we must see

if the answer satisfies both of the original equations, so we substitute x = 3 and y = —%
into both § — %y = % and %x + % = % We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of (3, —%)

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coeflicients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by —2, we are ready to
eliminate the x
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6r — 12y = 18
+ (—6x+12y = -18)
0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x,y) satisfies the equation 2x — 4y = 6, it automatically satisfies the equation
3z — 6y = 9. One way to describe the solution set to this system is to use the set notation
and write {(x,y) |2z — 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2z — 4y = 6
for one of the variables, say y = %ac — % For each value of x, the formula y = %x — %

determines the corresponding y-value of a solution. Since we have no restriction on z, it is

called a free variable. We let x = ¢, a so-called ‘parameter’, and get y = %t — % Our
set of solutions can then be described as {(t, %t — %) | —co<t< oo}.2 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution (0, —%); t =117
gives us (117,57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number ¢, the pair (t, %t — %) satisfies both equations.
Substituting x =t and y = %t — % into 2oz — 4y = 6 gives 2t — 4 (%t — %) = 6. Simplifying,
we get 2t — 2t + 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3z — 6y = 9, we get 3t — 6 (%t — %) = 9 which reduces to 3t — 3t +9 =9, so it
checks out, too. Geometrically, 2z — 4y = 6 and 3x — 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

-5 % 2r —4y =6
2w+%=% 3z —6y =9
(Same line.)

2Note that we could have just as easily chosen to solve 2z — 4y = 6 for z to obtain = = 2y + 3. Letting y be the
parameter ¢, we have that for any value of ¢, z = 2t + 3, which gives {(2t + 3,t)| — oo < t < co}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by —3, we set the stage to eliminate z

12z + 6y = 18
+ (=122 -6y = -36)
0 = -18

As in the previous example, both z and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = —18. This tells us that it is impossible to find a pair (z,y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6z + 3y = 9 and 4z + 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

z—y = 0
+ @4y = 2)
20 = 2

which gives = 1. Substituting this into the first equation gives 1 —y = 0 so that y = 1.
We seem to have determined a solution to our system, (1,1). While this checks in the
first two equations, when we substitute * = 1 and y = 1 into the third equation, we get
—2(1)+(1) = —2 which simplifies to the contradiction —1 = —2. Graphing the lines x—y = 0,
x+y =2, and —2z +y = —2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

=N WA O

N A NG Al :
FRAN /

6z +3y =9
dx + 2y = 12 y—xz=0
y+xz=2
—2rx+y=-2

O

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.? Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.* The system in 6 above is called overdetermined, since we have more
equations than variables.” Not surprisingly, a system with more variables than equations is called

underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,® but a consistent
underdetermined system of linear equations is necessarily dependent.”

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, z,, z,, ..., T, is an equation of the form
1T, + axxy + . .. + apT, = ¢ where a,, a,, ...a, and c are real numbers and at least one of a,,
Ay, ..., Ay 1S NONZETO.

Instead of using more familiar variables like z, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3z, —x, = 4 represents the same relationship
between the variables x; and z, as the equation 3z — y = 4 does between the variables z and y.
In addition, just as we cannot combine the terms in the expression 3x — y, we cannot combine the
terms in the expression 3z, — x,. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.®

3In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

4The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems — they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

SIf we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

5We need more than two variables to give an example of the latter.

7 Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.

8That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

e Interchange the position of any two equations.
® Replace an equation with a nonzero multiple of itself.*

o Replace an equation with itself plus a nonzero multiple of another equation.

“That is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations

1 1, _
T—3Yy+gzz =

— %z = 4
z — —
Clearly z = —1, and we substitute this into the second equation y — %(—1) = 4 to obtain y = %
Finally, we substitute y = % and z = —1 into the first equation to get = — % (%) +1(-1) =1,

so that = = %. The reader can verify that these values of x, y and z satisfy all three original

equations. It is tempting for us to write the solution to this system by extending the usual (z,y)
notation to (z,y, z) and list our solution as (%, %, —1). The question quickly becomes what does
an ‘ordered triple’ like (%, %, —1) represent? Just as ordered pairs are used to locate points on
the two-dimensional plane, ordered triples can be used to locate points in space. Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,”
so our intersection point is where all three of these lines meet.

91n fact, these lines are described by the parametric solutions to the systems formed by taking any two of these
equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x—%y%—%z =
—%z = 4
z = -1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x,, z,, ...x, is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.
2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variables® cannot be placed above an equation with variables.

“necessarily an identity or contradiction
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In our previous system, if we make the obvious choices z = x,, y = z,, and z = x;, we see that the
system is in triangular form.! An example of a more complicated system in triangular form is

r, —4drs+x,—x = 6
To+2xs = 1
Ti+3xs—x5 = 8
s+ 92, = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

3r—y+z = 3 20 +3y—2z = 1 3, +x,+2x, = 6
1. 20 —4y+ 3z = 16 2. 100 —2 = 2 3. 20, + x5 — x5 = 4
r—y+z = D dr—9y+2z = 5 To—3x3—2x, = 0

Solution.

1. For definitiveness, we label the topmost equation in the system F1, the equation beneath that
E2; and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with z, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange F'1 and E3.

(E1) 3r—y+z = Switel B1 and & (E1) r—y+z = 5
(B2) 2z —4y+3z = 16 ~wichPlondPs (E2) 22—4y+32z = 16
(E3) r—y+z = b (E3) 3z—-y+z = 3

To satisfy Definition 8.3, we need to eliminate the z’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by —2 then add; to eliminate the = from E3, we need to
multiply £1 by —3 then add. Applying the third move listed in Theorem 8.1 twice, we get

(E1) Toytz = 5 Replace E2 with —2E1 + E2 (Bl) z-—y+z = b
E2) 2z —4y+3z = 16 R E2) -2 = 6
( ) . Yoz Replace E3 with —3FE1 + E3 ( ) ytz

(E3) 3x—y+z = 3 (E3) 2y—2z = —12

107f Jetters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem

8.1 and replace E2 with itself times —%.

Eg;; z _2y 1 z = 2 Replace E2 with —%E2 Eg;; r=Yy +1Z - g
— y z = — 52 — —
(E3) 2y—2z = —12 (E3) 2y—2z = —12
To eliminate the y in E3, we add —2FE2 to it.
(Fl) z—y+2z = 5 . (El) z—y+2z = 5
(EQ) _ %Z _ _3 Replace E3 with —2FE2 + E3 (E2) - %Z _ _3
(E3) 2y—2z = —12 (E3) —z = —6

Finally, we apply the second move from Theorem 8.1 one last time and multiply £3 by —1
to satisfy the conditions of Definition 8.3 for the variable z.

(El) z—y+z = 5 Reolace B3 with — 153 (El) z—y+2z = 5
(E2) ~1y = 3 == (E2) -1z = -3
(E3) —z = —6 (E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y — 3 = —3 so that y = 0.
With y = 0 and z = 6, E1 becomes z — 0+ 6 = 5, or z = —1. Our solution is (—1,0,6).
We leave it to the reader to check that substituting the respective values for z, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

. Proceeding as we did in 1, our first step is to get an equation with = in the E1 position with

1 as its coefficient. Since there is no easy fix, we multiply E1 by %

_ 3, 1 - 1
Eg;; 2z +1§y —F = ) Replace E1 with 1 E1 Eg;; T+ 210 2% = %
T —z = T —z =
(E3) 4r—-9y+2z = 5 (E3) 4z —-9y+2z = 5
Now it’s time to take care of the z’s in £2 and E3.

(B1) a+3y—1: = } | (B1) o+dy—1s = 4
(E2) 0z —» — 9 Replace E2 w1.th —10E1 + E2 (E2) 15y 44 = -3
(E3) Ao — gy +92: = 5§ Replace E3 with —4FE1 + E3 (ES) _15y +4r = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have

3 1, _ 1 3 1, _ 1
(Bl) 2+3y-322 = > Replace E2 with — = F2 (Bl e+3y=52 = 3
(E2) —15y+4z = -3 19 (E2) y— ez L
(E3) —1by+4z = 3 (E3) —1by+4z = 3

Finally, we rid E3 of y.
(E1) x+% - %z - % Replace E3 with 1552 + E3 (Bl) z-y+z = 5
(EQ) y — %z _ % eplace wit + (E2) _ 52 — _3
(E3) —1by+4z = 3 (E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying £1 by % to get a coefficient of 1 on x;.

(E1) 3z, 4+ +ay

1 1 _
Replace E1 with JE1 (E1) @+ 32 + g2 = 2
(E2) 204+ x,—23 = 4 (E2) 224z —23 = 4
(E?)) IL’2 - 3563 - 2.'];4 == 0 (EB) :1:2 - 31/13 —_ 2(1:4 == O

Next we eliminate x; from E?2

(E1) =z, + %xz + %a:4 = 2 (E1) o+ %332 + %au = 2
Replace E2
We switch £2 and E3 to get a coefficient of 1 for x,.
(El) "Bl + %SL‘Q + %1’4 == 2 (El) ‘/Bl + %$2 + %"1:4 =
(EQ) %Jb — oz, — %$4 -0 Switch E2 and E3 (EQ) Ty — 3563 . 2$4 _
(E3) 2,—3x3—2x, = 0 (E3) fw,—my— 2z, =

Finally, we eliminate x, in E3.
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(E1) z,+ %ﬂsg + %:@ = 2 (E1) z,+ %SL‘Q + %m =
(B2) @ —3w,-20, = 0 — 2
(E3) %372—3:3— %334 _ 0 with —1 B2 + E3
Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x;
or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting z; = s and z, = ¢t and obtain from E2
that @, = 3s 4 2. Substituting this and z, = ¢ into E1, we have z, + § (354 2t) + 3t = 2
which gives #; = 2—s—t. Our solution is the set {(2—s—t,2s+3t,s,t)| —0c0 < s,t < oo}.!
We leave it to the reader to verify that the substitutions 1 =2 —s—1t, xo =35+ 2t, 13 = s
and x4 = t satisfy the equations in the original system. O

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(B1) z+3y—32 = &
(E2) —15y+4z = -3
(E3) —15y+4z = 3

that equations £2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.3. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we'll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

"Here, any choice of s and ¢ will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution 4+ amount of water = 500 mL

Using our defined variables, this reduces to x 4+ y + w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in z mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30z +0.90y = 200. Converting to fractions,'? our system of equations becomes

r+y+w = 500
Zr+ Sy = 200

We first eliminate the x from the second equation

(E1) z+y+w = 500  Replace E2 with — {5 E1+ E2 (E1) :U—|—y+w = 500
(B2) $z+45y = 200 ' 50

—
&
[\

~—

o

Q@

,_.

O
S

I

Next, we get a coeflicient of 1 on the leading variable in E2

(E1) z4+y+w = 500  Replace B2 with 5E2 (F1) z4+y+w = 500
(B2) Zy—dw = 50 (B2 y—gw =

3

Notice that we have no equation to determine w, and as such, w is free. We set w = ¢ and from E2
get y = 1t + 250 . Substituting into E'1 gives z + (%t + %) +t =500 so that x = —%t + @. This
system is cons&stent, dependent and its solution set is {(—%t + 12350, %t + 250 ) | — o0 <t < oo}
While this answer checks algebraically, we have neglected to take into account that =, y and w,
being amounts of acid and water, need to be nonnegative. That is, z > 0 y > 0and w > 0. The
constraint x > 0 gives us —5 1250 >0,ort < 2500 . From y > 0, we get 5 1420 250 >0ort>— 500

The condition z > 0 yields t > O and we see that when we take the set theoretlc intersection of
these intervals, we get 0 <t < 259&. Our final answer is {( 3t + 12350, %t + 250 ) |0 <t< @}.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that %t + 250 — 100, and we get t = %. This means the amount of 30% solution required is
T = —%t—i— % = —% (lg—o) + 123& = % mL, and for the water, w =t = % mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required

40% acid mix. O

12%We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 EXERCISES

SYSTEMS OF EQUATIONS

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.{33+2y = 5

z = 6
2
% = _§
3. oy _ g
5 =
1 1
sr—3y = —1
5.4 2 °
2y -3z = 6

z {
: 1
=T _y

oles W5

20 —3r = 1
2.
{ y = 3

L sy =3
larrdy = 1

z+4y = 6
6. 1 1 _ 1
2T T3y = 3

. 6T aY =
! 10 20 _ 10

|
w3

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

0. { —Sr+y = 17

r+y

dr—y+z =
2+ 62 =
r+z =

11.

rT+y+z =

13.
? y—3z =

5

r+y+2z = 0

r—y+z
=3z + 2y + 4=z
T — 5y + 2z

20 —y+ 2
20+ 2y — 2
3z + 6y + 42

19.

3r —2y+2z = —5
15. r+3y—z = 12

z+y+z = 3
10. 22 —y+z = 0
—Br+dy+T7z = 7
dr—y+z = 5
12. 2y + 62z = 30
z+z = 6
r—2y+3z = 7
14. —3r+y+2z = =5
204+ 2y +2 = 3
2r—y+z = -1
16. dr +3y + 52z = 1
5y + 3z = 4
20 —4dy+z2 = —7
18. T—2y+2z = =2
—r+4dy—2z = 3
r—3y—4z = 3
20. 3r+4y—2 = 13
2¢ — 19y — 192 = 2
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21.

23.

25.

27.

28.

29.

30.

31.

32.

33.

34.

r+y+z = 4 r—y+z = 8
2c —4dy — 2z = -1 22. 3r+3y—9z2 = —6
r—y = 2 Tx —2y+5z = 39
2¢0 —3y+2 = -1 20, + x5 — 1225, — 2, = 16
dr —4y+4z = —13 94 —x, + x5+ 1225 — 42, = -5
6r —b5y+72z = -—-25 ) 3z, + 2z, — 16253 — 32z, = 25
\ ﬂ?l+2$2—5334 — 11
T, — Ty = —2 ( x,— 2y, —bxy+ 3z, = -1
20, —xy, = 0 9% Ty + Ty + 525 — 3k, =
.'1:1 - 21:2 + $3 = 0 ) .'Bg + 51‘3 - 3.’1:4 == 1
_xg + Ty == 1 T, — 2.%'2 — 10%’3 + 63’)4 == _1

Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 ANSWERS

1.

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

10.

11.

12.

13.

14.

Consistent independent
Solution (6, —%)

. Consistent independent

Solution (_ 16 _ %)

. Consistent dependent

Solution (t, %t + 3)
for all real numbers ¢

Inconsistent
No solution

rT+y = O
y = 7
5 7, _ 7
T—3Yy—3% = 73
y—{—%z = 2
z = 0
At
y+3z = 15
0 = 0
s-tutde = 3
y+3z = 15
0 = 1
r+y+z = —-17
y—3z = 0
rT—2y+3z = 7
_u, _ _16
5 5
z = 1

SYSTEMS OF EQUATIONS

2. Consistent independent
Solution (—%, —3)

. Consistent independent
. 49 25
Solution (ﬁ, _E)

6. Consistent dependent
Solution (6 — 4t,t)
for all real numbers ¢

8. Inconsistent
No solution

Consistent independent
Solution (—2,7)

Consistent independent
Solution (1,2,0)

Consistent dependent

Solution (—t + 5, —3t + 15,1)

for all real numbers ¢

Inconsistent
No solution

Consistent dependent
Solution (—4t — 17,3t,t)
for all real numbers ¢

Consistent independent
Solution (2,—1,1)
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

—— —— —— —— —— —— —— ——

T+y+2z = 0
—%z = 6
z = =2
o-hyth =
ytsz = 3
0 = 1
r—y+z = —4
y—"7z = 17
z = —2
rT—2y+2z = -2
y = 3
z = 1
s-bytds =
—%z =0
z = 1
r—3y—4z = 3
y+1E = 13
0 = 0
r+y+z = 4
1, _ 3
y+§Z = 3
0 =1
r—y+z = 8
y—2z = =5
z = 1
s- s = -}
y+z = —%
0 = 0
x, + 2, — Lo, -z,
Ty + 4dxs — 324
0
0
Ty — T3 - _2
T, %‘m = 0
1'3—%%1 —

o o o Y&

Consistent independent
Solution (1,3, —2)

Inconsistent
no solution

Consistent independent
Solution (1,3, —2)

Consistent independent

Solution (—3,3,1)

Consistent independent

Solution (%, %, 1)

Consistent dependent

Solution (%t + %, —%t + %,t)

for all real numbers ¢

Inconsistent
no solution

Consistent independent
Solution (4, —3,1)

Consistent dependent

Solution (—Qt 35 4 11

4 bl
for all real numbers ¢

Consistent dependent

Solution (8s —t+ 7, —4s + 3t + 2, s,1)
for all real numbers s and ¢

Consistent independent
Solution (1,2, 3,4)
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26.

27.

28.
29.
30.
31.

32.

SYSTEMS OF EQUATIONS

T, — Ty — DTy +3x, = -—1 Inconsistent
Ty +5rs —3x, = % No solution

0 = 1

0 = 0

If z is the free variable then the solution is (¢,3t, —t +5) and if y is the free variable then the
solution is (%t, t, —%t + 5).

13 chose the basic buffet and 14 chose the deluxe buffet.

Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.
Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

22.5 gallons of the 10% solution and 52.5 gallons of pure water.

% — %t pounds of Type I, % — %t pounds of Type II and ¢ pounds of Type III where 0 < t < %.
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8.2 PARTIAL FRACTION DECOMPOSITION

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

2
¥ —x—6
xTr = ——- 1
fa) = (1)
is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(z) as

fay=2FT 1O ()

S22+l oz 22
If we are given the form of f(x) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(z) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

2 —x—6 2 —x—6

42?2 2?2 (22 +1)

We now think about which individual denominators could contribute to obtain z? (x2 + 1) as the
least common denominator. Certainly 22 and z? + 1, but are there any other factors? Since
22 + 1 is an irreducible quadratic! there are no factors of it that have real coefficients which can
contribute to the denominator. The factor 22, however, is not irreducible, since we can think of it as
2? = xx = (v — 0)(x — 0), a so-called ‘repeated’ linear factor.? This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x (w2 + 1)? This, too, could contribute, but we would then wish to break down that denominator
into  and (m2 + 1), so we leave out a term of that form. At this stage, we have guessed

22 —x—6 2 —x—6 ? ? ?

v +22 22224+ 1) PR +;192+1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression ‘”;[ fxgﬁ is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators x? and 22 + 1 are at most

linear polynomials. That is, we guess that there are real numbers A, B, C, D and F so that

2 —x—6 xz—x—()’_é Bx+C Dx+ FE

i 2?2 22(2241) =z x2 2 +1

'Recall this means it has no real zeros.
2Recall this means = = 0 is a zero of multiplicity 2.
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However, if we look more closely at the term B’;*Q'C, we see that Bﬁ%c = % + m% = % + x% The
term % has the same form as the term % which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

a:2—a:—6_ 22 —x—6 _é+§+C$+D
ri+a?  22(2241) oz 22 a2+1

Our next task is to determine the values of our unknowns. Clearing denominators gives
2*—z—6=Ar (2 +1) + B (2* + 1) + (Cz + D)a?
Gathering the like powers of x we have
2?2 —-6=(A+C)2*+ (B+ D)2’ + Az + B

In order for this to hold for all values of x in the domain of f, we equate the coefficients of
corresponding powers of = on each side of the equation® and obtain the system of linear equations

(E1) A+C = 0 From equating coefficients of 3
(E2) B+D = 1 From equating coefficients of x2
(E3) A = -1 From equating coefficients of =
(E4) B = —6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
7?7, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From FE3, we have A = —1 and we substitute this into E1 to get C' = 1.
Similarly, since F4 gives us B = —6, we have from E2 that D = 7. We get

2 —x—6 22 —x—6 1 6 x+ 7

a2 22(22+1) oz 2?2 2241

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 77?7 guarantees that any polynomial with real coefficients can be factored over the
real numbers as a product of linear factors and irreducible quadratic factors. Once we have this
factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem ?7?) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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N(x)
D(z)
the degree of D(z) ® and N(x) and D(x) have no common factors.

Theorem 8.2. Suppose R(z) = is a rational function where the degree of N(x) less than

e If ¢ is a real zero of D of multiplicity m which corresponds to the linear factor ax + b, the
partial fraction decomposition includes

A, n A, o Am
ar+b (ax+0)?2 7 (ax+b)™

for real numbers A,, A,, ... A,,.

e If cis a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax?® + bx + ¢, the partial fraction decomposition includes

Bz + C; B.x + C, Bz + C,,
ar? +br+c  (ax?+br+c)>  (aa? +bz+c)"

for real numbers B, B,, ...B,, and C,, C,, ...Cp,.

“In other words, R(z) is a proper rational function.

The proof of Theorem 8.2 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A;, A,, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3z —1
(22 —=1)(2— 2z —2?)
Factoring the denominator to find the zeros, we get (z +1)(z —1)(1 —2)(2 4+ z). We find x = —1

and x = —2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (z — 1) and (1 — ). One way to handle this is to note that (1 —z) = —(z — 1) so

3r—1 3r—1 1—- 3z

(x+1D)(z-1D)1-2)2+2) —(r—1)2(z+1)(x+2) (z-12(x+1)(z+2)

from which we proceed with the partial fraction decomposition

1—3x A B C D

G102t )@+2) -1 (@-12 z+1 z12
Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic az? + bx + c is the discriminant, b — 4ac. If b?> — 4ac < 0, the quadratic admits a
pasr of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
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denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.2.
Next, we state a theorem that if two polynomials are equal, the corresponding coefficients of the like
powers of x are equal. This is the principal by which we shall determine the unknown coefficients
in our partial fraction decomposition.

Theorem 8.3. Suppose

anX” + ap_ 2"+ i taxtag =bpz™ + Mg 2™ -+ by + b+ by

for all z in an open interval I. Then n =m and a; = b; foralli =1...n.

Believe it or not, the proof of Theorem 8.3 is a consequence of Theorem ??. Define p(x) to be
the difference of the left hand side of the equation in Theorem 8.3 and the right hand side. Then
p(z) = 0 for all z in the open interval I. If p(z) were a nonzero polynomial of degree k, then, by
Theorem 77, p could have at most k zeros in I, and k is a finite number. Since p(z) = 0 for all the
x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can be
no nonzero terms in p(z) and the theorem follows. Arguably, the best way to make sense of either
of the two preceding theorems is to work some examples.

Example 8.2.1. Resolve the following rational functions into partial fractions.

z+5 3 3
L R@)= 55— 2. R@)= 53— 5~ 3. R@) = 53— 5~
423 3+ 5 —1 82
R(z) x2 -2 5. R(z) x4 + 62249 6. R(z) x4 4+ 16

Solution.

1. We begin by factoring the denominator to find 222 — 2 —1 = (2z+1)(z —1). We get z = —3
and x = 1 are both zeros of multiplicity one and thus we know

r+5 z+5 A N B
222 —x—1 (e+D(xz—-1) 2o+1 z-1

Clearing denominators, we get x+5 = A(z—1)+ B(2z+1) so that z+5 = (A+2B)x+ B — A.
Equating coefficients, we get the system

A+2B = 1
~A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = —3. Our
answer is easily checked by getting a common denominator and adding the fractions.

T+95 2 3

202 — -1 -1 2241
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2. Factoring the denominator gives 3 — 222+ = 2 (:1:2 — 2 + 1) = z(z—1)? which gives z = 0
as a zero of multiplicity one and x = 1 as a zero of multiplicity two. We have

3 3 A, B C
T

:L‘3—2:L‘2+:U:a:(x—1)2_ +x—1+(x—1)2

Clearing denominators, we get 3 = A(z — 1)? + Bz(x — 1) + Cx, which, after gathering up
the like terms becomes 3 = (A + B)x? 4+ (—2A — B + O)x + A. Our system is

A+B = 0
—2A-B+C = 0
A =3

Substituting A = 3 into A + B = 0 gives B = —3, and substituting both for A and B in
—2A — B+ C =0 gives C = 3. Our final answer is

8 3 3
-2+ x -1 (v—1)2

3. The denominator factors as x (wQ —x+ 1). We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of 2 — x 4+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (—1)? — 4(1)(1) = —3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3 3 A Bx 4+ C

-2+ w@2-x+1) =z 22—-z+1

Proceeding as usual, we clear denominators and get 3 = A (z? — 2 +1) + (Bz + C)z or
3=(A+B)2?+ (-A+C)x+ A. We get

A+B = 0
-A+C = 0
A =3

From A=3and A+ B=0, we get B=—-3. From —A+ C =0, we get C' = A = 3. We get

3 3 33z

ar3—a:2+:z:_x+ac2—x+1

4. Since x%ﬁ 5 isn’t proper, we use long division and we get a quotient of 4z with a remainder
. 3 . . . .
of 8. That is, m42’”_2 =4z + rzgf 5 SO we now work on resolving ng 5 into partial fractions.

The quadratic z? — 2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving
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2 — 2 = 0 gives us ¢ = /2, and each of these zeros must be of multiplicity one since
Theorem ?? enables us to now factor z2 — 2 = (a: — \/5) (x + \@) Hence,

8r 8x A . B
2-2  (2—vV2)(z+v2) z-vV2 z+V2

Clearing fractions, we get 8z = A (z +v2) + B (z — v2) or 8z = (A+ B)z + (A — B)V2.
We get the system

A+B = 8
{ e =0

From (A — B)v/2 = 0, we get A = B, which, when substituted into A 4+ B = 8 gives B = 4.
Hence, A = B = 4 and we get

43 to 4 8z tx 4 4 N 4
x2 -2 x2—2 x+\/§ l‘—\/i

. At first glance, the denominator D(x) = z* 4 622 + 9 appears irreducible. However, D(x) has

three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(z) = (1‘2)2 + 622 + 9, we see it is a quadratic in disguise and factor D(z) = (2% + 3)2.
Since 22 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

3+ 5z —1 x3+5x—1_A:c+B Cx+ D

2t +622+9 (22432 22+3  (2243)°

When we clear denominators, we find 2® + 5z — 1 = (Az + B) (2% 4+ 3) + Cz + D which yields
23452 — 1 = Az + Ba? + (3A+ C)x + 3B + D. Our system is

A =

B =
3A+C =
3B+D = -

) i

We have A =1 and B = 0 from which we get C' = 2 and D = —1. Our final answer is

:c3+5x—1_ T L 2x — 1
at+622+9 2243 (22 +3)?

. Once again, the difficulty in our last example is factoring the denominator. In an attempt to

get a quadratic in disguise, we write

2416 = (22)? +42 = (22)° + 822 + 42 — 822 = (22 +4)° — 82
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and obtain a difference of two squares: (:U2 + 4)2 and 822 = (23:\/§)Q. Hence,

2t 16 = (x2+4—2:m/§) <x2+4+2x\/§) — ($2—2m\/§+4) (x2+2x\/§+4)

The discrimant of both of these quadratics works out to be —8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

8x2 82 Ax + B Cx+D

= +
4 4+ 16 (g;2—2x\/§+4)(x2+2m\/§+4) 22 —22V2+4 22+ 22V2+4

We get 822 = (Az + B) (* 4 22v2 +4) + (Cz + D) (2? — 2zv/2+4) or

822 = (A+ O)z® + (2AV2 + B — 2CV2 4 D)a? + (4A+ 2BV2 + 4C — 2DV/?2)x + 4B + 4D

which gives the system

A+C =
24v/2+ B — 202+ D
4A + 2B\2 +4C — 2DV?2
AB+4D =

Il
oo wo

We choose substitution as the weapon of choice to solve this system. From A 4+ C = 0, we
get A= —C' from 4B 4+ 4D = 0, we get B = —D. Substituting these into the remaining two
equations, we get

—20V2-D—-20V2+D = 8
—4C —2D\2 +4C —2DV2 = 0

or

{—40\/5 = 8
—4DV2 = 0

We get C' = —v/2 so that A = —C = /2 and D = 0 which means B = —D = 0. We get

82 - /2 V2
2 +16 22— 22244 22+22V2+4
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EXERCISES

In Exercises 1 - 6, find only the form needed to begin the process of partial fraction decomposition.
Do not create the system of linear equations or attempt to find the actual decomposition.

1.

3.

D.

7 9 or +4
(z —3)(z +5) Cx(z—2)(2 - )
m . 4 ar? +br +c
(Tz —6)(2*+9) C23(5r +9)(3z2 + Tx +9)
A polynomial of degree < 9 A polynomial of degree < 7
(x +4)5(x2 +1)2 " z(4x — 1)%(2? + 5)(922 + 16)

In Exercises 7 - 18, find the partial fraction decomposition of the following rational expressions.

7.

11.

13.

15.

17.

19.

2x 3 —Tx +43
2 —1 " 3x24+19x — 14
1122 — 52 — 10 10 —222 + 20x — 68
53 — 52 "3 4+ 4x2 + 4x + 16
—224+15 1 2122+ —16
4z + 40x2 + 36 " 3x3 4422 -3z +2
5z* — 3423 + 7022 — 33z — 19 ” 20 + 52° + 162* + 802% — 222 + 62 — 43
(x — 3)? ’ 23 + 5x2 4 16x + 80
—7x% — 762 — 208 16 —10z* + 2% — 1922 + 2 — 10
x3 4+ 1822 4+ 108z + 216 ’ 2 4+ 213 + &
423 — 922 + 122 + 12 8 222 4 3z + 14
x* — 423 4 822 — 16z + 16 S (224224 9)(22+ 2 +5)

As we stated at the beginning of this section, the technique of resolving a rational function
into partial fractions is a skill needed for Calculus. However, we hope to have shown you that
it is worth doing if, for no other reason, it reinforces a hefty amount of algebra. One of the
common algebraic errors the authors find students make is something along the lines of

8 8 8
2072 9

Think about why if the above were true, this section would have no need to exist.
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8.2.2 ANSWERS

A N B 2 AJr B n C
r—3 x+5 x oz —2  (z—2)?

A Bx +C A B C D Ex+ F

4, — 4+ — + —

7:1:—6+x2+9 x+x2+x3+5x+9 3224+ 7x+9
A N B n C n D n E +F$+G+H$+I
z+4  (x+4)?2 (x+4)3 (z+4)* (44> 22+1  (22+41)?
é+ B n C +D1:+E+Fx+G
r 4dr—-1 (4z-1)2 2245  922+16

20 _ 1 1
2—-1 z4+1 z-1

—Tr+43 5 4
302+ 192—14 3z—-2 47
1122 =5z —10 3 2 4

5r3 —5x2 w22 5(x—1)

—20*+200-68 9 LTz -8
w34+ 4x2 +4x+16  z+4 2244

—22+15 1 3

11.

12.

13.

14.

15.

16.

17.

18.

Azt 14022+ 36 2(22+1) 4(z2+9)

—2la*4+2-16 6 3r+5
3x3 4422 —-3x+2  x+2 3x2—-2x+1

5zt — 3423 + 7022 — 33z — 19 B

9 1
a2 —dx+ 1+ -
X

(x —3)2 -3 (z-23)?
2% + 525 + 162" + 8023 — 22 + 62 — 43 3 @+l 3
= —
a3 + bx? + 162 + 80 x2+16 x+45
—T2% — 76z —208 7 L8 4
23+ 1822 + 108z +216  x+6 (z+6)2 (z+6)3
102" + 2® — 1922 + 2 — 10 0, t =
o+ 223+ oz 22+l (22+1)?
423 — 9z* + 122 + 12 1 4 3z +1

45182 160416 72 (222  2+4
222 + 32 + 14 1 1

(22422 +9)(22 + 2 +5) T 019 Zizis
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8.3 SYSTEMS OF NON-LINEAR EQUATIONS AND INEQUALITIES

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.3.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

422 + 9y = 36 ' y—2x = 0
2- 2 2 4- 2
4 — 9y = 36 y—z‘ = 0

SOLUTION:

1. Since both equations contain 22 and 32 only, we can eliminate one of the variables as we did
in Section 8.1.

(El) z? + y2 = 4 Replace E2 with (El) 72 + y2 — 4
—_—
(B2) 42°+9y° = 36 —4E1 + B2 (E2) 502 = 20

From 532 = 20, we get 4> = 4 or y = £2. To find the associated = values, we substitute each
value of y into one of the equations to find the resulting value of . Choosing 22 + 3% = 4,
we find that for both y = —2 and y = 2, we get x = 0. Our solution is thus {(0,2), (0,—2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of 22 + y? = 4 is a circle
centered at (0,0) with a radius of 2, whereas the graph of 422 +9y? = 36, when written in the
standard form %2 + Z—Q = 1 is easily recognized as an ellipse centered at (0,0) with a major
axis along the z-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,+2).

2. We proceed as before to eliminate one of the variables

Il
W

{ (E1) 22442

4 Replace E2 with (El) x? + y2
e e
(B2) 42%-9y*> = 36 —4AE1+ E2

(F2) —13y> = 20



8.3 SYSTEMS OF NON-LINEAR EQUATIONS AND INEQUALITIES 523

Since the equation —13y? = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that 2% + y? = 4 is the same circle as before, but when writing the
second equation in standard form, % — % = 1, we find a hyperbola centered at (0,0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We

see that the circle and the hyperbola have no points in common.

RN VAR
v N

2+y? = 4
422 — 9> = 36

2 \3 g

?2+y? = 4

Graphs for {4$2+9y2 _ 36

Graphs for {

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y — 2x = 0, we get y = 2x. Substituting this
into 22 4+ y? = 4 gives 22 + (27)? = 4. Solving, we find 522 = 4 or = = :EQT‘/E. Returning

45 2v/5

5

to the equation we used for the substitution, y = 2z, we find y = when z = =2, so

one solution is (%ﬁ, 4T\/g> Similarly, we find the other solution to be (—2?‘/5, —4?\/5) We
leave it to the reader that both points satisfy both equations, so that our final answer is

{(%ﬁ, 4T\/5) , (_2?\/57 —%)}. The graph of 22 4+ y? = 4 is our circle from before and the

graph of y — 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y — 22 = 0 as y = x? and substitute, we note that this

system is set up for elimination.’

(E1) 2%+ 3/2 = 4 Replace E2 with (E1) z2 4 y2 — 4
—
(B2) y—22 = 0 Fl+ E2 (B2) o4y = 4

From 4% 4+ y = 4 we get y?> +y — 4 = 0 which gives y = %ﬁ Due to the complicated
nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle 22 + y? = 4 intersects
the parabola y = 22 exactly twice, and both of these points have a positive y value. Of the

two solutions for y, only y = *l%m is positive, so to get our solution, we substitute this

'We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y — 22 = 0 and solve for z. We get z = i\/ﬁ = i@
{(W —1+\/ﬁ) (_m _1+\/ﬁ>}
2 ) 2 ’ 2 ) 2

. Our solution is

, which we leave to the reader to verify.

. . . . . . .
} t t } } t t }
-3 —2| -1 JQ 3 "z -3 _2&)2 3 "¢
1 -1l

y—2xz = 0

Graphs for { 9

Graphs for { y—a? — 36

O

A couple of remarks about Example 8.3.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,” we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.3.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1 2?4+ 22y—16 = 0 5 y+4e?r = 1 26—=2) = =
>+ 20y —16 = 0 Tl 242t = 1 3. yz = y
(r=20°+¢y* = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome zy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

(E1) 2?+22y—16 = 0  Replace B2 with (E1) #242zy—16 = 0
Replace B2 with,
(EQ) y2 + 2a;y —16 = 0 _El1+E2 (EQ) y2 o 1‘2 - 0
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We get y?> — 22 = 0 or y = +x. Substituting y = z into E1 we get x2 4+ 222 — 16 = 0 so
that 22 = % or r = :l:%. On the other hand, when we substitute y = —z into E'1, we get

22 — 22?2 — 16 = 0 or 22 = —16 which gives no real solutions. Substituting each of z = i%ﬁ

into the substitution equation y = x yields the solution {(%ﬁ, %) , (—‘Lgﬁ, —%) } We
leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x?+2xy—16 = 0 for y to obtain y = 162_1 22 This
function is easily graphed. Solving the second equation, 4% + 2xy — 16 = 0, for y, however, is
more complicated. We use the quadratic formula to obtain y = —x 4 v/x2 + 16 which would
require the use of Calculus or a calculator to graph. Believe it or not, we don’t need either
because the equation y?42zy—16 = 0 can be obtained from the equation z?+2zy—16 = 0 by
interchanging y and z. Thinking back, this means we can obtain the graph of y?+2zy—16 = 0
by reflecting the graph of 22 +2zy — 16 = 0 across the line y = x. Doing so confirms that the
two graphs intersect twice: once in Quadrant I, and once in Quadrant III as required.

\41/

The graphs of 22 + 22y — 16 = 0 and y? 4+ 22y — 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y + 4€%* = 1 for Y we get y = 1 — 4e€?* which, when substituted
into the second equation, yields (1 — 462‘70) + 2e® = 1. After expanding and gathering like
terms, we get 16e** — 8¢%* 4 2¢* = 0. Factoring gives us 2¢” (863”” —4e* + 1) = 0, and since
2¢® 0 for any real x, we are left with solving 8e3* — 4e” +1 = 0. We have three terms, and
even though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = e”.
The equation becomes 8u? — 4u + 1 = 0. Using zero-finding techniques, we find u = % is
a zero and use synthetic division to factor the left hand side as (u — %) (8u2 + 4u — 2). We

use the quadratic formula to solve 8u? 4+ 4u — 2 = 0 and find u = %\/5. Since u = €%, we
now must solve e” = § and e® = %\/g. From e = 1, we get z = In () = —In(2). As
for ¥ = %\/g’ we first note that _1%‘/5 < 0,s0 e = _1%‘/5 has no real solutions. We are

left with e* = _1%‘/5, so that x = In (‘1%‘/5) We now return to y = 1 — 4e€?* to find the

accompanying y values for each of our solutions for . For z = —In(2), we get
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B

For x =1In (‘11' ), we have

1 — 4e2
1— 46721n(2)
1— 4en(3)

1
1-4(3)
0

1 — 4e?®

1— 462 ln(%ﬁ)

1-— 46111(_11_\/5)2

1-4 *ﬁﬁ)?
14 (35

—14+5
2

SYSTEMS OF EQUATIONS

We get two solutions, {(O7 —1n(2)), (ln (‘11'\/5) , _1“2"/5> } It is a good review of the prop-
erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch ¢y = 1 — 4€?* using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y? + 2¢* = 1, we need to graph both the
positive and negative roots, y = £1/1 — 2e%. After some careful zooming,? we get

ki
n=".B9Z1472 V=0

InkgFseckion
n=-1.174358 Y= g1@0==08 -

The graphs of y = 1 — 4e%* and y = £+/1 — 2€7.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

E1
E2

z2(x—2) =
yz =

E3 (x—2)24¢% =

x
Y
1

2The calculator has trouble confirming the solution (—In(2),0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y # 0. Instead,
we take E2 and rewrite it as yz —y = 0 so y(z — 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

CASE 1: y =0. Substituting y = 0 into E1 and E3, we get
El z(z—-2) = z
E3 (x-2)?2 =1

Solving E3 for x gives x = 1 or z = 3. Substituting these values into E1 gives z = —1 when
x =1 and z = 3 when z = 3. We obtain two solutions, (1,0,—1) and (3,0, 3).

CASE 2: z=1. Substituting z =1 into F'1 and E3 gives us

El1  (1)(z-2) x
{E3(1—m2+f =1

Equation E1 gives us x — 2 = x or —2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1,0,—1),(3,0,3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1,0, —1).

O]

Example 8.3.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.

We close this section discussing how non-linear inequalities can be used to describe regions in the
plane. Before we embark on some examples, a little motivation is in order. Suppose we wish to
solve 22 < 4 — y%. If we mimic the algorithms for solving nonlinear inequalities in one variable, we
would gather all of the terms on one side and leave a 0 on the other to obtain z? + % — 4 < 0.
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Then we would find the zeros of the left hand side, that is, where is 22 +y? —4 = 0, or 22 +y> = 4.
Instead of obtaining a few numbers which divide the real number line into intervals, we get an
equation of a curve, in this case, a circle, which divides the plane into two regions - the ‘inside’
and ‘outside’ of the circle - with the circle itself as the boundary between the two. Just like we
used test values to determine whether or not an interval belongs to the solution of the inequality,
we use test points in the each of the regions to see which of these belong to our solution set.> We
choose (0,0) to represent the region inside the circle and (0, 3) to represent the points outside of
the circle. When we substitute (0, 0) into 22 +y% —4 < 0, we get —4 < 4 which is true. This means
(0,0) and all the other points inside the circle are part of the solution. On the other hand, when
we substitute (0,3) into the same inequality, we get 5 < 0 which is false. This means (0, 3) along
with all other points outside the circle are not part of the solution. What about points on the circle
itself? Choosing a point on the circle, say (0,2), we get 0 < 0, which means the circle itself does
not satisfy the inequality.? As a result, we leave the circle dashed in the final diagram.

Y
2
- T~
e ~
Ve N\
/ T \
/ \
1
t t t t
72\ /2 T
\ T /
N 7
~ -
~ 1 -
o

The solution to 22 < 4 — y2

We put this technique to good use in the following example.

Example 8.3.3. Sketch the solution to the following nonlinear inequalities in the plane.

Ly’ —4<x<y+?2 5 2 +y? > 4
Tl 2?20+ -2y < 0

Solution.

1. The inequality y?> — 4 < & < y + 2 is a compound inequality. It translates as y?> — 4 < z
and x < y 4+ 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y?> — 4 < z, we write
y> —x —4 < 0. The curve y> — x — 4 = 0 describes a parabola since exactly one of the

variables is squared. Rewriting this in standard form, we get 4> = = + 4 and we see that the

vertex is (—4,0) and the parabola opens to the right. Using the test points (—5,0) and (0, 0),

we find that the solution to the inequality includes the region to the right of, or ‘inside’; the

parabola. The points on the parabola itself are also part of the solution, since the vertex

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4 Another way to see this is that points on the circle satisfy 22 +y? —4 = 0, so they do not satisfy 22 + 3% —4 < 0.
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(—4,0) satisfies the inequality. We now turn our attention to x < y+ 2. Proceeding as before,
we write x — y — 2 < 0 and focus our attention on x —y — 2 = 0, which is the line y = = — 2.
Using the test points (0,0) and (0, —4), we find points in the region above the line y = 2 — 2
satisfy the inequality. The points on the line y = x — 2 do not satisfy the inequality, since
the y-intercept (0, —2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

{(EH) y? = z+4
(E2) y = z-—2

Solving E1 for z, we get x = 3> — 4. Substituting this into E2 gives y = y?> — 4 — 2, or
y> —y—6=0. We find y = —2 and y = 3 and since x = y? — 4, we get that the graphs
intersect at (0, —2) and (5,3). Putting all of this together, we get our final answer below.

y? —4 <z r<y+2 Y —4<z<y+2

2. To solve this system of inequalities, we need to find all of the points (x,y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality z? +y? > 4 which we rewrite as
22+ 9% —4 > 0. The points which satisfy 22+ y? — 4 = 0 form our friendly circle 22 +y? = 4.
Using test points (0,0) and (0,3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0,2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality z? — 2z + y?> — 2y < 0, we start with
22 — 2z + y? — 2y = 0. Completing the squares, we obtain (z — 1)? + (y — 1)2 = 2, which is
a circle centered at (1,1) with a radius of v/2. Choosing (1,1) to represent the inside of the
circle, (1,3) as a point outside of the circle and (0,0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle 2 4+ y?> = 4 which lie on or
inside the circle (x —1)2 4 (y — 1)2 = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system

Il
S

(E1) 22+ 2
(B2) 2?2 -22+y*—2y = 0
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We can eliminate both the 2 and 32 by replacing F2 with —E1 + E2. Doing so produces
—2x — 2y = —4. Solving this for y, we get y = 2 — z. Substituting this into F1 gives
22 + (2 — x)? = 4 which simplifies to 22 + 4 — 4z + 2% = 4 or 222 — 4z = 0. Factoring yields
2x(x — 2) which gives z = 0 or x = 2. Substituting these values into y = 2 — z gives the
points (0,2) and (2,0). The intermediate graphs and final solution are below.

y
34
2-\
—14
—21
—34
2?24y’ >4 2?2 =2 +1y> -2y <0 Solution to the system.
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8.3.1 EXERCISES

In Exercises 1 - 6, solve the given system of nonlinear equations. Sketch the graph of both equations
on the same set of axes to verify the solution set.

) -y = 4 5 ?+y? = 4 3 2?2 +y? = 16
) 224y = 4 ' 22—y =5 1622 +4y> = 64
2?4y = 16 2 +y? = 16 > +y? = 16
2 1@.2 5. 1,2 1.2 _ 6. o
9x 16y = 144 gy - = 1 r—y = 2

In Exercises 9 - 15, solve the given system of nonlinear equations. Use a graph to help you avoid
any potential extraneous solutions.

7{:52—3/2:1 S{W—yzo 9{$+292:2

>4y = 4 2?2+ 4y = 4 2+ 4y? = 4
(r—2)2+9y%> = 1 2?2 +y? = 25 22 +y? = 25
10. )Ty = 11. A 2.9 , O TY T
r* + 4yt = 4 y—x = 1 4+ (y—3) = 10
2,2
13. { v 14. { LW 15. 0 42-9y = 0
= o= 32 —16z = 0

16. A certain bacteria culture follows the Law of Uninbited Growth, Equation ??. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?

Consider the system of nonlinear equations below

4 3
il — 1
T Yy
3 2
242 =
r y
If we let u = % and v = i then the system becomes
du+3v = 1
Ju+2v = -1
This associated system of linear equations can then be solved using any of the techniques presented
earlier in the chapter to find that u = —5 and v = 7. Thus z = % = —% and y = % = %

We say that the original system is linear in form because its equations are not linear but a few
substitutions reveal a structure that we can treat like a system of linear equations. FEach system in
Exercises 17 - 19 is linear in form. Make the appropriate substitutions and solve for x and y.
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I
—_

3 — x -y — 2
17 4303 + 3y 1 18, 463; + 36_ 1 19, 41n(x) + 3y2
3r° 42y = -1 3e” +2e7Y 3In(x) +2y° = -1

|
|
—_

20. Solve the following system

2?4 \/y + logy(2)
322 — 2/y + 2logy(2) =
—52% + 3,/y + 4logy(z) = 13

In Exercises 21 - 26, sketch the solution to each system of nonlinear inequalities in the plane.

91 22—y < 1 9 2?2+y? < 25
T 2?4+ > 4 2+ (y—3)?2 > 10
—9)2 2 2
93, (x 22) +y2 < 1 oy 1V > 10:63 x
¢ +4yr < 4 y < x° + 8
o5 T+ 2y2 > 2 9% 2 4+ y2 > 25
| 2?2 +4y? < 4 ' y—x < 1

27. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and A is called a Lagrange
multiplier. With the help of your classmates, solve the system.’

20+2z = Ayz
204+ 2z = Az
2y +2x = Axy

zyz = 1000

28. According to the Complex Factorization Theorem, the polynomial p(z) = z* + 4 can be
factored into the product linear and irreducible quadratic factors. In this exercise, we present
a method for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (224 az+0b)(2?+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of z* + 4. You should get four
equations in the four unknowns a, b, ¢ and d. Write p(z) in factored form.

29. Factor q(x) = z* + 622 — 52 + 6.

SIf using X\ bothers you, change it to w when you solve the system.
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8.3.2 ANSWERS

1. (£2,0), (£v3,-1) 2. No solution
)

4. (£4,0)

7. (i@,i%) 8. (0,1) 9. (0,41), (2,0)

10. (%,i% 11. (3,4), (—4,-3) 12. (£3,4)

13. (—4,-56), (1,9), (2,16) 14. (-2,2), (2,-2) 15. (3,4)

16. Initially, there are 252800 ~ 5102 bacteria. It will take 5112((?%)5 ) ~ 33.92 minutes for the colony

to grow to 50,000 bacteria.
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17. (—v/5,49) 18. No solution 19. (e7®,£V/7)

20. (1,4,8), (—1,4,8)

2 2
-y <
21'{x2+4y2 > 4

—_

23‘{(30—2)2-|-y2 < 1 24‘{y > 10z — 22

1 2 T
—14
2% > 2 “ty? >
95, 12:—1— y2 > 9. 4 ¢ +y° > 25
¥ 4+4yr < 4 y—xz < 1

27. 2 =10, y =10, z=10,A = 2
28. (¢) a'+4= (2" -2z +2)(2* + 22+ 2)
29. #* + 622 — 52+ 6= (22 —z+ 1)(22 + 2 +6)



CHAPTER 9

HoOOKED oN CONICS

9.1 INTRODUCTION TO CONICS

In this chapter, we study the Conic Sections - literally ‘sections of a cone’. Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.

This chapter is part of College Algebra (©)Stitz & Zeager 2013.
This material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
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Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.


http://clem.mscd.edu/~talmanl/HTML/ConicSections.html
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If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

X
) 4
)4

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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9.2 CIRCLES

Recall from Geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 9.1. A circle with center (h, k) and radius r > 0 is the set of all points (x,y) in the
plane whose distance to (h, k) is r.

From the picture, we see that a point (z,y) is on the circle if and only if its distance to (h, k) is 7.
We express this relationship algebraically using the Distance Formula, Equation 77, as

r=/(z—h)?+(y—k)?

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 9.1. The Standard Equation of a Circle: The equation of a circle with center
(h,k) and radius r > 0 is (z — h)? + (y — k)% = r2.

Example 9.2.1. Write the standard equation of the circle with center (—2,3) and radius 5.
Solution. Here, (h,k) = (—2,3) and r = 5, so we get

(= (=2)°+(y—3)° = (57
(z+2)%+(y—3)? = 25

Example 9.2.2. Graph (x +2)% + (y — 1)? = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 9.1, we have that x +2is x — h, so h = —2
and iy — 1 is y — k so k = 1. This tells us that our center is (—2,1). Furthermore, 7?> = 4, so r = 2.
Thus we have a circle centered at (—2,1) with a radius of 2. Graphing gives us
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O

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x + 2)? + (y — 1)? = 4, we’d be contending with 22 + 4z + y? — 2y +1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 9.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 9.2.3. Complete the square to find the center and radius of 322 — 6z + 3y% + 4y — 4 = 0.

Solution.
322 -6+ 3y’ +4y—4 = 0
322 — 62 +3y> +4y = 4 add 4 to both sides
4
3 (a:2 - 23;) +3 <y2 + 3y> = 4 factor out leading coefficients
9 5 4 4 4 )
3(m —2m+l)+3 Y +§y+§ = 4+3(1)+3 9 complete the square in x, y
2\° 25
3(x—1)2+3 <y + > = — factor
3 3
2 2\* _ 25 . .
(x—=1)"+(y+ 3 = 3 divide both sides by 3

From Equation 9.1, we identify xt — 1 as x — h, so h = 1, and y+% asy—k,so k= —%. Hence, the

center is (h, k) = (1, —%) Furthermore, we see that 2 = 23 so the radius is r = 2. O

9

wlot
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It is possible to obtain equations like (z — 3)%2 4+ (y+1)? = 0 or (x — 3)? + (y + 1)? = —1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 77, in conjunction with the ideas presented so far in this section.

Example 9.2.4. Write the standard equation of the circle which has (—1,3) and (2,4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

Yy
/’——_\\
, N
;o 4t T
T
« 31+ (bR )
N /
N /
~ 7/
2\_\—//
11
-2 -1 1 2 3 €T

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 77 gives us

)
_[(-1+2 344
- 2 72

B 17

- (33)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

(h.k) = (leQ ylﬂh)

ro= % (7, $1)2+(y2*?/1)2
= Ve P+ E-3p
1

2 2 2
V10 10 1 7 10
Finally, since <2> =1 our answer becomes (m — ) + <y — > = — O
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We close this section with the most important® circle in all of mathematics: the Unit Circle.

Definition 9.2. The Unit Circle is the circle centered at (0,0) with a radius of 1. The
standard equation of the Unit Circle is #? + y? = 1.

3
Example 9.2.5. Find the points on the unit circle with y-coordinate —.

3
Solution. We replace y with \Qf in the equation 22 + 4% = 1 to get

2
3
m2+<f> =1
2
3
—+z2 =1
4
PR
4
T 1
r = +-
1 V3 1 v3
Our final answers are <2,\2[) and (—2,\2[>. O

While this may seem like an opinion, it is indeed a fact. See Chapters ?? and ?? for details.
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9.2.1 EXERCISES

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center (—1,—5), radius 10 2. Center (4, —2), radius 3
3. Center (-3, 1—73), radius 3 4. Center (5,—9), radius In(8)
5. Center (—e, ﬁ), radius 7 6. Center (m,e?), radius /91

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify
the center and the radius or explain why the equation does not represent a circle.

7. 22 —4x +y? + 10y = —25 8. —22% —36x — 2y — 112 =0
9. 22 +9y°+8x—10y—1=0 10. 22+’ +5x—y—1=0
11. 422 +4y> =24y +36 =0 12. 22 +x+y? - Sy =1

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.
13. center (3,5), passes through (-1, —2) 14. center (3,6), passes through (—1,4)

15. endpoints of a diameter: (3,6) and (—1,4)  16. endpoints of a diameter: (%,4), (%, —1)

17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot
tall platform making its overall height is 136 feet.? Find an equation for the wheel assuming
that its center lies on the y-axis.

18. Verify that the following points lie on the Unit Circle: (£1,0), (0, £1), <:|:§, j:g), <:|:%, L3
V3 41
and <Zl:7, Zl:§>
19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 9.1,

from the equation of the Unit Circle, 2 4+ y? = 1 using transformations. (Thus every circle
is just a few transformations away from the Unit Circle.)

20. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how transformations can be used to produce a function whose graph is either the top
or bottom of an arbitrary circle.

21. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.



http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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9.2.2 ANSWERS

1. (z+1)2+ (y+5)? =100 2. (=42 +(y+2?2=9
Y

54

4. (z =52+ (y +9)%? = (In(8))?
Yy

x

5— :ln(8) :5 5+ :ln(8)

I\J‘l\)
alN
'

t

g~ G~

-3 x —9 4+ In(8)+

—-94

—9 — In(8)+

6. (z—7)°+ (y— 62)2 =913

e 4 Yot

V2 -7 e24
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7. (x-22+(y+5)?%=4 8. (x+9)2+y*=25
Center (2,—5), radius r = 2 Center (—9,0), radius r =5
9. (z+4)2%+ (y—5)% =42 10. (z43)°+ (y—1)? =2
Center (—4,5), radius r = /42 Center (—3,1), radius r = \/TITO
11. 224+ (y—3)2=0 12. (x+%)2+(y—§)2=%
This is not a circle. Center (_%7 %)’ radius 7 = 11651
13. (x—3)2+ (y—5)2=65 14. (x—3)2+(y—6)2=20
15. (x—1)2+ (y—5)2=5 16. (z—1)2+ (y—3)* =13

17. 22 + (y — 72)% = 4096
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9.3 PARABOLAS

We have already learned that the graph of a quadratic function f(x) = ax? + bx + ¢ (a # 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 9.3. Let F' be a point in the plane and D be a line not containing F'. A parabola is
the set of all points equidistant from F' and D. The point F' is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

D

Each dashed line from the point F' to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied earlier. Let p
denote the directed! distance from the vertex to the focus, which by definition is the same as the
distance from the vertex to the directrix. For simplicity, assume that the vertex is (0,0) and that
the parabola opens upwards. Hence, the focus is (0,p) and the directrix is the line y = —p. Our
picture becomes

From the definition of parabola, we know the distance from (0,p) to (z,y) is the same as the
distance from (z, —p) to (x,y). Using the Distance Formula, Equation ??, we get

I'We'll talk more about what ‘directed’ means later.
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VE—02+y-—p? = (@—2)?+@y—(—p)?

2+ (y-p? = Vy+p)?
2+ (y—-p? = (y+p)? square both sides
2y —2py+p? = y 4 2py+p? expand quantities
22 = dpy gather like terms
Solving for y yields y = %, which is a quadratic function of the form found in Equation ?? with
a= ﬁ and vertex (0,0).

We know from previous experience that if the coefficient of x? is negative, the parabola opens
2

downwards. In the equation y = XT; this happens when p < 0. In our formulation, we say that p is

a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,

the focus is below the vertex. The focal length of a parabola is |p|.

If we choose to place the vertex at an arbitrary point (h, k), we arrive at the following formula
using either transformations or re-deriving the formula from Definition 9.3.

Equation 9.2. The Standard Equation of a Vertical® Parabola: The equation of a
(vertical) parabola with vertex (h, k) and focal length |p| is

( —h)* = 4p(y — k)
If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

“That is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 9.3.1. Graph (x + 1) = —8(y — 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 9.2. Here, x —hisxz +1so h = —1,
and y — k is y — 3 so k = 3. Hence, the vertex is (—1,3). We also see that 4p = —8 so p = —2.
Since p < 0, the focus will be below the vertex and the parabola will open downwards.

Y

A5 [ 12 5 8¢
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The distance from the vertex to the focus is |p| = 2, which means the focus is 2 units below the
vertex. From (—1,3), we move down 2 units and find the focus at (—1,1). The directrix, then, is
2 units above the vertex, so it is the line y = 5. O

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.? The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

the latus rectum
______ _*_ —_— — — — — —

F

D

It turns out? that the length of the latus rectum, called the focal diameter of the parabola is |4p],
which, in light of Equation 9.2, is easy to find. In our last example, for instance, when graphing
(r+1)?2 = —8(y — 3), we can use the fact that the focal diameter is | — 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 9.3.2. Find the standard form of the parabola with focus (2,1) and directrix y = —4.
Solution. Sketching the data yields,
y

%
|
. ]
—1 1 2 3
|
|
[
|
|
|
|
|

The vertex lies on this vertical line

midway between the focus and the directrix

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an z-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1 — (—4) = 5,
which means the vertex lies 5 units (halfway) below the focus. Starting at (2,1) and moving down
5/2 units leaves us at (2, —3/2), which is our vertex. Since the parabola opens upwards, we know
p is positive. Thus p = 5/2. Plugging all of this data into Equation 9.2 give us

e = () (D)
= oo

If we interchange the roles of z and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices® of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex, as seen below.

D

Equation 9.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y —k)* = 4p(z — h)
If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

4plural of ‘directrix’
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Example 9.3.3. Graph (y — 2)2 = 12(z + 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 9.3. Here, x — hisx+ 1 so h = —1,
and y — k is y — 2 so k = 2. Hence, the vertex is (—1,2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (—1,2) and move right 3 units, we arrive at the focus (2,2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (—1,2), we’d be on the vertical line
x = —4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

Y

O

As with circles, not all parabolas will come to us in the forms in Equations 9.2 or 9.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-
squared variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.

Example 9.3.4. Consider the equation 32 + 4y + 8z = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need a perfect square (in this case, using y) on the left-hand side of the equation
and factor out the coefficient of the non-squared variable (in this case, the x) on the other.
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vP+4y+8r = 4
44y = —8xr+4
y?+4y+4 = —8xr+4+4 complete the square in y only
(y+2)? = —8r+8 factor
(y+2? = —8(z—1)

Now that the equation is in the form given in Equation 9.3, we see that t —hisz—1so h =1, and
y—kisy+2so k= —2. Hence, the vertex is (1,—2). We also see that 4p = —8 so that p = —2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1, —2) and move left 2 units, we arrive at the focus (—1, —2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1, —2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

Y

O

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.
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Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

Example 9.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution.
If the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola suggested
to us by this data. For simplicity, we’ll assume the vertex is (0,0) and the parabola opens upwards.
Our standard form for such a parabola is 22 = 4py. Since the focus is 2 units above the vertex, we
know p = 2, so we have z? = 8y. Visually,

L (6,y)
12 units wide

|
o
ot

8

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = % = % = 4.5. Hence, the dish will be 4.5 feet deep. O
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EXERCISES

In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix.
Include the endpoints of the latus rectum in your sketch.

1.

3.

D.

7.

(z —3)* = —16y 2. (z+ 1) =2(y+3)
(y—2)% = —12(z +3) 4. (y+4)? = 4z
(z—1)* =4(y +3) 6. (z+2)2=—-20(y — 5)
(y—4)° =18(x - 2) 8 (y+3)°=-7(x+2)

In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

9.

11.

13.

y? — 10y — 272 + 133 =0 10. 2522 + 20z +5y —1=0
22+ 22 — 8y +49 =0 12. 202 +4y+2—-8=0
22— 10z +12y+1=0 14. 3y? =27y + 4z + HL =0

In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

15.

17.

19.

20.

21.

22.

23.

Vertex (7,0), focus (0,0) 16. Focus (10,1), directrix x =5

Vertex (—8,—9); (0,0) and (—16,0) are  18. The endpoints of latus rectum are (-2, —7)
points on the curve and (4, —7)

The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.® If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where should the receiver be placed to maximize reception?

A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch.

A popular novelty item is the ‘mirage bowl.” Follow this link to see another startling appli-
cation of the reflective property of the parabola.

With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’


http://spie.org/etop/2007/etop07methodsV.pdf
http://www.astro.ubc.ca/LMT/lzt/
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9.3.2 ANSWERS

1. (z—3)?=-16y
Vertex (3,0)
Focus (3, —4)
Directrix y = 4
Endpoints of latus rectum (=5, —4), (11, —4)

2. (x—l—%)? =2(y+3)
Vertex (fg,f%)
Focus (—%, —2)

Directrix y = —3

Endpoints of latus rectum (—m —2), (—é —2)

3. (y—2)2%=—-12(z +3)
Vertex (—3,2)
Focus (—6,2)
Directrix x =0
Endpoints of latus rectum (—6,8), (—6, —4)
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(y+4)* =4z

Vertex (0, —4)

Focus (1,—4)

Directrix x = —1

Endpoints of latus rectum (1, —2), (1, —6)

(¢ = 1)? = 4(y +3)

Vertex (1, —3)

Focus (1, -2)

Directrix y = —4

Endpoints of latus rectum (3, —2), (-1, —2)

(z +2)% = —20(y — 5)

Vertex (—2,5)

Focus (—2,0)

Directrix y = 10

Endpoints of latus rectum (—12,0), (8,0)

(y—4)? = 18( — 2)
Vertex (2,4)
Focus (%,4)
Directrix z = —2

2
Endpoints of latus rectum (1—23, —5), (1—23, 13)
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9. (y—5)2=27(x —4)
Vertex (4, 5)
4
Focus (13,5)
Directrix z = —%

11. (z+1)2=8(y —6)
Vertex (—1,6)
Focus (—1,8)
Directrix y =4

13. (z—5)2=—-12(y — 2)
Vertex (5,2)

Focus (5,—1)
Directrix y = 5

15. y? = —28(x — 7)

17. (z+8)%=%(y+9)

555

10.

12.

14.

16.

18.

(y+1)?=—1(z—10)

Vertex (10, —1)
79

Focus (g,— )

Directrix = = %

(v-3)° = -2
Vertex (2, %)
Focus (%, %)

Directrix z =

W~

19. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by

Carl himself!)

20. The receiver should be placed 5.0625 centimeters from the vertex of the cross section of the

antenna.

21. The arch can be modeled by 22 = —(y — 9) or y = 9 — 22. One foot in from the base of the
arch corresponds to either x = +2, so the height is y = 9 — (:2)% = 5 feet.
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9.4 ELLIPSES

In the definition of a circle, Definition 9.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 9.4. Given two distinct points F; and F, in the plane and a fixed distance d, an
ellipse is the set of all points (z,y) in the plane such that the sum of each of the distances from
F, and F, to (z,y) is d. The points F;, and F, are called the foci” of the ellipse.

“the plural of ‘focus’

dy + d, = d for all (z,y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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Minor Axis

Major Axis

An ellipse with center C; foci F}, F,; and vertices Vi, V,

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0,0), its major axis along the z-axis, and has foci (¢,0) and (—c,0)
and vertices (—a,0) and (a,0). We will label the y-intercepts of the ellipse as (0,b) and (0, —b) (We
assume a, b, and ¢ are all positive numbers.) Schematically,

Yy

(0,0)

(07 _b)

Note that since (a,0) is on the ellipse, it must satisfy the conditions of Definition 9.4. That is, the
distance from (—¢,0) to (a,0) plus the distance from (¢, 0) to (a,0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (—c,0) to (a,0) + distance from (¢, 0) to (a,0) = d
(a+c)+(a—c) =
2 = d

=9
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In other words, the fixed distance d mentioned in the definition of the ellipse is none other than
the length of the major axis. We now use that fact (0,b) is on the ellipse, along with the fact that
d = 2a to get

distance from (—c,0) to (0,b) + distance from (¢, 0) to (0, b) 2a
VO—=(=))2+®-02+/(0-0c)2+(b-02 = 2a
VB2 + 2+ Vb2 +c2 = 2a
2V +c2 = 2a
FTE — a

From this, we get a® = b% + 2, or b? = a?

— ¢2, which will prove useful later.

Now consider a point

(z,y) on the ellipse. Applying Definition 9.4, we get

distance from (—¢,0) to (z,y) + distance from (c,0) to (z,y) = 2a
VE =2+ -02+/@-c?+(y-02 = 2a
Vae+e?+¢?+/(w—? +¢° = 2a

In order to make sense of this situation, we need to make good use of Intermediate Algebra.

VE+e)2+y2+(r—c)2+y2 2a
(x+c)2+y? = 2a— /(v —c)?+y?
2 2
(Ve+eP+?) = (2a-V@—cP+s)
(x+e)+y? = 4a®> —day/(x—c)2+y2+ (2 — )2 + 92
dar/(x —c)2 4+ 92 = 4a®+ (x —c)? — (x4 c)?
dar/(z —c)2+y2 = 4a® —dcx
a/(x—c)2+y? = a®—cx
2
(a (:U—c)2+y2) (a?—caz)2

a? ((z — o)* +y?)

a’x? — 2a’cx + a®c? + a%y?
a2z? — 2x? + a%y?

(a2 _ 62) 22 + a2y?

a* — 2a%cx + a?
a* — 2a2cx + a2
a* — a%c?

a2 (a2 _ 62)

We are nearly finished. Recall that b> = a? — ¢? so that

(a2 _Cz) 224+ a2 = a (a2 —02)
222 + a2y? a2b2
T 2
45 =1

a2

bQ
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This equation is for an ellipse centered at the origin. To get the formula for the ellipse centered
at (h, k), we could use the transformations or re-derive the equation using Definition 9.4 and the
distance formula to obtain the formula below.

Equation 9.4. The Standard Equation of an Ellipse: For positive unequal numbers a and
b, the equation of an ellipse with center (h, k) is

=P =k
a? - 2 !

Some remarks about Equation 9.4 are in order. First note that the values a and b determine
how far in the x and y directions, respectively, one counts from the center to arrive at points on
the ellipse. Also take note that if a > b, then we have an ellipse whose major axis is horizontal,
and hence, the foci lie to the left and right of the center. In this case, as we've seen in the
derivation, the distance from the center to the focus, ¢, can be found by ¢ = Va2 — b2. If b > a,
the roles of the major and minor axes are reversed, and the foci lie above and below the center.
In this case, ¢ = Vb? —a?. In either case, ¢ is the distance from the center to each focus, and
¢ = y/bigger denominator — smaller denominator. Finally, it is worth mentioning that if we take
the standard equation of a circle, Equation 9.1, and divide both sides by r2, we get

Equation 9.5. The Alternate Standard Equation of a Circle: The equation of a circle
with center (h, k) and radius r > 0 is

(z—h)?  (y—k)?
r2 + 72 =1

Notice the similarity between Equation 9.4 and Equation 9.5. Both equations involve a sum of
squares equal to 1; the difference is that with a circle, the denominators are the same, and with an
ellipse, they are different. If we take a transformational approach, we can consider both Equations
9.4 and 9.5 as shifts and stretches of the Unit Circle 22 + y? = 1 in Definition 9.2. Replacing =
with (z — h) and y with (y — k) causes the usual horizontal and vertical shifts. Replacing x with £
and y with ¥ causes the usual vertical and horizontal stretches. In other words, it is perfectly fine
to think of an ellipse as the deformation of a circle in which the circle is stretched farther in one
direction than the other.!

2 2
Example 9.4.1. Graph % + % = 1. Find the center, the lines which contain the major
and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. We see that this equation is in the standard form of Equation 9.4. Here x — h is x + 1
soh=—1,and y —k is y — 2 so k = 2. Hence, our ellipse is centered at (—1,2). We see that a? =9
so a = 3, and b?> = 25 so b = 5. This means that we move 3 units left and right from the center
and 5 units up and down from the center to arrive at points on the ellipse. As an aid to sketching,
we draw a rectangle matching this description, called a guide rectangle, and sketch the ellipse
inside this rectangle as seen below on the left.

I This was foreshadowed in Exercise 19 in Section 9.2.
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Since we moved farther in the y direction than in the x direction, the major axis will lie along
the vertical line x = —1, which means the minor axis lies along the horizontal line, y = 2. The
vertices are the points on the ellipse which lie along the major axis so in this case, they are the
points (—1,7) and (—1,—3), and the endpoints of the minor axis are (—4,2) and (2,2). (Notice
these points are the four points we used to draw the guide rectangle.) To find the foci, we find
c=+25-9=+16 = 4, which means the foci lie 4 units from the center. Since the major axis is
vertical, the foci lie 4 units above and below the center, at (—1,—2) and (—1,6). Plotting all this
information gives the graph seen above on the right. O

Example 9.4.2. Find the equation of the ellipse with foci (2,1) and (4, 1) and vertex (0, 1).

Solution. Plotting the data given to us, we have

From this sketch, we know that the major axis is horizontal, meaning a > b. Since the center is the
midpoint of the foci, we know it is (3,1). Since one vertex is (0,1) we have that a = 3, so a®> = 9.
All that remains is to find b. Since the foci are 1 unit away from the center, we know ¢ = 1. Since
a > b, we have ¢ = Va2 — b2, or 1 = /9 — b2, so b> = 8. Substituting all of our findings into the
(ﬂl?;h)2 (y—k)® (43—93)2 + @ - 1. ]

equation “—— + 5~ =1, we get our final answer to be
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As with circles and parabolas, an equation may be given which is an ellipse, but isn’t in the standard
form of Equation 9.4. In those cases, as with circles and parabolas before, we will need to massage
the given equation into the standard form.

To Write the Equation of an Ellipse in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square in both variables as needed.

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1.

Example 9.4.3. Graph 2% + 4y? — 2z + 24y + 33 = 0. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. Since we have a sum of squares and the squared terms have unequal coefficients, it’s a
good bet we have an ellipse on our hands.? We need to complete both squares, and then divide, if
necessary, to get the right-hand side equal to 1.

22 +4y? — 20 +24y+33 = 0

22 — 2 +4y? +24y = -33
x2—2$+4(y2+6y) = -33
(2 =2x41)+4 (> +6y+9) = —33+1+4(9)
(z—1)°+4(y+3)° = 4
(z -1 +4(y+3)* 4

4 4
—1)2
(x4 ) +y+3)? =1
_1\2 2
(x-17  Ww+3? _
4 1

Now that this equation is in the standard form of Equation 9.4, we see that x —hisx—1so h =1,
and y —k is y +3 so k = —3. Hence, our ellipse is centered at (1, —3). We see that a®> = 4 s0 a = 2,
and b> =1 so b = 1. This means we move 2 units left and right from the center and 1 unit up and
down from the center to arrive at points on the ellipse. Since we moved farther in the z direction
than in the y direction, the major axis will lie along the horizontal line y = —3, which means the
minor axis lies along the vertical line x = 1. The vertices are the points on the ellipse which lie
along the major axis so in this case, they are the points (—1,—3) and (3, —3), and the endpoints
of the minor axis are (1, —2) and (1, —4). To find the foci, we find ¢ = /4 — 1 = /3, which means

2The equation of a parabola has only one squared variable and the equation of a circle has two squared variables
with identical coefficients.



562 HoOKED oN CONICS

the foci lie v/3 units from the center. Since the major axis is horizontal, the foci lie V/3 units to the
left and right of the center, at (1 — /3, —3) and (14 +/3, —3). Plotting all of this information gives

Y

O]

As you come across ellipses in the homework exercises and in the wild, you’ll notice they come in
all shapes in sizes. Compare the two ellipses below.

>

Certainly, one ellipse is more round than the other. This notion of ‘roundness’ is quantified below.

Definition 9.5. The eccentricity of an ellipse, denoted e, is the following ratio:

distance from the center to a focus

e =
distance from the center to a vertex

In an ellipse, the foci are closer to the center than the vertices, so 0 < e < 1. The ellipse above on
the left has eccentricity e ~ 0.98; for the ellipse above on the right, e ~ 0.66. In general, the closer
the eccentricity is to 0, the more ‘circular’ the ellipse; the closer the eccentricity is to 1, the more
‘eccentric’ the ellipse.

Example 9.4.4. Find the equation of the ellipse whose vertices are (45, 0) with eccentricity e =

N

Solution. As before, we plot the data given to us
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From this sketch, we know that the major axis is horizontal, meaning a > b. With the vertices
located at (£5,0), we get a = 5 so a®> = 25. We also know that the center is (0,0) because the
center is the midpoint of the vertices. All that remains is to find b%2. To that end, we use the fact
that the eccentricity e = % which means

_ distance from the center to a focus c c 1

e pry
distance from the center to a vertex a 5 4

from which we get ¢ = %. To get b%, we use the fact that ¢ = Va2 — b2, so % = /25 — b2 from which

we get b? = %. Substituting all of our findings into the equation (30;72}1)2 + @;721@)2 =1, yields our

z2 | 16y2 _
final answer 55 35 = 1. O

As with parabolas, ellipses have a reflective property. If we imagine the dashed lines below repre-
senting sound waves, then the waves emanating from one focus reflect off the top of the ellipse and
head towards the other focus.

Such geometry is exploited in the construction of so-called ‘Whispering Galleries’. If a person
whispers at one focus, a person standing at the other focus will hear the first person as if they were
standing right next to them. We explore the Whispering Galleries in our last example.

Example 9.4.5. Jamie and Jason want to exchange secrets (terrible secrets) from across a crowded
whispering gallery. Recall that a whispering gallery is a room which, in cross section, is half of an
ellipse. If the room is 40 feet high at the center and 100 feet wide at the floor, how far from the
outer wall should each of them stand so that they will be positioned at the foci of the ellipse?

Solution. Graphing the data yields
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40 units tall

100 units wide

It’s most convenient to imagine this ellipse centered at (0,0). Since the ellipse is 100 units wide
and 40 units tall, we get a = 50 and b = 40. Hence, our ellipse has the equation % + % = 1.
We're looking for the foci, and we get ¢ = v/502 — 402 = /900 = 30, so that the foci are 30 units
from the center. That means they are 50 — 30 = 20 units from the vertices. Hence, Jason and

Jamie should stand 20 feet from opposite ends of the gallery. O
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9.4.1 EXERCISES

In Exercises 1 - 8, graph the ellipse. Find the center, the lines which contain the major and minor
axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

. f;gqtg;:l 2. 9;2 g;z

N (ac—42)2+(y—g3)2_1 N (x—li_65)2+(y_14)2_1
(@ I01)2 LW I13)2 , N (;z:—91)2+ (y+43)2 _
@ 162)2 0 ;05)2 , N (:c—8 9”@ 182>2 _,

In Exercises 9 - 14, put the equation in standard form. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

9. 922 + 25¢y% — 5dx — 50y — 119 =0 10. 1222 +3y> — 30y +39=0
11. 522 +18y> —30x 4+ T2y +27=0 12. 22 - 20 +2y2 — 12y +3 =0
13. 922 +4y? —4y —8 =10 14. 622 + 5y? — 242 +20y + 14 =0

In Exercises 15 - 20, find the standard form of the equation of the ellipse which has the given
properties.

15. Center (3,7), Vertex (3,2), Focus (3, 3)

16. Foci (0,+5), Vertices (0, £8).

17. Foci (£3,0), length of the Minor Axis 10

18. Vertices (3,2), (13,2); Endpoints of the Minor Axis (8,4), (8,0)
19. Center (5,2), Vertex (0, 2), eccentricity %

20. All points on the ellipse are in Quadrant IV except (0, —9) and (8,0). (One might also say
that the ellipse is “tangent to the axes” at those two points.)

21. Repeat Example 9.4.5 for a whispering gallery 200 feet wide and 75 feet tall.

22. An elliptical arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch. Compare your result
with your answer to Exercise 21 in Section 9.3.
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23.

24.

25.

26.

HoOKED oN CONICS

The Earth’s orbit around the sun is an ellipse with the sun at one focus and eccentricity
e ~ 0.0167. The length of the semimajor axis (that is, half of the major axis) is defined
to be 1 astronomical unit (AU). The vertices of the elliptical orbit are given special names:
‘aphelion’ is the vertex farthest from the sun, and ‘perihelion’ is the vertex closest to the sun.
Find the distance in AU between the sun and aphelion and the distance in AU between the
sun and perihelion.

The graph of an ellipse clearly fails the Vertical Line Test, Theorem 77?7, so the equation of
an ellipse does not define y as a function of . However, much like with circles and horizontal
parabolas, we can split an ellipse into a top half and a bottom half, each of which would
indeed represent y as a function of x. With the help of your classmates, use your calculator
to graph the ellipses given in Exercises 1 - 8 above. What difficulties arise when you plot
them on the calculator?

Some famous examples of whispering galleries include St. Paul’s Cathedral in London, Eng-
land, National Statuary Hall in Washington, D.C., and The Cincinnati Museum Center. With
the help of your classmates, research these whispering galleries. How does the whispering ef-
fect compare and contrast with the scenario in Example 9.4.57

With the help of your classmates, research “extracorporeal shock-wave lithotripsy”. It uses
the reflective property of the ellipsoid to dissolve kidney stones.


http://www.stpauls.co.uk/
http://www.aoc.gov/cc/capitol/nat_stat_hall.cfm
http://www.cincymuseum.org/
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9.4.2 ANSWERS

2 2 y

1+ L=

169 = 25

Center (0,0)

Major axis along y = 0

Minor axis along z =0

Vertices (13,0), (—13,0)

Endpoints of Minor Axis (0, —5), (0,5)

Foci (12,0), (—12,0)
12
IE

e =

22 g2
2. 9 + o = 1
Center (0,0)
Major axis along x =0
Minor axis along y = 0
Vertices (0,5), (0, —5)
Endpoints of Minor Axis (—3,0), (3,0)
Foci (0,—4), (0,4)
4

e =

5

(z—2)*  (y+3) !
8. = ,
Center (2,—3)
Major axis along x = 2
Minor axis along y = —3
Vertices (2,0), (2,—6)
Endpoints of Minor Axis (0, —3), (4, —3)
Foci (2, -3 + v/5), (2, -3 — V/5)

(z+5)°  (y—4)°
. =1
4 6 + 1 y

Center (—5,4)

Major axis along y = 4

Minor axis along x = —5

Vertices (—9,4), (—1,4)

Endpoints of Minor Axis (-5, 3), (—5,5)

Foci (=5 + /15,4), (=5 — v/15,4) Lt

[\ w = ot
) f 1 Y
y y y y

-9 -8 -7 —6 -5 —4 —3 —2 —1 z
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D.

(-1 =3 |
10 11
Center (1,3)
Major axis along x = 1
Minor axis along y = 3
Vertices (1,3 +v/11), (1,3 — V/11)
Endpoints of the Minor Axis
(1-+/10,3), (1 +10,3)
Foci (1,2), (1,4)

e = V11
- 11

(@—1)?%  (y+3)° _
9 4

Center (1,—3)

Major axis along y = —3

Minor axis along z = 1

Vertices (4, —3), (—2,—-3)

Endpoints of the Minor Axis (1,—1), (1,—5)

Foci (14 v/5,-3), (1 —+/5,-3)

1

42?57 _|
16 20
Center (—2,5)
Major axis along x = —2
Minor axis along y =5
Vertices (—2,5 + 2v/5), (=2,5 — 2v/5)
Endpoints of the Minor Axis (—6,5), (2,5)
Foci (—2,7), (-2,3)

— V5
€="5

HoOKED oN CONICS

=6 5 i 5 % T




9.4 ELLIPSES

11.

Center (4,2)

Major axis along x = 4

Minor axis along y = 2

Vertices (4,2 + 3v/2), (4,2 — 3v/2)
Endpoints of the Minor Axis
(4—2v2,2), (4+2v2,2)

Foci (4,2 +/10), (4,2 — V/10)

oo VB
3
(z-37° -1°_,

25 9
Center (3,1)

Major Axis along y =1
Minor Axis along z = 3
Vertices (8,1), (—2,1)
Endpoints of Minor Axis (3,4), (3,—2)
Foci (7,1), (—1,1)
_ 4
€=53

(x—3)?2  (y+2)?

=1

18
Center (3,—2)
Major axis along y = —2
Minor axis along x = 3
Vertices (3 — 3v/2, —2), (3 + 3v/2, —2)

Endpoints of Minor Axis (3,2 + v/5),

(3a -2- \/5)
Foci (3 — /13, -2), (3 + /13, -2)

_ /%
€= "%

z* | (y—5)°
10. 3 + 5

Center (0,5)

Major axis along x =0

Minor axis along y =5

Vertices (0,5 — 2v/3), (0,5 + 2v/3)

=1

569

Endpoints of Minor Axis (—v/3,5), (v/3,5)

Foci (0,2), (0,8)

=3
_1\2 )2
B e U
16 8

Center (1,3)

Major Axis along y = 3
Minor Axis along z =1
Vertices (5,3), (—3,3)

Endpoints of Minor Axis (1,3 + 2v/2),

(1,3 —2V2)
Foci (1+2v/2,3), (1 —2v/2,3)
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2 _ 1 2 -9 2 2 2
13-ff1+4(yz):1 g, @2 w2
Center (0, %) Cen‘ter (27.—2)
Major Axis along z = 0 (the y-axis) M?JOT AX?S along z = 2
Minor Axis along y = % Minor Axis along y = —2
Vertices (0,2), (0, —1) Vertices (2, -2+ V6), (2,—2 — V/6)
Endpoints of Minor Axis (-1, %), (1, %) Endpoints of Minor Axis (2— V5, -2),
Foci (0,15%), (0,155) (2+5,-2)
Foci (2,-1), (2,-3)
V5
€= T e = @
6
(-3 (=77 »*
15. =1 16. —+—=1
9 - 25 39 - 64
oy (-8 (y—2)°
! 34 * 25 8 25 * 4
(x—5)"  4(y—2)° (-8  (y+9)°
19. =1 20. =1
25 * 75 64 * 81

21. Jamie and Jason should stand 100 — 25v/7 ~ 33.86 feet from opposite ends of the gallery.

22. The arch can be modeled by the top half of %2 + ?8’—? = 1. One foot in from the base of the arch

corresponds to either = 2. Plugging in z = 42 gives y = £3+v/5 and since y represents a
height, we choose y = 3v/5 ~ 6.71 feet.

23. Distance from the sun to aphelion ~ 1.0167 AU.
Distance from the sun to perihelion ~ 0.9833 AU.
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9.5 HYPERBOLAS

In the definition of an ellipse, Definition 9.4, we fixed two points called foci and looked at points
whose distances to the foci always added to a constant distance d. Those prone to syntactical
tinkering may wonder what, if any, curve we’d generate if we replaced added with subtracted.
The answer is a hyperbola.

Definition 9.6. Given two distinct points F} and F, in the plane and a fixed distance d, a
hyperbola is the set of all points (z, y) in the plane such that the absolute value of the difference
of each of the distances from F; and F, to (z,y) is d. The points F; and F;, are called the foci
of the hyperbola.

In the figure above:

the distance from F} to (z,,y,) — the distance from F, to (z1,v,) = d

and

the distance from F, to (z,,y,) — the distance from F) to (z,,y,) = d

Note that the hyperbola has two parts, called branches. The center of the hyperbola is the
midpoint of the line segment connecting the two foci. The transverse axis of the hyperbola is
the line segment connecting two opposite ends of the hyperbola which also contains the center and
foci. The vertices of a hyperbola are the points of the hyperbola which lie on the transverse axis.
In addition, we will show momentarily that there are lines called asymptotes which the branches
of the hyperbola approach for large x and y values. They serve as guides to the graph. In pictures,
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A hyperbola with center C; foci Fy, F,; and vertices Vi, V, and asymptotes (dashed)

Before we derive the standard equation of the hyperbola, we need to discuss one further parameter,
the conjugate axis of the hyperbola. The conjugate axis of a hyperbola is the line segment
through the center which is perpendicular to the transverse axis and has the same length as the
line segment through a vertex which connects the asymptotes. In pictures we have

Note that in the diagram, we can construct a rectangle using line segments with lengths equal to
the lengths of the transverse and conjugate axes whose center is the center of the hyperbola and
whose diagonals are contained in the asymptotes. This guide rectangle, much akin to the one
we saw Section 9.4 to help us graph ellipses, will aid us in graphing hyperbolas.

Suppose we wish to derive the equation of a hyperbola. For simplicity, we shall assume that the
center is (0,0), the vertices are (a,0) and (—a,0) and the foci are (¢,0) and (—c,0). We label the
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endpoints of the conjugate axis (0,b) and (0, —b). (Although b does not enter into our derivation,
we will have to justify this choice as you shall see later.) As before, we assume a, b, and c are all
positive numbers. Schematically we have

Since (a, 0) is on the hyperbola, it must satisfy the conditions of Definition 9.6. That is, the distance
from (—¢,0) to (a,0) minus the distance from (c,0) to (a,0) must equal the fixed distance d. Since
all these points lie on the x-axis, we get

distance from (—¢,0) to (a,0) — distance from (¢, 0) to (a,0) = d
(a+c)—(c—a) = d
2a = d

In other words, the fixed distance d from the definition of the hyperbola is actually the length of
the transverse axis! (Where have we seen that type of coincidence before?) Now consider a point
(z,y) on the hyperbola. Applying Definition 9.6, we get

distance from (—¢,0) to (z,y) — distance from (c,0) to (z,y) = 2a
VE =2+ -02-/@-c?+(y-02 = 2a
VE+?+y? = /(e —c?+1y2 = 2a

Using the same arsenal of Intermediate Algebra weaponry we used in deriving the standard formula
of an ellipse, Equation 9.4, we arrive at the following.!

Tt is a good exercise to actually work this out.
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(a2 _ CQ) 2 +a2y? = a? (az _ Cz)

What remains is to determine the relationship between a, b and c¢. To that end, we note that since
a and ¢ are both positive numbers with a < ¢, we get a® < ¢? so that a® — ¢? is a negative number.
Hence, ¢* — a? is a positive number. For reasons which will become clear soon, we re-write the

equation by solving for y?/x? to get

(a2 _ 02) 2?2 +a2y? = a?(a®— 02)
— (02 — az) x? + a?y2 = —a? (02 — a2)
a?y? = (02 _ a2) 22— a2 (02 _ a2)
y? (02 _ a2) 2 _ a2)
22 a? 2

A d i 1 lues, th ity o) 050 that £ o o) By setnd
s ¢ and y attain Ve2ry ar;g,e values, the quantity -——o; so that 25 . By setting
b? = c? — a® we get % — ¥ This shows that y — 2z as |z| grows large. Thus y = 2z are the
€T a a a

asymptotes to the graph as predicted and our choice of labels for the endpoints of the conjugate

axis is justified. In our equation of the hyperbola we can substitute a? — ¢> = —b? which yields
(a2 _ 02) 22 +a2y? = a2 (a,2 _ 02)
2 a2 = —a2b?
2 2
x
-5 =1
a b2

The equation above is for a hyperbola whose center is the origin and which opens to the left and
right. If the hyperbola were centered at a point (h, k), we would get the following.

Equation 9.6. The Standard Equation of a Horizontal® Hyperbola For positive numbers
a and b, the equation of a horizontal hyperbola with center (h, k) is
(z—h)?* (y—k)? _

a2 b2 =1

“That is, a hyperbola whose branches open to the left and right

If the roles of x and y were interchanged, then the hyperbola’s branches would open upwards and
downwards and we would get a ‘vertical’ hyperbola.

Equation 9.7. The Standard Equation of a Vertical Hyperbola For positive numbers a
and b, the equation of a vertical hyperbola with center (h, k) is:

(y—k)? (z—h)?

b2 a? =1

The values of a and b determine how far in the x and y directions, respectively, one counts from the
center to determine the rectangle through which the asymptotes pass. In both cases, the distance
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from the center to the foci, ¢, as seen in the derivation, can be found by the formula ¢ = va? + b2.
Lastly, note that we can quickly distinguish the equation of a hyperbola from that of a circle or
ellipse because the hyperbola formula involves a difference of squares where the circle and ellipse
formulas both involve the sum of squares.

Example 9.5.1. Graph the equation (:6_42)2 - g—; = 1. Find the center, the lines which contain the
transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

Solution. We first see that this equation is given to us in the standard form of Equation 9.6. Here
x—hisz—2s0oh =2 and y — k is y so k = 0. Hence, our hyperbola is centered at (2,0). We
see that a? = 4 so a = 2, and b?> = 25 so b = 5. This means we move 2 units to the left and right
of the center and 5 units up and down from the center to arrive at points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
This yields the following set up.

_T
Sa

ol ey
PR
t +
~
-
~

N W
} } '
t t

-

~

—_
-
~

Since the y? term is being subtracted from the 22 term, we know that the branches of the hyperbola
open to the left and right. This means that the transverse axis lies along the x-axis. Hence, the
conjugate axis lies along the vertical line x = 2. Since the vertices of the hyperbola are where the
hyperbola intersects the transverse axis, we get that the vertices are 2 units to the left and right of
(2,0) at (0,0) and (4,0). To find the foci, we need ¢ = Va2 + b2 = /4 + 25 = 1/29. Since the foci
lie on the transverse axis, we move v/29 units to the left and right of (2,0) to arrive at (2 —+/29,0)
(approximately (—3.39,0)) and (2 + /29, 0) (approximately (7.39,0)). To determine the equations
of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2,0), as well
as the corners of guide rectangle, so they have slopes of i% = i%. Using the point-slope equation
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of a line, Equation 7?7, yields y — 0 = :l:%(ac —2), so we get y = gx —band y= —%x + 5. Putting

it all together, we get

O

Example 9.5.2. Find the equation of the hyperbola with asymptotes y = +2x and vertices (£5, 0).

Solution. Plotting the data given to us, we have

This graph not only tells us that the branches of the hyperbola open to the left and to the right,
2

it also tells us that the center is (0,0). Hence, our standard form is 2—; — ¥ = 1. Since the vertices

are (£5,0), we have a = 5 so a? = 25. In order to determine b2, we recall that the slopes of the

asymptotes are ig. Since a = 5 and the slope of the line y = 2x is 2, we have that g = 2, 80

2

b = 10. Hence, b> = 100 and our final answer is % - fJﬁ =1. ]
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As with the other conic sections, an equation whose graph is a hyperbola may not be given in either
of the standard forms. To rectify that, we have the following.

To Write the Equation of a Hyperbola in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side

2. Complete the square in both variables as needed

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1

Example 9.5.3. Consider the equation 9y? — 2> — 6z = 10. Put this equation in to standard form
and graph. Find the center, the lines which contain the transverse and conjugate axes, the vertices,
the foci, and the equations of the asymptotes.

Solution. We need only complete the square on x:

9% —22 -6z = 10
9y —1 (2 +62) = 10
9y* — (22 +62+9) = 10—1(9)
9> —(z+3)2 = 1
y'_ (z+3)°
I 1
9

Now that this equation is in the standard form of Equation 9.7, we see that xt —h is z+3 so h = =3,
and y — k is y so k = 0. Hence, our hyperbola is centered at (—3,0). We find that a> =1s0 a = 1,
and b? = % so b= % This means that we move 1 unit to the left and right of the center and %
units up and down from the center to arrive at points on the guide rectangle. Since the 22 term
is being subtracted from the y? term, we know the branches of the hyperbola open upwards and
downwards. This means the transverse axis lies along the vertical line x = —3 and the conjugate
axis lies along the z-axis. Since the vertices of the hyperbola are where the hyperbola intersects
the transverse axis, we get that the vertices are % of a unit above and below (—3,0) at (—3, é) and
(—3, —%) To find the foci, we use

1 V10

c:\/a2+b2= §+1:73
Since the foci lie on the transverse axis, we move @ units above and below (—3,0) to arrive at
<—3, @) and (— , —@). To determine the asymptotes, recall that the asymptotes go through

the center of the hyperbola, (—3,0), as well as the corners of guide rectangle, so they have slopes
of :I:g = :I:%. Using the point-slope equation of a line, Equation 7?7, we get y = %:U + 1 and
Yy = —%:r — 1. Putting it all together, we get
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O

Hyperbolas can be used in so-called ‘trilateration,” or ‘positioning’ problems. The procedure out-
lined in the next example is the basis of the (now virtually defunct) LOng Range Aid to Navigation
(LORAN for short) system.?

Example 9.5.4. Jeff is stationed 10 miles due west of Carl in an otherwise empty forest in an
attempt to locate an elusive Sasquatch. At the stroke of midnight, Jeff records a Sasquatch call
9 seconds earlier than Carl. If the speed of sound that night is 760 miles per hour, determine a
hyperbolic path along which Sasquatch must be located.

Solution. Since Jeff hears Sasquatch sooner, it is closer to Jeff than it is to Carl. Since the speed of
sound is 760 miles per hour, we can determine how much closer Sasquatch is to Jeff by multiplying

miles 1 hour

= 1.9mil
hour % 3600 seconds x 9seconds 9 miles

This means that Sasquatch is 1.9 miles closer to Jeff than it is to Carl. In other words, Sasquatch
must lie on a path where

(the distance to Carl) — (the distance to Jeff) = 1.9

This is exactly the situation in the definition of a hyperbola, Definition 9.6. In this case, Jeff
and Carl are located at the foci,®> and our fixed distance d is 1.9. For simplicity, we assume the
hyperbola is centered at (0,0) with its foci at (—5,0) and (5,0). Schematically, we have

2GPS now rules the positioning kingdom. Is there still a place for LORAN and other land-based systems? Do
satellites ever malfunction?
3We usually like to be the center of attention, but being the focus of attention works equally well.


http://en.wikipedia.org/wiki/Trilateration
http://en.wikipedia.org/wiki/LORAN
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y
64
54
44
34
24
14
Jeff Carl
65 4 5 5 b5 5 4 5 6 @
11
—ol
—31
41
51
—6l
We are seeking a curve of the form ﬁ—; — Zg)’—; = 1 in which the distance from the center to each focus

is ¢ = 5. As we saw in the derivation of the standard equation of the hyperbola, Equation 9.6,

d = 2a, so that 2a = 1.9, or a = 0.95 and a? = 0.9025. All that remains is to find b?>. To that end,

we recall that a® + b% = ¢? so b2 = ¢ — a? = 25 — 0.9025 = 24.0975. Since Sasquatch is closer to
2

Jeff than it is to Carl, it must be on the western (left hand) branch of #(2;25 — 50575 = 1. O

In our previous example, we did not have enough information to pin down the exact location of
Sasquatch. To accomplish this, we would need a third observer.

Example 9.5.5. By a stroke of luck, Kai was also camping in the woods during the events of the
previous example. He was located 6 miles due north of Jeff and heard the Sasquatch call 18 seconds
after Jeff did. Use this added information to locate Sasquatch.

Solution. Kai and Jeff are now the foci of a second hyperbola where the fixed distance d can be
determined as before

miles " 1 hour
hour 3600 seconds

760 x 18 seconds = 3.8 miles
Since Jeff was positioned at (—5,0), we place Kai at (—5,6). This puts the center of the new
hyperbola at (—5,3). Plotting Kai’s position and the new center gives us the diagram below on

the left. The second hyperbola is vertical, so it must be of the form (3’;723)2 — %725)2 = 1. As before,

the distance d is the length of the major axis, which in this case is 2b. We get 2b = 3.8 so that
b=1.9 and b*> = 3.61. With Kai 6 miles due North of Jeff, we have that the distance from the
center to the focus is ¢ = 3. Since a? + b? = 2, we get a® = ¢ — b?> = 9 — 3.61 = 5.39. Kai heard
the Sasquatch call after Jeff, so Kai is farther from Sasquatch than Jeff. Thus Sasquatch must lie

on the southern branch of the hyperbola (%f631)2 — (g%g%)z = 1. Looking at the western branch of the
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hyperbola determined by Jeff and Carl along with the southern branch of the hyperbola determined
by Kai and Jeff, we see that there is exactly one point in common, and this is where Sasquatch
must have been when it called.

Kai

=N W s oto
T

....Jﬁff...:“g....cim. o Jett N ., Carl
EZERREEE Y ERERE RIS ERERRL:

x

To determine the coordinates of this point of intersection exactly, we would need techniques for
solving systems of non-linear equations (which we saw in Section 8.3), so we use the calculator?
Doing so, we get Sasquatch is approximately at (—0.9629, —0.8113). O

Each of the conic sections we have studied in this chapter result from graphing equations of the
form Axz? 4+ Cy? + Dx + Ey + F = 0 for different choices of A, C, D, E, and F. While we’ve seen
examples® demonstrate how to convert an equation from this general form to one of the standard
forms, we close this chapter with some advice about which standard form to choose.’

Strategies for Identifying Conic Sections

Suppose the graph of equation Az?+ Cy?+ Dz + Ey+ F = 0 is a non-degenerate conic section.®

o If just one variable is squared, the graph is a parabola. Put the equation in the form of
Equation 9.2 (if z is squared) or Equation 9.3 (if y is squared).

If both variables are squared, look at the coefficients of 22 and y?, A and B.

e If A= B, the graph is a circle. Put the equation in the form of Equation 9.1.

e If A+ B but A and B have the same sign, the graph is an ellipse. Put the equation in
the form of Equation 9.4.

e If A and B have the different signs, the graph is a hyperbola. Put the equation in the form
of either Equation 9.6 or Equation 9.7.

“That is, a parabola, circle, ellipse, or hyperbola — see Section 9.1.

“First solve each hyperbola for y, and choose the correct equation (branch) before proceeding.
SExamples 9.2.3, 9.3.4, 9.4.3, and 9.5.3, in particular.
5We formalize this in Exercise 34.
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9.5.1 EXERCISES

In Exercises 1 - 8, graph the hyperbola. Find the center, the lines which contain the transverse
and conjugate axes, the vertices, the foci and the equations of the asymptotes.

L 2 LT

622 s ML
SRR R LT
R R Ct NG U )

16 20 8 18

In Exercises 9 - 12, put the equation in standard form. Find the center, the lines which contain
the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

9. 1222 — 3y% + 30y — 111 =0 10. 18y% — 522 + 72y + 30z — 63 = 0
11. 922 — 25y — 54z — 50y — 169 = 0 12. —622 + 5y% — 24z 4+ 40y +26 = 0

In Exercises 13 - 18, find the standard form of the equation of the hyperbola which has the given
properties.

13. Center (3,7), Vertex (3,3), Focus (3, 2)

14. Vertex (0,1), Vertex (8,1), Focus (—3,1)

15. Foci (0, +£8), Vertices (0,+5).

16. Foci (£5,0), length of the Conjugate Axis 6

17. Vertices (3,2), (13,2); Endpoints of the Conjugate Axis (8,4), (8,0)
18. Vertex (—10,5), Asymptotes y = £3(z —6) +5

In Exercises 19 - 28, find the standard form of the equation using the guidelines on page 580 and
then graph the conic section.

19. 22 — 22— 4y —11=0 20. 22+ y? —8x+4y +11 =0

21. 922 + 4% — 362 + 24y +36 = 0 22. 922 — 49% — 362 — 24y — 36 = 0
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25.

27.

29.

30.

31.

32.
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y? + 8y —4x +16 =0 24. 4x? + 9> —8r+4=0
422 + 9y — 8z + 54y +49 =0 26. 22+ y? — 6z +4y+14 =0
202 + 4y + 122 — 8y +25=0 28. 4x? — 5y% — 40z — 20y + 160 = 0

The graph of a vertical or horizontal hyperbola clearly fails the Vertical Line Test, Theorem
??, so the equation of a vertical of horizontal hyperbola does not define y as a function of z.”
However, much like with circles, horizontal parabolas and ellipses, we can split a hyperbola
into pieces, each of which would indeed represent y as a function of . With the help of your
classmates, use your calculator to graph the hyperbolas given in Exercises 1 - 8 above. How
many pieces do you need for a vertical hyperbola? How many for a horizontal hyperbola?

The location of an earthquake’s epicenter — the point on the surface of the Earth directly
above where the earthquake actually occurred — can be determined by a process similar to
how we located Sasquatch in Example 9.5.5. (Earthquakes are complicated events and it is
not our intent to provide a complete discussion of the science involved in them. Instead, we
refer the interested reader to a course in Geology or the U.S. Geological Survey’s Earthquake
Hazards Program found here.) Our technique works only for relatively small distances because
we need to assume that the Earth is flat in order to use hyperbolas in the plane. The P-waves
(“P” stands for Primary) of an earthquake in Sasquatchia travel at 6 kilometers per second.®
Station A records the waves first. Then Station B, which is 100 kilometers due north of
Station A, records the waves 2 seconds later. Station C, which is 150 kilometers due west of
Station A records the waves 3 seconds after that (a total of 5 seconds after Station A). Where
is the epicenter?

The notion of eccentricity introduced for ellipses in Definition 9.5 in Section 9.4 is the same
for hyperbolas in that we can define the eccentricity e of a hyperbola as

_ distance from the center to a focus

e =
distance from the center to a vertex

(a) With the help of your classmates, explain why e > 1 for any hyperbola.
(b) Find the equation of the hyperbola with vertices (£3,0) and eccentricity e = 2.

(¢c) With the help of your classmates, find the eccentricity of each of the hyperbolas in
Exercises 1 - 8. What role does eccentricity play in the shape of the graphs?

On page 550 in Section 9.3, we discussed paraboloids of revolution when studying the design
of satellite dishes and parabolic mirrors. In much the same way, ‘natural draft’ cooling towers
are often shaped as hyperboloids of revolution. Each vertical cross section of these towers
is a hyperbola. Suppose the a natural draft cooling tower has the cross section below. Suppose

"We will see later in the text that the graphs of certain rotated hyperbolas pass the Vertical Line Test.
8Depending on the composition of the crust at a specific location, P-waves can travel between 5 kps and 8 kps.


http://earthquake.usgs.gov/
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the tower is 450 feet wide at the base, 275 feet wide at the top, and 220 feet at its narrowest
point (which occurs 330 feet above the ground.) Determine the height of the tower to the
nearest foot.

275 ft
B S —
220 ft T
330 ft
450 ft

33. With the help of your classmates, research the Cassegrain Telescope. It uses the reflective
property of the hyperbola as well as that of the parabola to make an ingenious telescope.

34. With the help of your classmates show that if Az? + Cy? + Dx + Ey + F = 0 determines a
non-degenerate conic? then

e AC < 0 means that the graph is a hyperbola
e AC = 0 means that the graph is a parabola
e AC > 0 means that the graph is an ellipse or circle

9Recall that this means its graph is either a circle, parabola, ellipse or hyperbola.
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9.5.2 ANSWERS

1‘2

Y2
1. . 1 o]
Center (0,0)
Transverse axis on y = 0
Conjugate axis on x =0
Vertices (4,0), (—4,0)
Foci (5,0), (—5,0)
Asymptotes y = :I:%a:

0 VT
9 16
Center (0,0)
Transverse axis on £ =0
Conjugate axis on y = 0
Vertices (0, 3), (0, —3)
Foci (0,5), (0,—5)

Asymptotes y = j:%a:

, =22 w3
4 9
Center (2,—3)
Transverse axis on y = —3
Conjugate axis on & = 2
Vertices (0, —3), (4, —3)
Foci (2 4+ /13, -3), (2 — V13, -3)

Asymptotes y = i%(m -2)-3




9.5 HYPERBOLAS

4.

(y=3° (@—-1°_,
1m0

Center (1,3)
Transverse axis on x =1
Conjugate axis on y = 3
Vertices (1,3 ++/11), (1,3 — v/11)
Foci (1,3 +v/21), (1,3 — v/21)

)

Asymptotes y = i—vllolo(a: -1)+3

R R

6 1
Center (—4,4)
Transverse axis on y =4
Conjugate axis on x = —4
Vertices (—8,4),(0,4)
Foci (—4 +V/17,4), (—4 — V/17,4)

E+1? -3,

9 4
Center (—1,3)
Transverse axis on y = 3
Conjugate axis on x = —1
Vertices (2,3), (—4,3)
Foci (—1+V13,3), (-1 —/13,3)
Asymptotes y = :I:%(x +1)+3

(y+2)?* (z-5)
16 20

Center (5,—2)

Transverse axis on £ = 5

Conjugate axis on y = —2

Vertices (5,2), (5, —6)

Foci (5,4), (5, —8)

Asymptotes y = iQT*/g(ac —5)—2

=1
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11.

13.

15.

Center (4,2)

Transverse axis on y = 2
Conjugate axis on © = 4

Vertices (4 +2v2,2), (4 —2v2,2)
Foci (4 + /26, 2) , (4 — /26, 2)
Asymptotes y = 5 (z — 4) + 2

@2 =5 _,
3 12

Center (0, 5)

Transverse axis on y = 5
Conjugate axis on = 0

Vertices (v/3,5), (—v/3,5)
Foci (v/15,5), (—/15,5)

Asymptotes y = +2x + 5

(=32 (+1* _,

25 9
Center (3,—1)

Transverse axis on y = —1
Conjugate axis on = 3

Vertices (8, —1),(—2,—1)

Foci (34 +/34,-1), (3 —V/34,-1)

Asymptotes y = j:%(m -3)—1

(@/—7)2_(56—3)2_1
16 9
v
25 39
(96—8)2_(31—2)2 1
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10.

12.

14.

16.

18.

(y+2?  (z-3)

=1

) 18
Center (3,—2)
Transverse axis on © = 3
Conjugate axis on y = —2
Vertices (3, —2 +/5), (3, —2 — /5)
Foci (3, -2+ v/23), (3, -2 — v/23)

Asymptotes y = :l:@(x —-3)—2

(y+4?° (z2+2)?

=1
6 5
Center (—2,—4)
Transverse axis on x = —2
Conjugate axis on y = —4

Vertices (=2, -4+ v6), (=2, -4 — V6)
Foci (—2,—4+V11),(-2,—4 — V11)
Asymptotes y = :l:@(x +2)—4

(z—4)? (y-1)° _
16 33
2 2

¢y

- <L =1

16 9

(z—6)?* (y—5)° _1
256 64
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19. (x—1)2 =4(y+3) 20. (z—4)+(y+2)?=9

21. + =1 22.

(z—1)*  o?
o4, T Y
T

y The graph is the point (1,0) only.

23. (y+4)?=4x
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(-1 w+3)?° 26. (-3 +(y+2)?%=-1
9 4 There is no graph.

SNCAR VRS

3
1 4 ’ 16 20
There is no graph.

——————+
6.7 8 9:1011° T

———————
—1. |1 2 3\4 5
T N e

30. By placing Station A at (0,—50) and Station B at (0,50), the two second time difference

22

yields the hyperbola % — 5461 = 1 with foci A and B and center (0,0). Placing Station C

at (—150,—50) and using foci A and C gives us a center of (—75,—50) and the hyperbola

(@t75)° _ (y+50)7 _ 1. The point of intersection of these two hyperbolas which is closer to A

225 5400
than B and closer to A than C is (—57.8444, —9.21336) so that is the epicenter.
22 2
31. (b)) ——==1.
(b) 9 27

32. The tower may be modeled (approximately)'’ by 12“”1200 — % = 1. To find the height, we

plug in & = 137.5 which yields y = 191 or y ~ 469. Since the top of the tower is above the
narrowest point, we get the tower is approximately 469 feet tall.

52707600

'""The exact value underneath (y — 330)* is 527076

in case you need more precision.



CHAPTER 10

SEQUENCES AND THE BINOMIAL
THEOREM

10.1 SEQUENCES

When we first introduced a function as a special type of relation, we did not put any restrictions
on the domain of the function. All we said was that the set of x-coordinates of the points in the
function F' is called the domain, and it turns out that any subset of the real numbers, regardless
of how weird that subset may be, can be the domain of a function. As our exploration of functions
continued, we saw fewer and fewer functions with ‘weird’” domains. It is worth your time to go back
through the text to see that the domains of the polynomial, rational, exponential, logarithmic and
algebraic functions discussed thus far have fairly predictable domains which almost always consist
of just a collection of intervals on the real line. This may lead some readers to believe that the
only important functions in a College Algebra text have domains which consist of intervals and
everything else was just introductory nonsense. In this section, we introduce sequences which are
an important class of functions whose domains are the set of natural numbers.! Before we get to
far ahead of ourselves, let’s look at what the term ‘sequence’ means mathematically. Informally,
we can think of a sequence as an infinite list of numbers. For example, consider the sequence

1 39 27
a5 Q) qpocct (1)
27 4’8" 16

As usual, the periods of ellipsis, ..., indicate that the proposed pattern continues forever. Each of

the numbers in the list is called a term, and we call % the ‘first term’, —% the ‘second term’, % the
‘third term’ and so forth. In numbering them this way, we are setting up a function, which we’ll
call a per tradition, between the natural numbers and the terms in the sequence.

'Recall that this is the set {1,2,3,...}.

This chapter is part of College Algebra (©)Stitz & Zeager 2013.
This material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
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In other words, a(n) is the n'! term in the sequence. We formalize these ideas in our definition of
a sequence and introduce some accompanying notation.

Definition 10.1. A sequence is a function a whose domain is the natural numbers. The value
a(n) is often written as a, and is called the n*® term of the sequence. The sequence itself is
usually denoted using the notation: a,, n > 1 or the notation: {an} - ;.

Applying the notation provided in Definition 10.1 to the sequence given (1), we have a, = %,
ay = —%, as = % and so forth. Now suppose we wanted to know a,,;, that is, the 117 term in
the sequence. While the pattern of the sequence is apparent, it would benefit us greatly to have an
explicit formula for a,,. Unfortunately, there is no general algorithm that will produce a formula for
every sequence, so any formulas we do develop will come from that greatest of teachers, experience.
In other words, it is time for an example.

Example 10.1.1. Write the first four terms of the following sequences.

Fn—1 (_1)k
1. an=——n>1 2. by = k>
=g "= TSI
1+ (-1

3. 20— 1), 4 {“)}

v i=2
d. a1:77an+1:2*an,n21 6. fozl»fnzn'fnﬂ,nzl

Solution.

1. Since we are given n > 1, the first four terms of the sequence are a,, a,, a; and a,. Since
the notation a, means the same thing as a(1), we obtain our first term by replacing every

. . 1-1 . o

occurrence of n in the formula for a,, with n =1 to get a, = 53—1 = % Proceeding similarly,
_ 51 _ 5 _ 5%t _ 25 _ 54t 125
we get a, = 25— =g, a3 = “53 = 52 and a, = T = G-

2. For this sequence we have k > 0, so the first four terms are b,, by, b, and b;. Proceeding as
before, replacing in this case the variable k£ with the appropriate whole number, beginning

: _ =0 _ =Dt _ 2 _ =
with 0, we get bo = W = 1, bl = m = =3 b2 = 2041 — 5 and b3 = 2@)+1 -7
(This sequence is called an alternating sequence since the signs alternate between + and —.

The reader is encouraged to think what component of the formula is producing this effect.)




10.1 SEQUENCES 591

3. From {2n —1}>7 |, we have that a, =2n—1,n > 1. We get a;, =1, a, = 3, az = 5 and
as = 7. (The first four terms are the first four odd natural numbers. The reader is encouraged
to examine whether or not this pattern continues indefinitely.)

4. Here, we are using the letter i as a counter, not as the imaginary unit we saw when finding

complex zeros of polynomials. Proceeding as before, we set a; = w, i > 2. We find
a2:1,a3:0,a4:%anda5:0.

5. To obtain the terms of this sequence, we start with a; = 7 and use the equation a,, 1, = 2—a,
for n > 1 to generate successive terms. When n = 1, this equation becomes a, ,, = 2 — a,
which simplifies to a, = 2—a, = 2—7 = —5. When n = 2, the equation becomes a, . ; = 2—a,
so we get a3 = 2 —a, = 2 — (=5) = 7. Finally, when n = 3, we get as,, = 2 — as so
a,=2—a3=2—T7=—-5.

6. As with the problem above, we are given a place to start with f, = 1 and given a formula
to build other terms of the sequence. Substituting n = 1 into the equation f, = n - f_1,
weget fi=1-f,=1-1=1. Advancing ton = 2, we get f, =2 f, =2-1 = 2. Finally,
fs=3-f,=3-2=6. O

Some remarks about Example 10.1.1 are in order. We first note that since sequences are functions,
we can graph them in the same way we graph functions. For example, if we wish to graph the
sequence {by},-, from Example 10.1.1, we graph the equation y = b(k) for the values k > 0. That
is, we plot the points (k,b(k)) for the values of k in the domain, k£ = 0,1,2,.... The resulting
collection of points is the graph of the sequence. Note that we do not connect the dots in a pleasing
fashion as we are used to doing, because the domain is just the whole numbers in this case, not a
collection of intervals of real numbers.
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Graphing Yy = bk» = m, k > 0

Speaking of {b;};,, the astute and mathematically minded reader will correctly note that this
technically isn’t a sequence, since according to Definition 10.1, sequences are functions whose
domains are the natural numbers, not the whole numbers, as is the case with {b;}7—,. In other
words, to satisfy Definition 10.1, we need to shift the variable k so it starts at k = 1 instead of
k = 0. To see how we can do this, it helps to think of the problem graphically. What we want is
to shift the graph of y = b(k) to the right one unit, and thinking back to transformations, we can
accomplish this by replacing k with & — 1 in the definition of {by};-,. Specifically, let ¢, = by_,

where k—1 > 0. We get ¢, = 2((;i)f):1 = (_2,?_’617 ' , where now k£ > 1. We leave to the reader to verify
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that {cx}ro, generates the same list of numbers as does {by }r-,, but the former satisfies Definition
10.1, while the latter does not. Like so many things in this text, we acknowledge that this point is
pedantic and join the vast majority of authors who adopt a more relaxed view of Definition 10.1
to include any function which generates a list of numbers which can then be matched up with
the natural numbers.? Finally, we wish to note the sequences in parts 5 and 6 are examples of
sequences described recursively. In each instance, an initial value of the sequence is given which
is then followed by a recursion equation — a formula which enables us to use known terms of
the sequence to determine other terms. The terms of the sequence in part 6 are given a special
name: f, = n!is called n-factorial. Using the ‘!’ notation, we can describe the factorial sequence
as: 0! =1 and n! = n(n—1)! for n > 1. After 0! = 1 the next four terms, written out in detail, are
"=1-00=1-1=1,21=2-11=2-1=2,31=3-21=3-2-1=6and 4! =4-31=4-3-2-1 =24.
From this, we see a more informal way of computing n!, whichisn!=n-(n—-1)-(n—-2)---2-1
with 0! = 1 as a special case. (We will study factorials in greater detail in Section 10.4.) The world
famous Fibonacci Numbers are defined recursively and are explored in the exercises. While none
of the sequences worked out to be the sequence in (1), they do give us some insight into what kinds
of patterns to look for. Two patterns in particular are given in the next definition.

Definition 10.2. Arithmetic and Geometric Sequences: Suppose {a,},., is a sequence®

e If there is a number d so that a,., = a, + d for all n > k, then {an}zo:k is called an
arithmetic sequence. The number d is called the common difference.

e If there is a number r so that an,, = ra, for all n > k, then {a,},-, is called an
geometric sequence. The number 7 is called the common ratio.

“Note that we have adjusted for the fact that not all ‘sequences’ begin at n = 1.

Both arithmetic and geometric sequences are defined in terms of recursion equations. In English,
an arithmetic sequence is one in which we proceed from one term to the next by always adding
the fixed number d. The name ‘common difference’ comes from a slight rewrite of the recursion
equation from an, = a, + d to any — an, = d. Analogously, a geometric sequence is one in which
we proceed from one term to the next by always multiplying by the same fixed number r. If r # 0,
Apt1

we can rearrange the recursion equation to get =+ = r, hence the name ‘common ratio.” Some

sequences are arithmetic, some are geometric and some are neither as the next example illustrates.?

Example 10.1.2. Determine if the following sequences are arithmetic, geometric or neither. If
arithmetic, find the common difference d; if geometric, find the common ratio r.

5n—1 _1\k
1. a, = n>1 2. bk:( D) , k>0

3’ 2k+1

2We’re basically talking about the ‘countably infinite’ subsets of the real number line when we do this.
3Sequences which are both arithmetic and geometric are discussed in the Exercises.


http://en.wikipedia.org/wiki/Fibonacci_number
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27

3. {2n -1}, 4, T

39
4’8

N | =

Solution. A good rule of thumb to keep in mind when working with sequences is “When in doubt,
write it out!” Writing out the first several terms can help you identify the pattern of the sequence
should one exist.

1. From Example 10.1.1, we know that the first four terms of this sequence are %, g, 57 and 125
To see if this is an arithmetic sequence, we look at the successive differences of terms. We
find that a, — a, = g - % = % and a; — a, = g—? - % = %. Since we get different numbers,
there is no ‘common difference’ and we have established that the sequence is not arithmetic.
To investigate whether or not it is geometric, we compute the ratios of successive terms. The

first three ratios

5 25

@ _9_0% % _x_5 4 %_3 _93

a L+ 3 a 2 as; 2% 3
1 3 2 9 3 27

an+1

suggest that the sequence is geometric. To prove it, we must show that = r for all n.

5(n+1)—1
apyr  gnbl BT 3" 5
an - sn—1 ~ 3n+tl ) Fr—1 g
3n

This sequence is geometric with common ratio r = g

2. Again, we have Example 10.1.1 to thank for providing the first four terms of this sequence:

1, —%, % and —%. We find b, — b, = —% and b, — b, = %. Hence the sequence is not
arithmetic. To see if it is geometric, we compute b— = —g and % Since there is no

‘common ratio,” we conclude the sequence is not geometrlc elther

3. As we saw in Example 10.1.1, the sequence {2n — 1}77 | generates the odd numbers: 1,3,5,7,. ...
Computing the first few differences, we find a, — a, = 2, a; — a, = 2, and a, — a; = 2. This
suggests that the sequence is arithmetic. To verify this, we find

any1r—an=02n+1)—-1)—2n—-1)=2n+2-1-2n+1=2

This establishes that the sequence is arithmetic with common difference d = 2. To see if it is
geometric, we compute Z—f = 3 and 2—2 = % Since these ratios are different, we conclude the
sequence is not geometric.

4. We met our last sequence at the beginning of the section. Given that a, — a; = —% and
a3 —Qy = E, the sequence is not arithmetic. Computing the first few ratios, however, gives us
Zz = —%, Z—g = —% and “; = —2. Since these are the only terms given to us, we assume that

the pattern of ratios continue in thls fashion and conclude that the sequence is geometric. [
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We are now one step away from determining an explicit formula for the sequence given in (1). We
know that it is a geometric sequence and our next result gives us the explicit formula we require.

Equation 10.1. Formulas for Arithmetic and Geometric Sequences:
e An arithmetic sequence with first term a and common difference d is given by
an=a+(n—-1)d, n>1

e A geometric sequence with first term a and common ratio r # 0 is given by

While the formal proofs of the formulas in Equation 10.1 require the techniques set forth in Section
10.3, we attempt to motivate them here. According to Definition 10.2, given an arithmetic sequence
with first term a and common difference d, the way we get from one term to the next is by adding
d. Hence, the terms of the sequence are: a, a+d, a+ 2d, a+ 3d, .... We see that to reach the nth
term, we add d to a exactly (n — 1) times, which is what the formula says. The derivation of the
formula for geometric series follows similarly. Here, we start with a and go from one term to the
next by multiplying by . We get a, ar, ar?, ar® and so forth. The nth term results from multiplying
a by r exactly (n — 1) times. We note here that the reason r = 0 is excluded from Equation 10.1 is
to avoid an instance of 0° which is an indeterminant form. With Equation 10.1 in place, we finally
have the tools required to find an explicit formula for the nth term of the sequence given in (1).
We know from Example 10.1.2 that it is geometric with common ratio r = —%. The first term is
a = % so by Equation 10.1 we get a,, = ar" ! = % (—%)n_l for n > 1. After a touch of simplifying,
we get a, = (732): ~ forn > 1. Note that we can easily check our answer by substituting in values
of n and seeing that the formula generates the sequence given in (1). We leave this to the reader.
Our next example gives us more practice finding patterns.

Example 10.1.3. Find an explicit formula for the n*® term of the following sequences.

1. 0.9,0.09,0.009,0.0009,... o 2,4 2 2 5 124 _ 8
5073 T T 1319

Solution.

1. Although this sequence may seem strange, the reader can verify it is actually a geometric
sequence with common ratio r = 0.1 = 1—10. With ¢ = 0.9 = 1%, we get a, = % (l—lo)nf for
n > 0. Simplifying, we get a, = 10%, n > 1. There is more to this sequence than meets the

eye and we shall return to this example in the next section.

2. As the reader can verify, this sequence is neither arithmetic nor geometric. In an attempt
to find a pattern, we rewrite the second term with a denominator to make all the terms

appear as fractions. We have %, %, —%, %, .... If we associate the negative ‘—’ of the last two
2 2 2
22

terms with the denominators we get %, , =5, =7,--.. This tells us that we can tentatively
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sketch out the formula for the sequence as a,, = % where d,, is the sequence of denominators.
Looking at the denominators 5,1, —3, —7,. .., we find that they go from one term to the next
by subtracting 4 which is the same as adding —4. This means we have an arithmetic sequence
on our hands. Using Equation 10.1 with a = 5 and d = —4, we get the nth denominator by
the formula d, =5+ (n — 1)(—4) = 9 — 4n for n > 1. Our final answer is ap, = 52—, n > 1.

3. The sequence as given is neither arithmetic nor geometric, so we proceed as in the last problem
to try to get patterns individually for the numerator and denominator. Letting ¢, and d,

denote the sequence of numerators and denominators, respectively, we have a, = 7*. After
n

4 we choose to write the first term as a fraction and associate the

some experimentation,

negatives ‘—’ with the numerators. This yields %, _72, 14—3, I—g, .... The numerators form the
sequence 1,—2,4, —8, ... which is geometric with @ = 1 and 7 = —2, so we get ¢, = (—2)" 1,
for n > 1. The denominators 1,7,13,19,... form an arithmetic sequence with ¢ = 1 and

d = 6. Hence, we get d, = 1+ 6(n —1) = 6n — 5, for n > 1. We obtain our formula for

_9o\yn—1
an = CCTZ = 6?75 , for n > 1. We leave it to the reader to show that this checks out. O

While the last problem in Example 10.1.3 was neither geometric nor arithmetic, it did resolve into
a combination of these two kinds of sequences. If handed the sequence 2,5,10,17,..., we would
be hard-pressed to find a formula for a, if we restrict our attention to these two archetypes. We
said before that there is no general algorithm for finding the explicit formula for the nth term of
a given sequence, and it is only through experience gained from evaluating sequences from explicit
formulas that we learn to begin to recognize number patterns. The pattern 1,4,9, 16, ... is rather
recognizable as the squares, so the formula a,, = n?, n > 1 may not be too hard to determine.
With this in mind, it’s possible to see 2,5,10,17,... as the sequence 1 + 1,44+ 1,94+ 1,16 +1,...,
so that a, = n?+ 1, n > 1. Of course, since we are given only a small sample of the sequence, we
shouldn’t be too disappointed to find out this isn’t the only formula which generates this sequence.
For example, consider the sequence defined by b, = —%n‘l + %n?’ — %nQ + %n —5,n > 1. The
reader is encouraged to verify that it also produces the terms 2,5,10,17. In fact, it can be shown
that given any finite sample of a sequence, there are infinitely many explicit formulas all of which
generate those same finite points. This means that there will be infinitely many correct answers to
some of the exercises in this section.” Just because your answer doesn’t match ours doesn’t mean
it’s wrong. As always, when in doubt, write your answer out. As long as it produces the same
terms in the same order as what the problem wants, your answer is correct.

Sequences play a major role in the Mathematics of Finance, as we have already seen with compound
interest. Recall that if we invest P dollars at an annual percentage rate r and compound the interest

n times per year, the formula for A, the amount in the account after & compounding periods, is
A, =P (1 + %)k = [P (1 + %)} (1 + %)kil, k > 1. We now spot this as a geometric sequence with
first term P (1 + %) and common ratio (1 + %) In retirement planning, it is seldom the case that
an investor deposits a set amount of money into an account and waits for it to grow. Usually,
additional payments of principal are made at regular intervals and the value of the investment

“Here we take ‘experimentation’ to mean a frustrating guess-and-check session.
5For more on this, see When Every Answer is Correct: Why Sequences and Number Patterns Fail the Test.



http://www.math.kent.edu/~white/papers/pattern.pdf
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grows accordingly. This kind of investment is called an annuity and will be discussed in the next
section once we have developed more mathematical machinery.
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10.1.1 EXERCISES

In Exercises 1 - 13, write out the first four terms of the given sequence.

Jj+1)
l.ap,=2"—1,n>0 2.dj=(-1) 2 ,j>1
n2+1)%
3. {5k —21° 4.
{5k -2}, =)
5. {}“ 6. {ln<n>}°"
n n=1 n n=1
-1
7.0, =3,a41=0,—1,n>1 8. dy=12,dy,, = ——, m>1
100
Cj-1
9. b, =2, b4, =3bp+1, k>1 10. co=-2,¢i=—2 " m>1
LT R ’ TG+
11. a; = 117, a4y = i, n>1 12 59 =1, Sy = 2" 45, 1> 0
Qn

13. F,=1, F, =1, F,, = F-; + F-,, n > 2 (This is the famous Fibonacci Sequence )

In Exercises 14 - 21 determine if the given sequence is arithmetic, geometric or neither. If it is
arithmetic, find the common difference d; if it is geometric, find the common ratio r.

14. {3n —5}>2, 15. ap=n?+3n+2,n>1
161111 1731”‘100
" 376" 127 24 : 5
n=1
18. 17,5, =7, —19, ... 19. 2, 22, 222, 2222 ...
n!
20. 0.9, 9, 90, 900, ... 21 ap =5, 02 0.

In Exercises 22 - 30, find an explicit formula for the n'" term of the given sequence. Use the
formulas in Equation 10.1 as needed.

11 1 2 4 8
22.3.5.7.9. ... 93. 1, —= = —=. ... 94. 1,2 2 S

b R ) ’2747 87 7375777

2 1 4 11 1 T R
25. 1,2, 3 5 2. 1, =, — — o7 4 T T T

3737 97’ "179" 16’ LT s T


http://en.wikipedia.org/wiki/Fibonacci_number
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31.

32.

33.

34.

35.

36.
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0.9,0.99,0.999,0.9999,...  29. 27,64, 125,216, ... 30. 1,0,1,0,...

Find a sequence which is both arithmetic and geometric. (Hint: Start with a, = ¢ for all n.)

Show that a geometric sequence can be transformed into an arithmetic sequence by taking
the natural logarithm of the terms.

Thomas Robert Malthus is credited with saying, “The power of population is indefinitely
greater than the power in the earth to produce subsistence for man. Population, when
unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical
ratio. A slight acquaintance with numbers will show the immensity of the first power in
comparison with the second.” (See this webpage for more information.) Discuss this quote
with your classmates from a sequences point of view.

This classic problem involving sequences shows the power of geometric sequences. Suppose
that a wealthy benefactor agrees to give you one penny today and then double the amount
she gives you each day for 30 days. So, for example, you get two pennies on the second day
and four pennies on the third day. How many pennies do you get on the 30" day? What is
the total dollar value of the gift you have received?

Research the terms ‘arithmetic mean’ and ‘geometric mean.” With the help of your classmates,
show that a given term of a arithmetic sequence ay, k£ > 2 is the arithmetic mean of the
term immediately preceding, aj_, it and immediately following it, ax,,. State and prove an
analogous result for geometric sequences.

Discuss with your classmates how the results of this section might change if we were to
examine sequences of other mathematical things like complex numbers or matrices. Find an
explicit formula for the n' term of the sequence i, —1, —i, 1,4, . ... List out the first four terms
of the matrix sequences we discussed in Exercise 77 in Section ?77.


http://en.wikipedia.org/wiki/Malthus
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10.1.2 ANSWERS

1.

3.

11.

13.

14.

16.

18.

20.

22.

25.

28.

0,1,3,7

3,8,13,18

3,2,1,0

. 2,7,22,67

117, 1=, 117, 3=
1,1,2,3
arithmetic, d = 3
geometric, r = %
arithmetic, d = —12
geometric, r = 10
ap=1+2n, n>1
n

ap = a1, N> 1

10™—1
Ap — Tom n Z 1

10. —

12.

15.

17.

-1,-1,1,1
L1353
0, ln§2)7 1n§3)’ lnfl4)
. 12,0.12,0.0012, 0.000012
2,—% 5 ~70
Le+l2?4+a+1,28 +224+2+1
neither
geometric, r = %
. neither
. neither
24, a, =2 n>1
o7, G >
> 1 30. a, = FEDT >

599
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10.2 SUMMATION NOTATION

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 10.3. Summation Notation: Given a sequence {a,},., and numbers m and p
satisfying k£ < m < p, the summation from m to p of the sequence {a,} is written

p
Zan:am+am+1+...+ap

n=m
The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 10.3 is simply defining a short-hand notation for adding up the terms of
the sequence {a,},2, from a,, through a,. The symbol ¥ is the capital Greek letter sigma and
is shorthand for ‘sum’. The lower and upper limits of the summation tells us which term to start
with and which term to end with, respectively. For example, using the sequence a,, = 2n — 1 for

n > 1, we can write the sum a; + a, + a5 + a4 as

6
d@n—1) = (2B3) 1)+ (2(4) = 1) + (2(5) — 1) + (2(6) — 1)
"~ = 54749411

— 3

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6

6 6
den-1)=) (2k-1)=) (2j-1)
= i=3

n=3 k=3 J
One place you may encounter summation notation is in mathematical definitions. For example,

summation notation allows us to define polynomials as functions of the form

n
fz) = Z apx”
k=0
for real numbers ag, k = 0,1,...n. The reader is invited to compare this with what is given in
Definition ?7?. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row R; of a matrix A = [a;j|mxn and the gt
column Cj; of a matrix B = [bjj|nx, as

R - Cj = Zaikbkj
k=1
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Again, the reader is encouraged to write out the sum and compare it to Definition ??7. Our next
example gives us practice with this new notation.

Example 10.2.1.

1. Find the following sums.

1 n! b (—1)nt!
Wy P © 32wy

k=1 n=0 n=1
2. Write the following sums using summation notation.

(8) 1+3+5+...+117
1 1 1 1

(¢) 0.9+ 0.09 +0.009 +...0.0---09

n — 1 zeros

Solution.

1. (a) We substitute k¥ = 1 into the formula % and add successive terms until we reach k = 4.

im _ B 13 131

£<100F 100" " 1002 " 1003 " 1007
—  0.13+0.0013 4 0.000013 + 0.00000013
— 013131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4. We
recall the factorials, n! as defined in number Example 10.1.1, number 6 and get:

n! or 1 2t 31 4!
25~ 3t3titaTa
11 21 3-2-1 4.-3-2-1
- 272t 2 2
1 1
= 17

(¢) We proceed as before, replacing the index n, but not the variable z, with the values 1
through 5 and adding the resulting terms.
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5 n ‘
> CU g = D iy (_12)2+1 (w124 C s
n=1
+(—21+4($ _ 1)ty (_15)1%@ 1)
B (x—12 (z—-13 (x-1D* (z—1)°
= (z—-1)— 5 T 3 4 + 5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 10.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 10.1 to get a, = 1+ (n—1)2 = 2n — 1, n > 1. At this stage, we have the
formula for the terms, namely 2n — 1, and the lower limit of the summation, n = 1. To
finish the problem, we need to determine the upper limit of the summation. In other
words, we need to determine which value of n produces the term 117. Setting a,, = 117,
we get 2n — 1 = 117 or n = 59. Our final answer is

59
1434544117 = > (2n—1)

n=1

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the

negatives ‘—’ with the numerators to get
ot .-t .1
1 2 3 4 1T

The numerators, 1, —1, etc. can be described by the geometric sequence! ¢, = (—1)""!
for n > 1, while the denominators are given by the arithmetic sequence® d,, = n for
_1\n—1
n > 1. Hence, we get the formula a,, = % for our terms, and we find the lower and

upper limits of summation to be n =1 and n = 117, respectively. Thus

117
1 1 1 1 (-1t
l— -t — == = —
23 3" T nz::l n

(c) Thanks to Example 10.1.3, we know that one formula for the n'!' term is a,, = 10% for
n > 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n — 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10™. Hence, n is

!This is indeed a geometric sequence with first term a = 1 and common ratio r = —1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.
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the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.? We choose k and get

0.940.09+0.009+...0.0---09 = Y

n — 1 zeros k=1

9
10%

O]

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 10.1. Properties of Summation Notation: Suppose {a,} and {b,} are sequences
so that the following sums are defined.
P P P
¢ Y kb= Y mt Y
n=m n=m n=m
P P
° Z cap =c Z an, for any real number c.
n=m n=m
P J P
. Z Gp = an + Z an, for any natural number m < j < j+1 < p.
n=m n=m n=j+1
P ptr
. Z an = Z Gn—r, for any whole number r.
n=m n=m-+r

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ax = a + (k — 1)d for k > 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a
S = (a+(n—1)d)

(a+d) + ... + (a+(n—2)d)
(a+(n—2)d) + ... + (a+d)

(a+ (n—1)d)

+ +
+ + a

If we add these two equations and combine the terms which are aligned vertically, we get

285=2a+(n—-1)d)+ 2a+(n—1)d)+...+ (2a+ (n—1)d) + (2a + (n — 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a 4+ (n — 1)d) so
we get 25 = n(2a + (n — 1)d). Dividing both sides of this equation by 2, we obtain the formula

3To see why, try writing the summation using ‘n’ as the index.
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S = g(m +(n - 1)d)

If we rewrite the quantity 2a + (n — 1)d as a + (a + (n — 1)d) = a, + a,, we get the formula

. a; + an
S—n<2 >

A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and n'" terms.

To derive the formula for the geometric sum, we start with a geometric sequence ay, = ar* =1, k > 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar® + ... + a2 + ar"!
rS = ar + ar? + ... + a2 4+ a™t + a

Subtracting the second equation from the first forces all of the terms except a and ar™ to cancel
out and we get S —rS = a—ar™. Factoring, we get S(1 —r) =a (1 —r™). Assuming r # 1, we can
divide both sides by the quantity (1 — r) to obtain

1—7r"
S:a<1—r>

If we distribute a through the numerator, we get a — ar™ = a, — an,, which yields the formula

a; — Anpyq
5:7
1—7r

In the case when r = 1, we get the formula

S=a+a+...+a=na
—_———

n times

Our results are summarized below.
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Equation 10.2. Sums of Arithmetic and Geometric Sequences:

e The sum S of the first n terms of an arithmetic sequence ar = a + (k — 1)d for k > 1 is

. n - a, + an _n _
S—;ak_n<2 )—2(2a+(n 1)d)

e The sum S of the first n terms of a geometric sequence aj = ar*~! for k > 1 is

n

n
a; — Apya 1—7r .
1. S = — — f 1.
S kg_lak T, a<1_r>,1 r %

2. S:Zn:ak:zn:a:na, if r=1.
k=1 k=1

While we have made an honest effort to derive the formulas in Equation 10.2, formal proofs require
the machinery in Section 10.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence? 1, 2, 3, ... which is arithmetic with a = d = 1. Applying Equation 10.2,

n(n+1)
2

So, for example, the sum of the first 100 natural numbers® is M = 5050.

1+2434...4n =

An important application of the geometric sum formula is the investment plan called an annuity.
Annuities differ from the kind of investments we studied with compound interest in that payments
are deposited into the account on an on-going basis, and this complicates the mathematics a little.
Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = © denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ap denote the amount in the account after k
compounding periods. Then A, = P, because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A, so that our initial investment has grown to A,(1 +4) = P(1 +4) in accordance
with Equation 77. When we add our second payment at the end of the second period, we get

1
Ay =A(1+i)+P=P1+i)+P=P+1i) <1+1+Z_>

The reason for factoring out the P(1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A, which then grows to A,(1 + i). We add our third
payment at the end of the third compounding period to obtain

4This is the identity function on the natural numbers!
SThere is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this
problem in primary school and devised a very clever solution.
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Ay = Ay(14+i)+ P = P(1+1) (1+11+Z,> (1+i)+P=P(1+i)? <1+ 1ii+ (Hli)Q)

During the fourth compounding period, A; grows to A;(1+1), and when we add the fourth payment,
we factor out P(1+4 )3 to get

1 1 1
_ -\ 3
A4—P(1+l) (1+1+’L+ (1_'_1)2"‘(1_'_2)3)

This pattern continues so that at the end of the kth compounding, we get

1 1 1
A, = P14+ (1 o —
£ =P +1) < Tt are " +(1+nbﬂ>

The sum in the parentheses above is the sum of the first £ terms of a geometric sequence with
a=1andr = %ﬂ Using Equation 10.2, we get

1
1 ——
1 1 1 1+44)k L+i)(1—(1+0)F
1+-——+ ot =1 (i)t | _ A+ ,( )™")
1+i (1479 (1+414) 1_ 1 i
1+

Hence, we get

P((1+4)%—1)

1

Ay = P(1+ i)k <(1 roi-a ”)_k>> _

If we let ¢ be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 10.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an
annual interest rate r compounded n times per year. Let i = = be the interest rate per com-
pounding period. If a deposit P is made at the end of each compounding period, the amount A
in the account after ¢ years is given by

A=

P+ —1)

The reader is encouraged to substitute i = » into Equation 10.3 and simplify. Some familiar
equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.
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Example 10.2.2. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.

2. How many years will it take for the annuity to grow to $100,0007

Solution.

1. We have r = 0.06 and n = 12 so that i = £ = 298 = 0.005. With P = 50 and ¢ = 30,

50 ((1 + 0.005)12)B0) — 1)

A=
0.005

~ 50225.75

Our final answer is $50,225.75.

2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take natural logs of both sides of the equation.

50 ((1+0.005)12F — 1)
0.005
10 = (1.005)12 -1
(1.005)1% = 11
In ((1.005)'%) = In(11)
12¢1n(1.005) = In(11)

_ W@y
t = 121n(1.005)"‘40‘06

100000 =

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering. O

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . ..

From Example 10.2.1, we know we can write the sum of the first n of these terms as

n
0.9---9:.9+0.09+0.oo9+...0.0-~-09:Z

n nines n — 1 zeros k=1

9
10F

Using Equation 10.2, we have
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1
99 i) o, 1
et CARES (UM NSNS TR R (e
B 10

It stands to reason that 0.9 is the same value of 1 — 10"% as n — oco. Our knowledge of exponential
expressions tells us that wllﬁ —0asn —o00,s01— 1()“% — 1. We have just argued that 0.9 = 1,
which may cause some distress for some readers.® Any non-terminating decimal can be thought
of as an infinite sum whose denominators are the powers of 10, so the phenomenon of adding up
infinitely many terms and arriving at a finite number is not as foreign of a concept as it may appear.

We end this section with a theorem concerning geometric series.

Theorem 10.2. Geometric Series: Given the sequence aj, = ar®*~! for k > 1, where |r| < 1,

a

o
2 _ k—1 _
a -+ ar + ar +...—;ar =

If [r| > 1, the sum a + ar + ar? + ... is not defined.

The justification of the result in Theorem 10.2 comes from taking the formula in Equation 10.2
for the sum of the first n terms of a geometric sequence and examining the formula as n — oo.
Assuming |r| < 1 means —1 <r < 1, so ™ — 0 as n — oo. Hence as n — oo,

n
17 n

E arf~l =a ! — a4
1—r 1—7r

k=1

As to what goes wrong when |r| > 1, we leave that to Calculus as well, but will explore some cases
in the exercises.

®To make this more palatable, it is usually accepted that 0.3 = % so that 0.9 = 3 (0.3) =3 (%) = 1. Feel better?
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10.2.1 EXERCISES

In Exercises 1 - 8, find the value of each sum using Definition 10.3.

609

9 8 5 2
1 , i
1) (59 +3) 2. Z% 3. sz 4. (3k —5)x
g=4 k=3 j=0 k=0
100 3
5. ZZ(Z +1) 6. > (-1) Ty o 8. Zj!(5_j)'
i=1 n=1 n=1 j=1
In Exercises 9 - 16, rewrite the sum using summation notation.
9. 8+114+14417+20 10 1—2+3—-4+5—-6+7-8
3 5 7
1. o——+—>—-= 12 142+4+---+2%
T +2+44-+
13.2+3+5+3+8 14. —In(3) 4+ In(4) — In(5) + - - - + In(20)
15.1—-++: L1 L 16. 2(z—5)+3(x—5)2+1(z—5>+L(z—5)*

In Exercises 17 - 28, use the formulas in Equation 10.2 to find the sum.

20
18. Z om—1
n=1

10
17. Z 5n + 3
n=1

10 1 n 5 3 n
20. - 21. 2

> (3) >(3)

n=1 n=1
23. 14+44T7T+...4+295 2. 4+2+0—2—...— 146
26. 3+3+5+...+ 35 27.3-3+3 -3+ ...+ 5%

19.

22.

25.

28.

1+3+9+...42187

10 5 n

In Exercises 29 - 32, use Theorem 10.2 to express each repeating decimal as a fraction of integers.

29. 0.7 30. 0.13 31. 10.159

32. —5.867
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In Exercises 33 - 38, use Equation 10.3 to compute the future value of the annuity with the given
terms. In all cases, assume the payment is made monthly, the interest rate given is the annual rate,
and interest is compounded monthly.

33. payments are $300, interest rate is 2.5%, term is 17 years.
34. payments are $50, interest rate is 1.0%, term is 30 years.

35. payments are $100, interest rate is 2.0%, term is 20 years
36. payments are $100, interest rate is 2.0%, term is 25 years
37. payments are $100, interest rate is 2.0%, term is 30 years
38. payments are $100, interest rate is 2.0%, term is 35 years

39. Suppose an ordinary annuity offers an annual interest rate of 2%, compounded monthly, for
30 years. What should the monthly payment be to have $100,000 at the end of the term?

40. Prove the properties listed in Theorem 10.1.

41. Show that the formula for the future value of an annuity due is

14+4)™ —1
A=P(1+19) [(H)]
i
42. Discuss with your classmates what goes wrong when trying to find the following sums.”
oo o0 o
(a) » 2+t (b) ) (1.0001)% (c) Y (=)t
k=1 k=1 k=1

"When in doubt, write them out!
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10.2.2 ANSWERS

1.

D.

13.

17.

21.

25.

29.

33.

37.

39.

213 2
17
b 6
5
) (3k+5) 10.
k=1
5
1
j{:flﬁ}f 14.
k=1
305 18.
033 2.
32
3280 2.
7
— 30.
9
$76,163.67 34
49,272.55 38.

For $100,000, the monthly payment is ~ $202.95.

341

© 280

13
99
$20,981.40

60,754.80

11.

15.

19.

23.

27.

31.

35.

14652

513
256

3383
333

$29,479.69

12.

16.

20.

24.

28.

32.

36.

611

. =5 =2z + 22

. 25

30
Z k-1
k=1

‘1

—(z —5)*

gé; 5 (& = 5)
1023

1024

—5396

17771050
59049

5809
990

$38,882.12
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10.3 MATHEMATICAL INDUCTION

The Chinese philosopher Confucius is credited with the saying, “A journey of a thousand miles
begins with a single step.” In many ways, this is the central theme of this section. Here we introduce
a method of proof, Mathematical Induction, which allows us to prove many of the formulas we have
merely motivated in Sections 10.1 and 10.2 by starting with just a single step. A good example is
the formula for arithmetic sequences we touted in Equation 10.1. Arithmetic sequences are defined
recursively, starting with a; = a and then a,,., = a,, + d for n > 1. This tells us that we start the
sequence with a and we go from one term to the next by successively adding d. In symbols,

a,a+d,a+2d,a+3d,a+4d + ...

The pattern suggested here is that to reach the nth term, we start with ¢ and add d to it exactly
n — 1 times, which lead us to our formula a, = a + (n — 1)d for n > 1. But how do we prove this
to be the case? We have the following.

The Principle of Mathematical Induction (PMI): Suppose P(n) is a sentence involving
the natural number n.

IF

1. P(1) is true and

2. whenever P(k) is true, it follows that P(k + 1) is also true

THEN the sentence P(n) is true for all natural numbers n.

The Principle of Mathematical Induction, or PMI for short, is exactly that - a principle.! It is a
property of the natural numbers we either choose to accept or reject. In English, it says that if we
want to prove that a formula works for all natural numbers n, we start by showing it is true for
n =1 (the ‘base step’) and then show that if it is true for a generic natural number k, it must be
true for the next natural number, k 4+ 1 (the ‘inductive step’). The notation P(n) acts just like
function notation. For example, if P(n) is the sentence (formula) ‘n? + 1 = 3’, then P(1) would
be ‘12 + 1 = 3, which is false. The construction P(k + 1) would be ‘(k + 1)2 + 1 = 3’. As usual,
this new concept is best illustrated with an example. Returning to our quest to prove the formula
for an arithmetic sequence, we first identify P(n) as the formula a,, = a 4+ (n — 1)d. To prove this
formula is valid for all natural numbers n, we need to do two things. First, we need to establish
that P(1) is true. In other words, is it true that a, = a + (1 — 1)d? The answer is yes, since this
simplifies to a; = a, which is part of the definition of the arithmetic sequence. The second thing
we need to show is that whenever P(k) is true, it follows that P(k + 1) is true. In other words, we
assume P(k) is true (this is called the ‘induction hypothesis’) and deduce that P(k + 1) is also
true. Assuming P (k) to be true seems to invite disaster - after all, isn’t this essentially what we're
trying to prove in the first place? To help explain this step a little better, we show how this works
for specific values of n. We've already established P(1) is true, and we now want to show that P(2)

! Another word for this you may have seen is ‘axiom.’
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is true. Thus we need to show that a, = a+(2—1)d. Since P(1) is true, we have a; = a, and by the
definition of an arithmetic sequence, a, = a,+d = a+d = a+(2—1)d. So P(2) is true. We now use
the fact that P(2) is true to show that P(3) is true. Using the fact that a, = a+ (2 — 1)d, we show
az; = a+(3—1)d. Since a3 = a,+d, we get a; = (a+(2—1)d)+d = a+2d = a+(3—1)d, so we have
shown P(3) is true. Similarly, we can use the fact that P(3) is true to show that P(4) is true, and so
forth. In general, if P(k) is true (i.e., ar = a+(k—1)d) we set out to show that P(k+1) is true (i.e.,
aks; = a+ ((k+1) —1)d). Assuming ar, = a + (k — 1)d, we have by the definition of an arithmetic
sequence that ag,, = ap +d so we get agy, = (a+(k—1)d)+d=a+kd=a+ ((k+1)—1)d.
Hence, P(k + 1) is true.

In essence, by showing that P(k 4+ 1) must always be true when P(k) is true, we are showing that
the formula P(1) can be used to get the formula P(2), which in turn can be used to derive the
formula P(3), which in turn can be used to establish the formula P(4), and so on. Thus as long
as P(k) is true for some natural number k, P(n) is true for all of the natural numbers n which
follow k. Coupling this with the fact P(1) is true, we have established P(k) is true for all natural
numbers which follow n = 1, in other words, all natural numbers n. One might liken Mathematical
Induction to a repetitive process like climbing stairs.? If you are sure that (1) you can get on the
stairs (the base case) and (2) you can climb from any one step to the next step (the inductive step),
then presumably you can climb the entire staircase.?> We get some more practice with induction in
the following example.

Example 10.3.1. Prove the following assertions using the Principle of Mathematical Induction.

n
1. The sum formula for arithmetic sequences: Z(a +(j—1)d) = g(2a + (n —1)d).
j=1

2. For a complex number z, (z)" = 27 for n > 1.
3. 3" > 100n for n > 5.

4. Let A be an n x n matrix and let A’ be the matrix obtained by replacing a row R of A with
¢R for some real number c. Use the definition of determinant to show det(A’) = cdet(A).

Solution.

1. We set P(n) to be the equation we are asked to prove. For n = 1, we compare both sides of
the equation given in P(n)

1
(a+(—1d) = %(2@4—(1—1)([)
j=1
a+(1—-1d L %(2(1)
a = av

2Falling dominoes is the most widely used metaphor in the mainstream College Algebra books.
3This is how Carl climbed the stairs in the Cologne Cathedral. Well, that, and encouragement from Kai.
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This shows the base case P(1) is true. Next we assume P(k) is true, that is, we assume

(a-+ (G~ 1)d) = ~(2a -+ (k—1)d)

k
=1

J

and attempt to use this to show P(k + 1) is true. Namely, we must show

k+1
S0+ (- 1)d) = %(za +(k+1-1)d)

J=1

To see how we can use P(k) in this case to prove P(k + 1), we note that the sum in P(k+1)
is the sum of the first k£ 4+ 1 terms of the sequence ay = a + (k — 1)d for k > 1 while the sum
in P(k) is the sum of the first k terms. We compare both side of the equation in P(k + 1).

k+1

. » k+1
> (a+(j—1)d) < T(2a + (k+1-1)d)
j=1
summing the first £ 4+ 1 terms
: 7 k+1
da+(i-Dd) + (a+(k+1-Dd) = ——(2a+kd)
j=1

-~

summing the first £ terms  adding the (k + 1)st term

g(%‘ F (k- D)D)+t = EE 1)(22a + kd)

Using P(k)

k(2a+ (k—1)d) +2(a+kd) +» 2ka+ k*d+2a+ kd

2 2
2ka +2a + k*d +kd 2ka+2a+k‘2d+k‘d/
2 B 2

Since all of our steps on both sides of the string of equations are reversible, we conclude that
the two sides of the equation are equivalent and hence, P(k + 1) is true. By the Principle of
Mathematical Induction, we have that P(n) is true for all natural numbers n.

. We let P(n) be the formula (Z)" = z7. The base case P(1) is (z)' = 21 which reduces to

Z = % which is true. We now assume P(k) is true, that is, we assume (2)* = z¥F and attempt
to show that P(k+1) is true. Since (2)*™ = (2)¥ 2, we can use the induction hypothesis and
write (z)* = zF. Hence, (2)*"! = (2)F z = 2 z. We now use the product rule for conjugates
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to write 28z = zkz = 2F+1. This establishes (2)"™ = 2F+1, so that P(k + 1) is true. Hence,
by the Principle of Mathematical Induction, (z)" = 2™ for all n > 1.

3. The first wrinkle we encounter in this problem is that we are asked to prove this formula for
n > 5 instead of n > 1. Since n is a natural number, this means our base step occurs at
n = 6. We can still use the PMI in this case, but our conclusion will be that the formula is
valid for all n > 6. We let P(n) be the inequality 3™ > 100n, and check that P(6) is true.
Comparing 3% = 729 and 100(6) = 600, we see 3% > 100(6) as required. Next, we assume
that P(k) is true, that is we assume 3* > 100k. We need to show that P(k + 1) is true, that
is, we need to show 3! > 100(k + 1). Since 3**! = 3. 3%, the induction hypothesis gives
3k+1 = 3.3%F > 3(100k) = 300k. We are done if we can show 300k > 100(k + 1) for k > 6.
Solving 300k > 100(k + 1) we get k > % Since k > 6, we know this is true. Putting all of
this together, we have 3¥¥1 = 3. 3% > 3(100k) = 300k > 100(k + 1), and hence P(k + 1) is
true. By induction, 3" > 100n for all n > 6.

4. To prove this determinant property, we use induction on n, where we take P(n) to be that
the property we wish to prove is true for all n x n matrices. For the base case, we note that if
Ais a 1 x 1 matrix, then A = [a] so A’ = [ca]. By definition, det(A) = a and det(A’) = ca so
we have det(A’) = cdet(A) as required. Now suppose that the property we wish to prove is
true for all k x k matrices. Let A be a (k+1) x (k4 1) matrix. We have two cases, depending
on whether or not the row R being replaced is the first row of A.

CASE 1: The row R being replaced is the first row of A. By definition,
det(A’) = Z a'lpC{p
p=1

where the 1p cofactor of A is (], = (—1)+P) det (A7,) and A7, is the k x k matrix obtained
by deleting the 1st row and pth column of A’.% Since the first row of A’ is ¢ times the first
row of A, we have a’lp = ca,p. In addition, since the remaining rows of A’ are identical to
those of A, A}, = A;,. (To obtain these matrices, the first row of A’ is removed.) Hence
det (A},) = det (Ayp), so that C}, = Cyp. As a result, we get

det(A") = Z ay,C, = Z ca,;pCyp = CZ a,pChp = cdet(A),
p=1

p=1 p=1

as required. Hence, P(k + 1) is true in this case, which means the result is true in this case
for all natural numbers n > 1. (You’ll note that we did not use the induction hypothesis at
all in this case. It is possible to restructure the proof so that induction is only used where
it is needed. While mathematically more elegant, it is less intuitive, and we stand by our
approach because of its pedagogical value.)

4See Section ?? for a review of this notation.
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CASE 2: The row R being replaced is the not the first row of A. By definition,

det(A") = Z ay,Clps
p=1

where in this case, a’lp = a,p, since the first rows of A and A’ are the same. The matrices

A’lp and A,,, on the other hand, are different but in a very predictable way — the row in A’lp
which corresponds to the row ¢R in A’ is exactly ¢ times the row in A,, which corresponds to
the row R in A. In other words, A'lp and A,, are k x k matrices which satisfy the induction
hypothesis. Hence, we know det (A7) = cdet (Ay) and C}, = ¢C,,. We get

det(A') = Z a\,C, = Z apcCp = CZ a,pCip = cdet(A),
p=1

p=1 p=1

which establishes P(k + 1) to be true. Hence by induction, we have shown that the result
holds in this case for n > 1 and we are done. O

While we have used the Principle of Mathematical Induction to prove some of the formulas we
have merely motivated in the text, our main use of this result comes in Section 10.4 to prove the
celebrated Binomial Theorem. The ardent Mathematics student will no doubt see the PMI in
many courses yet to come. Sometimes it is explicitly stated and sometimes it remains hidden in
the background. If ever you see a property stated as being true ‘for all natural numbers n’, it’s a
solid bet that the formal proof requires the Principle of Mathematical Induction.
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10.3.1 EXERCISES

In Exercises 1 - 7, prove each assertion using the Principle of Mathematical Induction.

1.

10.

. nP(n+1)?
DLt
=1

- 2 _ nn+1)2n+1)

4

2™ > 500n for n > 12

3" >n3 forn >4

. Use the Product Rule for Absolute Value to show |z"| = |z|™ for all real numbers = and all

natural numbers n > 1

. Use the Product Rule for Logarithms to show log (z") = nlog(z) for all real numbers z > 0

and all natural numbers n > 1.

a 01" a® 0
[0 b] _[O bn]fornZl.

. Prove Equations 10.1 and 10.2 for the case of geometric sequences. That is:

(a) For the sequence a, = a, any, = ray, n > 1, prove a, = ar™ 1 n>1.

n n
1 —pn
(b) E ar"_1:a<1 r ),ifr;él, E ar" ' =na, if r = 1.
—r
Jj=1 Jj=1

. Prove that the determinant of a lower triangular matrix is the product of the entries on the

main diagonal. (See Exercise 7?7 in Section ??.) Use this result to then show det (I,,) = 1
where I, is the n x n identity matrix.

Discuss the classic ‘paradox’ All Horses are the Same Color problem with your classmates.
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10.3.2 SELECTED ANSWERS

n
1. Let P(n) be the sentence ij =

nn+1)2n+1)

SEQUENCES AND THE BINOMIAL THEOREM

J=1

12 =

6

MO+ DM +1)

1v

6

. For the base case, n = 1, we get

We now assume P(k) is true and use it to show P(k + 1) is true. We have

k+1

>’
j=1

k
> i+ (k+1)?
j=1

k(k +1)(2k + 1)
6
Using P(k)

+(k +1)?

k(k+1)(2k+1)  6(k+ 1)
6 TG
k(k+1)(2k + 1) 4+ 6(k + 1)?
6
(k+1)(k(2k+1) + 6(k + 1))
6
(k+1) (2k* + 7k + 6)
6
(k+1)(k+2)(2k + 3)
6

(n+1)(2n+1)

n
By induction, Zj2 _n 5

J=1

?

(k+1D((E+1)+1)2(k+1)+1)

6

(k + 1)(k + 2)(2k + 3)

6
(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k + 2)(2k + 3)

6
(k + 1)(k + 2)(2k + 3)

6
(k + 1)(k +2)(2k + 3)

6
(k + 1)(k + 2)(2k + 3)

6
(k + 1)(k + 2)(2k + 3)

6

v

is true for all natural numbers n > 1.

4. Let P(n) be the sentence 3" > n3. Our base case is n = 4 and we check 3* = 81 and 4° = 64
so that 3* > 43 as required. We now assume P(k) is true, that is 3* > k3, and try to show
P(k + 1) is true. We note that 3*** = 3.3% > 3k® and so we are done if we can show
3k3 > (k +1)3 for k > 4. We can solve the inequality 33 > (z + 1)3, and doing so gives us
T > ﬁ ~ 2.26. Hence, for k > 4, 3**1 = 3.3% > 3k3 > (k + 1)3 so that 3" > (k + 1)3.

By induction, 3" > n? is true for all natural numbers n > 4.
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6. Let P(n) be the sentence log (z") = nlog(z). For the duration of this argument, we assume
z > 0. The base case P(1) amounts checking that log (z') = 1log(x) which is clearly true.
Next we assume P(k) is true, that is log (z*) = klog(z) and try to show P(k + 1) is true.
Using the Product Rule for Logarithms along with the induction hypothesis, we get

log (ka) = log (mk . .TU) = log (xk> + log(z) = klog(x) + log(x) = (k + 1) log(x)

Hence, log (z") = (k + 1) log(x). By induction log (™) = nlog() is true for all z > 0 and
all natural numbers n > 1.

9. Let A be an n x n lower triangular matrix. We proceed to prove the det(A) is the product of
the entries along the main diagonal by inducting on n. For n =1, A = [a] and det(A) = a,
so the result is (trivially) true. Next suppose the result is true for k x k lower triangular
matrices. Let A be a (k+ 1) x (k+ 1) lower triangular matrix. Expanding det(A) along the
first row, we have

det(A) = Z a,,Cp
p=1

Since a;p = 0 for 2 < p < k + 1, this simplifies det(A) = a,,C},. By definition, we know that
Cy, = (1)1 det (A;,) = det (A,;) where Ay, is k x k matrix obtained by deleting the first
row and first column of A. Since A is lower triangular, so is A;; and, as such, the induction
hypothesis applies to A,;. In other words, det (A4,,) is the product of the entries along A,,’s
main diagonal. Now, the entries on the main diagonal of A;, are the entries a.,, ass, ...,
Q(k41)(k+1) from the main diagonal of A. Hence,

det(A) = a; det (Ay;) = ayy (a22a33 e 'a(k+1)(k+1)) = Q11Q22033 * * * Q(k41)(k+1)

We have det(A) is the product of the entries along its main diagonal. This shows P(k+1) is
true, and, hence, by induction, the result holds for all n x n upper triangular matrices. The
n X n identity matrix I, is a lower triangular matrix whose main diagonal consists of all 1’s.
Hence, det (I,,) = 1, as required.
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10.4 THE BINOMIAL THEOREM

In this section, we aim to prove the celebrated Binomial Theorem. Simply stated, the Binomial
Theorem is a formula for the expansion of quantities (a+b)" for natural numbers n. In Elementary
and Intermediate Algebra, you should have seen specific instances of the formula, namely

(a+b)! = a+b
(a+b)? = a®+2ab+b?
(a+0b)® = a®+3a%b+ 3ab? + b3

If we wanted the expansion for (a+b)* we would write (a+b)* = (a+b)(a+b)? and use the formula
that we have for (a+b)? to get (a+b)* = (a+b) (a® + 3a%b + 3ab® + b*) = a*+4a>b+6a*b*+4ab>+b*.
Generalizing this a bit, we see that if we have a formula for (a + b)*, we can obtain a formula for
(a+b)**1 by rewriting the latter as (a +b)**! = (a4 b)(a +b)*. Clearly this means Mathematical
Induction plays a major role in the proof of the Binomial Theorem.! Before we can state the
theorem we need to revisit the sequence of factorials which were introduced in Example 10.1.1
number 6 in Section 10.1.

Definition 10.4. Factorials: For a whole number n, n factorial, denoted n!, is the term f,
of the sequence fy =1, fn=n- fn_1, n > 1.

Recall this means 0! = 1 and n! = n(n — 1)! for n > 1. Using the recursive definition, we get:
'=1-0=1-1=1,21=2-11=2-1=2,31=3-21=3-2-1=6and 4! =4-31=4-3-2-1 = 24.
Informally, n! =n-(n—1)-(n—2)---2-1 with 0! = 1 as our ‘base case.” Our first example

familiarizes us with some of the basic computations involving factorials.

Example 10.4.1.

1. Simplify the following expressions.

312! 7! 1000! (k+2)!

a) ~or () 5

2. Prove n! > 3" for alln > 7.
Solution.
1. We keep in mind the mantra, “When in doubt, write it out!” as we simplify the following.
(a) We have been programmed to react with alarm to the presence of a 0 in the denominator,

but in this case 0! = 1, so the fraction is defined after all. As for the numerator,
31=3-2.-1=6and 2! =2-1 =2, 50 we have 32 = 0 _ 19

t’s pretty much the reason Section 10.3 is in the book.
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(b)

We have 7! =7-6-5-4-3-2-1=5040 while 5! =5-4-3-2-1 = 120. Dividing, we get
g—i = %%O = 42. While this is correct, we note that we could have saved ourselves some

of time had we proceeded as follows

7 7-6-5-4-3-2-1 7-6-3-4-3-2-/
51 5.4.3.2-1 5. 4-3-9-1 =7-6=142

In fact, should we want to fully exploit the recursive nature of the factorial, we can write

77-6-50 7650
500 50 x

Keeping in mind the lesson we learned from the previous problem, we have

42

1000! 1000 - 999 - 998! 1000 - 999 - 9987 999000

99g!2l —  998!-21 9982l 2
This problem continues the theme which we have seen in the previous two problems.
We first note that since k + 2 is larger than k& — 1, (k 4 2)! contains all of the factors
of (k—1)! and as a result we can get the (k — 1)! to cancel from the denominator. To
see this, we begin by writing out (k4 2)! starting with (k4 2) and multiplying it by the
numbers which precede it until we reach (k —1): (k+2)! = (k4 2)(k + 1)(k)(k — 1)L
As a result, we have

= 499500

(b2t e+ 2)(h+ D= (b4 20+ DRG0

(k—1)! (k—1)! [

The stipulation k& > 1 is there to ensure that all of the factorials involved are defined.

2. We proceed by induction and let P(n) be the inequality n! > 3". The base case here isn =7
and we see that 7! = 5040 is larger than 37 = 2187, so P(7) is true. Next, we assume that P(k)
is true, that is, we assume k! > 3¥ and attempt to show P(k+ 1) follows. Using the properties
of the factorial, we have (k + 1)! = (k + 1)k! and since k! > 3, we have (k4 1)! > (k 4 1)3*.
Since k> 7, k+1>8,s0 (k+1)3k >8.3F > 3.3% = 351, Putting all of this together, we
have (k+1)! = (k + 1)k! > (k + 1)3F > 31 which shows P(k + 1) is true. By the Principle
of Mathematical Induction, we have n! > 3™ for all n > 7. O

Of all of the mathematical animals we have discussed in the text, factorials grow most quickly. In
problem 2 of Example 10.4.1, we proved that n! overtakes 3" at n = 7. ‘Overtakes’ may be too
polite a word, since n! thoroughly trounces 3" for n > 7, as any reasonable set of data will show.
It can be shown that for any real number x > 0, not only does n! eventually overtake ™, but the

. n
ratio £ — 0 as n — oo.

n!

2

Applications of factorials in the wild often involve counting arrangements. For example, if you have
fifty songs on your mp3 player and wish arrange these songs in a playlist in which the order of the

2This fact is far more important than you could ever possibly imagine.
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songs matters, it turns out that there are 50! different possible playlists. If you wish to select only
ten of the songs to create a playlist, then there are 2—8: such playlists. If, on the other hand, you just
want to select ten song files out of the fifty to put on a flash memory card so that now the order
no longer matters, there are ﬁ%! ways to achieve this.®> While some of these ideas are explored
in the Exercises, the authors encourage you to take courses such as Finite Mathematics, Discrete
Mathematics and Statistics. We introduce these concepts here because this is how the factorials
make their way into the Binomial Theorem, as our next definition indicates.

Definition 10.5. Binomial Coefficients: Given two whole numbers n and j with n > j, the

n
binomial coefficient (
J

> (read, n choose j) is the whole number given by

@ B j!(nnijﬂ

The name ‘binomial coefficient” will be justified shortly. For now, we can physically interpret
(7;) as the number of ways to select j items from n items where the order of the items selected is
unimportant. For example, suppose you won two free tickets to a special screening of the latest
Hollywood blockbuster and have five good friends each of whom would love to accompany you to

the movies. There are (g) ways to choose who goes with you. Applying Definition 10.5, we get

5\__ 8 5t _ 54 o
2) 2(B-2)! 23 2

So there are 10 different ways to distribute those two tickets among five friends. (Some will see it
as 10 ways to decide which three friends have to stay home.) The reader is encouraged to verify
this by actually taking the time to list all of the possibilities.

We now state anf prove a theorem which is crucial to the proof of the Binomial Theorem.

Theorem 10.3. For natural numbers n and j with n > 7,

(2 (=07

The proof of Theorem 10.3 is purely computational and uses the definition of binomial coefficients,
the recursive property of factorials and common denominators.

3For reference,

500 = 30414093201713378043612608166064768844377641568960512000000000000,
|

i—g; —  37276043023296000, and

50!

om0 = 10272278170
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n n n! n!
<j1>+<j> T oD G- i)

n! n!
G-Dln—j+ 1! jin—)

n! n!

T G+ D= G- D=
_ nlj 4 nl(n—j+1)
iD=+ D=7 JG-Dln—j+ -7
nlj nl(n—j+1)

jin—g4+ 1! jln—j+1)!
nlj+nl(n—j+1)
jl(n—j+1)!
B+ (n—j+1)
gl (n—j+1)!
(n+ 1)n!
jl(n+1-7))!
(n+1)!
7 ((n+1) = j))!

- ()

We are now in position to state and prove the Binomial Theorem where we see that binomial
coefficients are just that - coefficients in the binomial expansion.

Theorem 10.4. Binomial Theorem: For nonzero real numbers a and b,

ooy =3 (7o

=0 N

for all natural numbers n.

To get a feel of what this theorem is saying and how it really isn’t as hard to remember as it may
first appear, let’s consider the specific case of n = 4. According to the theorem, we have
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4 * (4 4—j1j
(a+b)* = Z Ca® Y
(4 4050 4\ 411 4\ 4 9.9 4\ 4 3.3 4\ 44,4
—<0>a b+<1>a b~|—2a b—|—3a b+4ab
4\ 4 4\ 3 4\ 9.9 4\ 5 4\ 4
<O>a +<1>a b—|—<2>a b° + 3 ab® + 4 b

We forgo the simplification of the coefficients in order to note the pattern in the expansion. First
note that in each term, the total of the exponents is 4 which matched the exponent of the binomial
(a+0b)*. The exponent on a begins at 4 and decreases by one as we move from one term to the next
while the exponent on b starts at 0 and increases by one each time. Also note that the binomial
coefficients themselves have a pattern. The upper number, 4, matches the exponent on the binomial
(a + b)* whereas the lower number changes from term to term and matches the exponent of b in
that term. This is no coincidence and corresponds to the kind of counting we discussed earlier. If
we think of obtaining (a + b)* by multiplying (a + b)(a + b)(a + b)(a + b), our answer is the sum of
all possible products with exactly four factors - some a, some b. If we wish to count, for instance,
the number of ways we obtain 1 factor of b out of a total of 4 possible factors, thereby forcing the
remaining 3 factors to be a, the answer is (111) Hence, the term (11) a3b is in the expansion. The
other terms which appear cover the remaining cases. While this discussion gives an indication as
to why the theorem is true, a formal proof requires Mathematical Induction.*

To prove the Binomial Theorem, we let P(n) be the expansion formula given in the statement of
the theorem and we note that P(1) is true since

(a+b)! = zl:<1.>a1jbj

1 1
at+b = 0> a0 + <1> a1t

a+b = a+bVv

Now we assume that P(k) is true. That is, we assume that we can expand (a + b)* using the
formula given in Theorem 10.4 and attempt to show that P(k + 1) is true.

“and a fair amount of tenacity and attention to detail.
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(@a+b)*1 = (a+b)(a+b)*
= (a+ b)fj <’“> ah=ip

.)ak‘jbf + bjzk(:) (?) ak—ip

B O S 0)

=0

Il

S
-
Yy
S

Our goal is to combine as many of the terms as possible within the two summations. As the counter
j in the first summation runs from 0 through k, we get terms involving a**1, a*b, a*=102, ..., ab".
In the second summation, we get terms involving a®b, a* 102, ..., ab¥, b¥*1. In other words, apart
from the first term in the first summation and the last term in the second summation, we have
terms common to both summations. Our next move is to ‘kick out’ the terms which we cannot
combine and rewrite the summations so that we can combine them. To that end, we note

LNy "k
> (M)arrrw < a3 (oo
J

J

j=0 Jj=1
and
ko =1
Z < ,)akjbj+1 _ Z ( ,>akjbj+1 + bk+1
—0 ] 0 ¥
J= Jj=
so that
k k k—1 k
N O I e
=1 =0
We now wish to write
k k—1
Z <k) Gy Z <k> JFipitl
=1 M =0 N

as a single summation. The wrinkle is that the first summation starts with j = 1, while the second
starts with j = 0. Even though the sums produce terms with the same powers of a and b, they do
so for different values of j. To resolve this, we need to shift the index on the second summation so
that the index j starts at j = 1 instead of j = 0 and we make use of Theorem 10.1 in the process.
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k=l Bl
< )ak—jbjﬂ _ Z < ‘ 1) ok (=1 p—1D+1
, J—

We can now combine our two sums using Theorem 10.1 and simplify using Theorem 10.3

k k

k Lk k ok
E <,>ak+1jbj + E <,>akjbj+1 = E (.)ak+1jbj + E ( 1)ak+1jbj
J : J J : J—
Jj=0 j=1

)+ ()

(k + 1>ak+1—jbj
J

I
<.
Mw I
—_

<.
Il

I

1

J

Using this and the fact that (kJorl) =1 and (Zﬁ) =1, we get

k
(a+ b+l = bt g Z <lc + 1> Qi 4 gk
j=1

k
_ (R TY ka0 E+1\ jvioj,j E+1\ o kt1
= ( 0 >a b—i—z j a b+ ka1 a'b

j=1

k+1
= (M

=0~ 7

which shows that P(k + 1) is true. Hence, by induction, we have established that the Binomial
Theorem holds for all natural numbers n.

Example 10.4.2. Use the Binomial Theorem to find the following.

L. (z—2)* 2. 2.13

3. The term containing z* in the expansion (2 + y)°

Solution.

1. Since (z — 2)* = (z + (—2))*, we identify a = z, b = —2 and n = 4 and obtain
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=2 — 823 4+ 2422 — 322 + 16

2. At first this problem seem misplaced, but we can write 2.13 = (2 + 0.1)3. Identifying a = 2,
sz.lz% and n = 3, we get

i) - 50 ()
) 0 60 )

12 6 1

= 8+ 170" 100 T 1000

= 8+1.2+0.06 +0.001
= 9.261

3. Identifying a = 2x, b = y and n = 5, the Binomial Theorem gives
5 /5 .
(22 +y)® = Z ( > (22)5 g7
— \J
J_
Since we are concerned with only the term containing 23, there is no need to expand the

entire sum. The exponents on each term must add to 5 and if the exponent on x is 3, the
exponent on y must be 2. Plucking out the term j = 2, we get

5
<2> (22)°72y? = 10(2x)3y? = 8023y

O]

We close this section with Pascal’s Triangle, named in honor of the mathematician Blaise Pascal.
Pascal’s Triangle is obtained by arranging the binomial coefficients in the triangular fashion below.



http://en.wikipedia.org/wiki/Pascal's_triangle
http://en.wikipedia.org/wiki/Blaise_Pascal
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Since (8) =1 and (Z) = 1 for all whole numbers n, we get that each row of Pascal’s Triangle
begins and ends with 1. To generate the numbers in the middle of the rows (from the third row
onwards), we take advantage of the additive relationship expressed in Theorem 10.3. For instance,
((1)) + (1) = (?), (3) + @) (:1)’) and so forth. This relationship is indicated by the arrows in the
array above. With these two facts in hand, we can quickly generate Pascal’s Triangle. We start
with the first two rows, 1 and 1 1. From that point on, each successive row begins and ends with
1 and the middle numbers are generated using Theorem 10.3. Below we attempt to demonstrate

this building process to generate the first five rows of Pascal’s Triangle.

1

1 1 1
— 11
Sl 12 1
1+1
1
1 1 111
1 2 1 N L.
N N
142 2+1
1
1 1
1 2 1
1 3 3 1
N pwe pwe
1+3 343  3+1
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To see how we can use Pascal’s Triangle to expedite the Binomial Theorem, suppose we wish to
expand (3z — y)*. The coefficients we need are (j) for j =0,1,2,3,4 and are the numbers which
form the fifth row of Pascal’s Triangle. Since we know that the exponent of 3z in the first term is
4 and then decreases by one as we go from left to right while the exponent of —y starts at 0 in the
first term and then increases by one as we move from left to right, we quickly obtain

Bz —y)t = (DBx) + (4)(3x)*(—y) + (6)(32)*(—y)* + 4(3z)(—y)* + 1(—y)*
= 8lz* — 10823y + 54a?y? — 12293 + y*

We would like to stress that Pascal’s Triangle is a very quick method to expand an entire binomial.
If only a term (or two or three) is required, then the Binomial Theorem is definitely the way to go.
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10.4.1 EXERCISES

In Exercises 1 - 9, simplify the given expression.

1. (312 10! 7!
(3!) 2 = 3. Shai
9! (n+1)! (k—1)!
4. ) > 0.
132! o =0 D
8 117 n
7. 8. > 2
(5 () (o"2)»
In Exercises 10 - 13, use Pascal’s Triangle to expand the given binomial.
10. (z +2)° 11. (22 —1)* 12. (3o +42)° 13. (z—a~ 1)

In Exercises 14 - 17, use Pascal’s Triangle to simplify the given power of a complex number.

14. (1+ 2i)* 15. (1 +iv3)°
Vi1 RN
o (2:1) o (2 2)

In Exercises 18 - 22, use the Binomial Theorem to find the indicated term.

18. The term containing 23 in the expansion (2z — y)®

19. The term containing x''” in the expansion (z + 2)'1®

20. The term containing 2 in the expansion (VT —3)°
21. The term containing =" in the expansion (23: — x_3)5

22. The constant term in the expansion (ac + :r*1)8

23. Use the Prinicple of Mathematical Induction to prove n! > 2™ for n > 4.
n
24. Prove Z <n) = 2" for all natural numbers n. (HINT: Use the Binomial Theorem!)
: J
7=0

25. With the help of your classmates, research Patterns and Properties of Pascal’s Triangle.

26. You've just won three tickets to see the new film, ‘8.9.” Five of your friends, Albert, Beth,
Chuck, Dan, and Eugene, are interested in seeing it with you. With the help of your class-
mates, list all the possible ways to distribute your two extra tickets among your five friends.
Now suppose you’ve come down with the flu. List all the different ways you can distribute the
three tickets among these five friends. How does this compare with the first list you made?

What does this have to do with the fact that (g) = (3)7


http://en.wikipedia.org/wiki/Pascal's_triangle#Patterns_and_properties
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10.4.2 ANSWERS

1. 36 2. 720 3. 105

1
4. 1260 5. n+1 6. E(k+1)(k+2)
7. 56 8.1 9. nlnrl)

10. (z +2)5 = 2° 4+ 102* + 4023 + 8022 + 80z + 32

(
11. (22 — 1)* = 162* — 3223 + 2422 — 8z + 1
12. (o +9?)° = L3 + $a%y + ayt + 4
13. (x ) =at — 422+ 6 — 42 4 o7
14, —7 — 244 15. 8 16. @ 17. —1

18. 80x3y? 19. 236217 20. —24zx 21. —40z~7 22. 70
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Section 11.1 Introduction to Limits

Intuitive Look

A limit looks at what happens to a function when the input approaches a certain value.
The general notation for a limit is as follows:

lim f (x)

X—a

This is read as "The limit of f of x as x approaches a". We'll take up later the question
of how we can determine whether a limit exists for f(x) at a and, if so, what it is. For
now, we'll look at it from an intuitive standpoint.

Let's say that the function that we're interested in is f (x) = x*, and that we're interested

in its limit as x approaches 2. Using the above notation, we can write the limit that we're

interested in as follows:
lim x*

X—2

One way to try to evaluate what this limit is would be to choose values near 2,
compute f(x) for each, and see what happens as they get closer to 2. This is

implemented as follows:
X 1.7 1.8 |19 195 199 1.999

f(x)=x* 2.89 |3.24 3.61 3.8025 3.9601 3.996001

Here we chose numbers smaller than 2, and approached 2 from below. We can also
choose numbers larger than 2, and approach 2 from above:

X 23 22 |21 (205 201 2001
f(x)=x" 529 4.84 4.414.2025 4.0401 4.004001

We can see from the tables that as x grows closer and closer to 2, f(x) seems to get
closer and closer to 4, regardless of whether x approaches 2 from above or from below.

For this reason, we feel reasonably confident that the limit of x* as x approaches 2 is 4,
or, written in limit notation,

limx* = 4.

X—2

This material is remixed from wikibooks.org, licensed under a Creative Commons CC-BY-SA license.



We could have also just substituted 2 into x> and evaluated: (2)> =4 . However, this will

not work with all limits.
Now let's look at another example. Suppose we're interested in the behavior of the

function f(x)zi2 as x approaches 2. Here's the limit in limit notation:

. 1
lim——
X2 X — 2

Just as before, we can compute function values as x approaches 2 from below and from

above. Here's a table, approaching from below:
X 1.7 1.8 /1.9 195 1.99 1.999

f(x)=$ -3.333 |-5 |-10 -20 ' -100 |-1000

And here from above:
X 2.3 22121205 (2.01 2.001

1
f(x)=n 3333 ' 5 10 |20 100 1000

In this case, the function doesn't seem to be approaching a single value as x approaches
2, but instead becomes an extremely large positive or negative number (depending on the
direction of approach). This is known as an infinite limit. Note that we cannot just

. . 1 . . .
substitute 2 into 2 and evaluate as we could with the first example, since we would
X —

be dividing by 0.

Both of these examples may seem trivial, but consider the following function:
2

f(x) = x(x=2)
X—2

This function is the same as

2 -
F(x) = X | ff X#2
undefined ifx=2

Note that these functions are really completely identical; not just "almost the same," but
actually, in terms of the definition of a function, completely the same; they give exactly
the same output for every input.
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In algebra, we would simply say that we can cancel the term (x—2), and then we have

the function f(x) = x>. This, however, would be a bit dishonest; the function that we
have now is not really the same as the one we started with, because it is defined

when x =2, and our original function was specifically not defined when x=2. In
algebra we were willing to ignore this difficulty because we had no better way of dealing
with this type of function. Now, however, in calculus, we can introduce a better, more
correct way of looking at this type of function. What we want is to be able to say that,
although the function doesn't exist when x =2, it works almost as though it does. It may
not get there, but it gets really, really close. That is, f(1.99999) =3.99996 . The only

question that we have is: what do we mean by "close™?

Informal Definition of a Limit

As the precise definition of a limit is a bit technical, it is easier to start with an informal
definition; we'll explain the formal definition later.
We suppose that a function f is defined for x near ¢ (but we do not require that it be

defined when x=c).

Definition: (Informal definition of a limit)
We call L the limit of f(x) as x approaches c if f(x) becomes close

to L when x is close (but not equal) to ¢, and if there is no other value $L'$ with the
same property..
When this holds we write

limf(x)=L

X—C

or
f(x) >L as x—c.

Notice that the definition of a limit is not concerned with the value
of f(x) when x=c (which may exist or may not). All we care about are the values

of f(x) when x isclose to c, on either the left or the right (i.e. less or greater).

Limit Rules

Now that we have defined, informally, what a limit is, we will list some rules that are
useful for working with and computing limits. You will be able to prove all these once
we formally define the fundamental concept of the limit of a function.

First, the constant rule states that if f(x)=b (thatis, f is constant for all x) then the

limit as x approaches ¢ must be equal to b . In other words

Constant Rule for Limits
If b and ¢ are constants then limb=hb.

X—C



lim5=5

X—6

Second, the identity rule states that if f(x)=x (thatis, f just gives back whatever
number you put in) then the limit of f as x approaches c is equal to c. That is,

Identity Rule for Limits
If c is a constant then limx=c.

X—>C

limx=6

X—6

The next few rules tell us how, given the values of some limits, to compute others.

Operational Identities for Limits
Suppose that lim f (x) =L and limg(x) =M and that k is constant. Then

Ixiirgkf(x)=k-lxigg f(x)=kL
IXiLr;l[f(x)Jrg(x)]:IXiLrg f(x)+|xi£rg g(x)=L+M
lim[f (x) ~g ()] =lim f(x) ~limg(x) =L -M
lim[f (x)g()]=lim f(x)limg(x) =LM

i f(x) lim f (x)

== _ L provided M =0
e g(x) limg(x) M

Notice that in the last rule we need to require that M is not equal to zero (otherwise we
would be dividing by zero which is an undefined operation).

These rules are known as identities; they are the scalar product, sum, difference, product,
and quotient rules for limits. (A scalar is a constant, and, when you multiply a function by
a constant, we say that you are performing scalar multiplication.)

Using these rules we can deduce another. Namely, using the rule for products many times
we get that

lim f (x)" =(Iim f(x))n =L" for a positive integer n.
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This is called the power rule.

Examples

Example 1

Find the limit Iirr214x3.

We need to simplify the problem, since we have no rules about this expression by itself.
We know from the identity rule above that Iin; x =2. By the power

3
rule, lim x> = (Iim x) = 2% =8. Lastly, by the scalar multiplication rule, we
X—>

X—2

get Iir‘g4x3 =4lim x*=4-8=32.

Example 2

Find the limit lim[4x® +5x-+7].

To do this informally, we split up the expression, once again, into its components. As
above, lim 4x* =32,

Also Iin;5x:5-lirr21x:5-2:10 and IirTZ]7=7.Adding these together gives

Iin’214x3+5x+7=Iirr;4x3+lirr;5x+lin;7=32+10+7=49.

Example 3

3
Find the limit lim X~ 2X+7

2 (X —4)(x+10)

From the previous example the limit of the numerator is Iirr21 4x% +5x+7=49. The limit

of the denominator is
|iIT21(X—4)(X +10) = |in'21(X—4) . Iirr;(x+10) =(2-4)-(2+10) =-24.

As the limit of the denominator is not equal to zero we can divide. This gives
43 +5x+7 49

im———m=——.
x>2 (X —4)(x+10) 24




Example 4

4_
Find the limit lim *_—10X+7
>4 4X -5

We apply the same process here as we did in the previous set of examples;
- X' —16X+7 Ixim(x4 —16x+7) ~ Ixim(x“)—lxim(mxﬂ Ixim(7)
x>4  4x-5 lim(4x—5) B lim(4x) ~1im5

We can evaluate each of
these; Iin}(x“)=256, Iin}(16x):64, Iirq(?):Y, Iinl(4x):16 and Iin}(5):5. Thus,

the answer is @
11

Example 5

2
Find the limit lim*_—X*2
X—2 X—2

In this example, evaluating the result directly will result in a division by zero. While

you can determine the answer experimentally, a mathematical solution is possible as

well.

. . . . (x=2)(x-1

First, the numerator is a polynomial that may be factored: I|rr21 %
X— X p—

Now, you can divide both the numerator and denominator by (x-

2): lim(x-1) = (2-1) =1

Example 6

Find the limit |in31‘°°SX .
X—> X

To evaluate this seemingly complex limit, we will need to recall some sine and cosine
identities. We will also have to use two new facts. First, if f(x) is a trigonometric
function (that is, one of sine, cosine, tangent, cotangent, secant or cosecant) and is
defined at a, then leir; f(x)=f(a).

Second, Iirrg % =1. This may be determined experimentally, or by

applying L'Hopital's rule, described later in the book.
To evaluate the limit, recognize that 1—cosx can be multiplied by 1+cosx to

obtain (L—cos? x) which, by our trig identities, is sin” x . So, multiply the top and
bottom by 1+cos x. (This is allowed because it is identical to multiplying by one.) This



http://en.wikibooks.org/wiki/Calculus/L%27H%C3%B4pital%27s_rule
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is a standard trick for evaluating limits of fractions; multiply the numerator and the
denominator by a carefully chosen expression which will make the expression simplify
somehow. In this case, we should end up with:
. 1—cosx . (1—005;1: 1)
im ——— = m | ——M - —
0 T z—0 T 1
, (1 —cosz 1+ cos:t:)
= lim .
z—0 T 1+ cosz
. (1 —cosx)-1+(1—cosz)- cosx
= lim
20 x - (1+ cosz)
. 1 —cosz+ cosz — cos”
= lim
z—0 x- (14 coszx)
1 —cos’x
= 1m
07 - (1 4 cosx)
_ - sin? z
- =0z - (1 + cosx)
: sin sin x
= lim .
z—0 ( r 14 cos:t)
. . . sinx . sinx
Our next step should be to break this up into lim -lim by the product rule.
x>0 X x>01+C0SX
As mentioned above, Iing SnX_q.
X—> X
i limsin x
Next, lim—mX_ __ x>0 __ 0 _
x>0 1+ COS X I|rrg(1+ cosx) 1+cosO
Thus, by multiplying these two results, we obtain 0.

We will now present an amazingly useful result, even though we cannot prove it yet. We
can find the limit at ¢ of any polynomial or rational function, as long as that rational
function is defined at ¢ (so we are not dividing by zero). That is, ¢ must be in the
domain of the function.

Limits of Polynomials and Rational functions
If f isa polynomial or rational function that is defined at ¢ then

lim £ (x) = f(c)

We already learned this for trigonometric functions, so we see that it is easy to find limits
of polynomial, rational or trigonometric functions wherever they are defined. In fact, this
is true even for combinations of these functions; thus, for

example, lim(sin x> +4c0s*(3x —1)) =sin1* + 4cos’*(3(1) -1) .



The Squeeze Theorem

The Squeeze Theorem is very important in calculus,
where it is typically used to find the limit of a function
by comparison with two other functions whose limits
are known.

It is called the Squeeze Theorem because it refers to a
function f whose values are squeezed between the

values of two other functions g and h, both of which
have the same limit L. If the value of f is trapped
between the values of the two functions g and h, the
values of f must also approach L.

Expressed more precisely:

Theorem: (Squeeze Theorem)

Suppose that g(x) < f(x) <h(x) holds for all x in some open interval containing c,
except possibly at x =c itself. Suppose also that limg(x) =limh(x)=L.

Then lim f(x) =L also.

X—C

Example
Compute Iing xsin(l/ x) .

Note that the sine of anything is in the
interval [-1,1]. That is, —1<sinx <1 for
all x,and —1<sin(1/x) <1 forall x.If x is

X 51

4

positive, we can multiply these inequalities
by x and get —x < xsin(1/ x) < x. If x is
negative, we can similarly multiply the
inequalities by the positive number —x and

the Squeeze Theorem, Iing xsin(l/x)=0.

: %f\v ;

get x < xsin(1/ x) <—x. Putting these together, we can see that, for all
nonzero x, —|X| < xsin(1/x) <|x|. But it's easy to see that Iirrg—|x| = Iirrg|x| =0. So, by
X— X—>
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Finding Limits

Now, we will discuss how, in practice, to find limits. First, if the function can be built out
of rational, trigonometric, logarithmic and exponential functions, then if a number c isin
the domain of the function, then the limit at ¢ is simply the value of the function at c.

If ¢ is not in the domain of the function, then in many cases (as with rational functions)
the domain of the function includes all the points near c, but not c itself. An example

would be if we wanted to find Iirrgi, where the domain includes all numbers besides O.
x=0 ¥

In that case, in order to find lim f (x) we want to find a function g(x) similarto f(x),

except with the hole at ¢ filled in. The limits of f and g will be the same, as can be

seen from the definition of a limit. By definition, the limit depends on f(x) only at the
points where x is close to ¢ but not equal to it, so the limit at ¢ does not depend on the
value of the function at c. Therefore, if legg g(x)=L, legg f(x) =L also. And since the

domain of our new function g includes c, we can now (assuming g is still built out of
rational, trigonometric, logarithmic and exponential functions) just evaluate it at ¢ as
before. Thus we have lim f (x) = g(c).

X—C

In our example, this is easy; canceling the x's gives g(x) =1, which

equals f(x)=x/x atall points except 0. Thus, we have limX =lim1=1. In general,

x—=>0 X x—0

when computing limits of rational functions, it's a good idea to look for common factors
in the numerator and denominator.

Lastly, note that the limit might not exist at all. There are a number of ways in which this
can occur:

IIGapII
There is a gap (not just a single point) where the function is not defined. As an example,
in

f(x)=vx-16

lim f (x) does not exist when —4 <c <4. There is no way to "approach" the middle of

X—>C

the graph. Note that the function also has no limit at the endpoints of the two curves
generated (at c=—4 and c=4). For the limit to exist, the point must be approachable
from both the left and the right.

Note also that there is no limit at a totally isolated point on a graph.
IIJumpll

If the graph suddenly jumps to a different level, there is no limit at the point of the jump.
For example, let f(x) be the greatest integer < x. Then, if c is an integer,



when x approaches ¢ from the right f (x) =c, while when x approaches ¢ from the
left f(x)=c—1. Thuslim f(x) will not exist.

5 T T T T
Vertical asymptote
In 2|
1
f(x)=— 1
(x) v
the graph gets arbitrarily high as it approaches 0, * |
so there is no limit. (In this case we sometimes

say the limit is infinite; see the next section.)

Infinite oscillation

These next two can be tricky to visualize. In this one, we mean that a graph continually
rises above and falls below a horizontal line. In fact, it does this infinitely often as you
approach a certain certain x value. This often means that there is no limit, as the graph
never approaches a particular value. However, if the height (and depth) of each
oscillation diminishes as the graph approaches the x-value, so that the oscillations get
arbitrarily smaller, then there might actually be a limit.

The use of oscillation naturally calls to

mind the trigonometric functions. An .
example of a trigonometric function that

does not have a limit as & approaches 0

is

f(x):sinl. o
X

05

As x gets closer to 0 the function keeps
oscillating between —1 and 1. In

fact, sin(1/ x) oscillates an infinite =
number of times on the interval between

0 and any positive value of x. The sine
function is equal to zero whenever x =k, where k is a positive integer. Between every
two integers k, sinx goes back and forth between 0 and -1 or 0 and 1.

Hence, sin(1/ x) =0 for every x =1/ (k). In between consecutive pairs of these

values, 1/ (kz) and 1/[(k +1)x], sin(1/ x) goes back and forth from 0, to either -1 or 1
and back to 0. We may also observe that there are an infinite number of such pairs, and
they are all between 0 and 1/ . There are a finite number of such pairs between any
positive value of x and 1/, so there must be infinitely many between any positive
value of x and 0. From our reasoning we may conclude that, as x approaches 0 from the

o [ake-] a1l [aBt=] oz [ Ben] k]
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right, the function sin(1/ x) does not approach any specific value.
Thus, Iirr013in(1/x) does not exist.

Using Limit Notation to Describe Asymptotes
Now consider the function

000 =
X

What is the limit as x approaches zero? The value of g(0) does not exist; it is not
defined.

Notice, also, that we can make g(x) as large as we like, by choosing a small x, as long
as x = 0. For example, to make g(x) equal to 10", we choose X to be 10°°.
Thus, Iirrg)l/x2 does not exist.

However, we do know something about what happens to g(x) when x gets close to 0
without reaching it. We want to say we can make g(x) arbitrarily large (as large as we

like) by taking x to be sufficiently close to zero, but not equal to zero. We express this
symbolically as follows:

. 1
limg(x)=lim—==w
x—>Og( ) x—0 X2

Note that the limit does not exist at 0 ; for a limit, being oo is a special kind of not
existing. In general, we make the following definition.

Definition: Informal definition of a limit being

We say the limit of f(x) as x approaches c is infinity if f(x) becomes very big (as
big as we like) when x is close (but not equal) to c.

In this case we write

limf(x)=00

X—>C

or
f(xX) >0 as x—c.

Similarly, we say the limit of f(x) as x approaches c is negative

infinity if f(x) becomes very negative when x is close (but not equal) to c.
In this case we write

lim f (x) =—o0

X—C

or
f(X) >-0 as x—cC.




An example of the second half of the definition would be that Iing(—izj = —0,

Key Application of Limits

To see the power of the concept of the limit, let's consider a moving car. Suppose we
have a car whose position is linear with respect to time (that is, a graph plotting the
position with respect to time will show a straight line). We want to find the velocity. This
is easy to do from algebra; we just take the slope, and that's our velocity.

But unfortunately, things in the real world don't always travel in nice straight lines. Cars
speed up, slow down, and generally behave in ways that make it difficult to calculate
their velocities.

Now what we really want to do is to find the velocity at a given moment (the
instantaneous velocity). The trouble is that in order to find the velocity we need two
points, while at any given time, we only have one point. We can, of course, always find
the average speed of the car, given two points in time, but we want to find the speed of
the car at one precise moment.

This is the basic trick of differential calculus, the first of the two main subjects of this
book. We take the average speed at two moments in time, and then make those two
moments in time closer and closer together. We then see what the limit of the slope is as
these two moments in time are closer and closer, and say that this limit is the slope at a
single instant.

We will study this process in much greater depth later in the book. First, however, we
will need to study limits more carefully.



Section 11.2 Finite Limits 645

Section 11.2 Finite Limits

Informal Finite Limits

Now, we will try to more carefully restate the ideas of the last chapter. We said then that
the equation Iirrzl f (x) =4 meant that, when x gets close to 2, f(x) gets close to 4. What

exactly does this mean? How close is "close"? The first way we can approach the
problem is to say that, at x=1.99, f(x)=3.9601, which is pretty close to 4.

Sometimes however, the function might do something completely different. For instance,
suppose f(x)=x*—2x*-3.77,s0 f(1.99)=3.99219201. Next, if you take a value even
closerto 2, f(1.999)=4.20602, in this case you actually move further from 4. The
reason for this is that substitution gives us 4.23 as x approaches 2.

The solution is to find out what happens arbitrarily close to the point. In particular, we
want to say that, no matter how close we want the function to get to 4, if we
make x close enough to 2 then it will get there. In this case, we will write

limf(x)=4

X—2

and say "The limit of f(x), as x approaches 2, equals 4" or "As x approaches
2, f(x) approaches 4." In general:

Definition: (New definition of a limit)
We call L the limitof f(x) as x approaches c if f(x) becomes arbitrarily
close to L whenever x is sufficiently close (and not equal) to c.
When this holds we write

limf(x)=L
or
f(x) >L as x—c.

One-Sided Limits

Sometimes, it is necessary to consider what happens when we approach an x value from
one particular direction. To account for this, we have one-sided limits. In a left-handed
limit, x approaches a from the left-hand side. Likewise, in a right-handed

limit, x approaches a from the right-hand side.

For example, if we consider Iin; Jx—2 , there is a problem because there is no way
X—

for x to approach 2 from the left hand side (the function is undefined here). But,



if x approaches 2 only from the right-hand side, we want to say that x—2 approaches
0.

Definition: (Informal definition of a one-sided limit)
We call L the limitof f(x) as x approaches ¢ from the right if f(x) becomes

arbitrarily close to L whenever x is sufficiently close to and greater than c.
When this holds we write
lim f(x)=L.

x—c*

Similarly, we call L the limit of f(x) as x approaches ¢ from the left if f(x)
becomes arbitrarily close to L whenever x is sufficiently close to and less than c.
When this holds we write

lim f(x)=L.

X—C~

In our example, the left-handed limit  lim </x—2 does not exist.

X—2~

The right-handed limit, however, Iirg Jx=2=0.
It is a fact that lim f (x) exists if and only if lim f(x) and lim f(x) exist and are equal
to each other. In this case, lim f (x) will be equal to the same number.

In our example, one limit does not even exist. Thus Iirrzl Jx—2 does not exist either.
X—>
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Informal Infinite Limits

Another kind of limit involves looking at what happens to f (x) as x gets very big. For
example, consider the function f(x)=1/x.As x gets very big, 1/ x gets very small. In
fact, 1/ x gets closer and closer to zero the bigger x gets. Without limits it is very
difficult to talk about this fact, because x can keep getting bigger and bigger

and 1/ x never actually gets to zero; but the language of limits exists precisely to let us
talk about the behavior of a function as it approaches something - without caring about
the fact that it will never get there. In this case, however, we have the same problem as
before: how big does x have to be to be sure that f(x) is really going towards 0?

In this case, we want to say that, however close we want f(x) to get to O, for x big
enough f(x) is guaranteed to get that close. So we have yet another definition.

(Definition: (Definition of a limit at infinity)

We call L the limitof f(x) as x approaches infinity if f(x) becomes arbitrarily
close to L whenever x is sufficiently large.

When this holds we write

limf(x)=L

X—00

or
f(x) >L as x— oo

Similarly, we call L the limit of f(x) as x approaches negative

infinity if f(x) becomes arbitrarily close to L whenever x is sufficiently negative.

When this holds we write
lim f(x)=L

X—>—00
or
f(x) >L as x——w.

So, in this case, we write:

HmE:O

X—o0 X
and say "The limit, as x approaches infinity, equals 0," or "as x approaches infinity, the
function approaches 0".

We can also write:

lim 1:0,

X—>—0 X

because making x very negative also forces 1/ x to be closeto 0.



Notice, however, that infinity is not a number; it's just shorthand for saying "no matter
how big." Thus, this is not the same as the regular limits we learned about in the last two
chapters.

Limits at Infinity of Rational Functions

One special case that comes up frequently is when we want to find the limit
at oo (or —oo) of a rational function. A rational function is just one made by dividing two

polynomials by each other. For example, f(x)=(x*+x—6)/(x*—4x+3) is a rational
function. Also, any polynomial is a rational function, since 1 is just a (very simple)
polynomial, so we can write the function f(x)=x*-3 as f(x)=(x*—-3)/1, the quotient
of two polynomials.

Consider the numerator of a rational function as we allow the variable to grow very large
(in either the positive or negative sense). The term with the highest exponent on the
variable will dominate the numerator, and the other terms become more and more
insignificant compared to the dominating term. The same applies to the denominator. In
the limit, the other terms become negligible, and we only need to examine the dominating
term in the numerator and denominator.

There is a simple rule for determining a limit of a rational function as the variable
approaches infinity. Look for the term with the highest exponent on the variable in the
numerator. Look for the same in the denominator. This rule is based on that information.
If the exponent of the highest term in the numerator matches the exponent of the highest
term in the denominator, the limit (at both .o and —oo) is the ratio of the coefficients of
the highest terms.

If the numerator has the highest term, then the fraction is called "top-heavy". If, when
you divide the numerator by the denominator the resulting exponent on the variable is
even, then the limit (at both oo and —o0) is co. If it is odd, then the limit at oo is oo, and
the limit at —oo is —o0.

If the denominator has the highest term, then the fraction is called "bottom-heavy" and
the limit (at both oo and —0) is zero.

Note that, if the numerator or denominator is a constant (including 1, as above), then this
is the same as x°. Also, a straight power of x, like x*, has coefficient 1, since it is the
same as 1x°.
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Examples

Find  lim*=>.

x>® X —3
The function f(x) =(x—-5)/(x-3) is the quotient of two polynomials, x—5 and x—3.
By our rule we look for the term with highest exponent in the numerator; it's x. The
term with highest exponent in the denominator is also x . So, the limit is the ratio of

their coefficients. Since x =1x, both coefficients are 1, so lim(x-5)/(x-3)=1/1=1.

Example 2

3
Find IimX2+—X6.
xow X —4X+3

We look at the terms with the highest exponents; for the numerator, it is x*, while for
the denominator it is x*. Since the exponent on the numerator is higher, we know the
limit at oo will be . So,

X’ 4+x-6

||m S =0

xow X° —4X+3




Section 11.4 Basic Limit Properties

Now that we have the formal definition of a limit, we can set about proving some of the
properties we stated earlier in this chapter about limits.

Constant Rule for Limits
If b and c are constants then limb=b.

X—>C

Proof of the Constant Rule for Limits:
To prove that lim f (x) =b, we need to find a 6 >0 such that for
every >0, |b—b| <& whenever |[x—c|<5. |b—b|=0 and £>0,s0 |b—b|<¢& is

satisfied independent of any value of & ; that is, we can choose any & we like and
the & condition holds.

Identity Rule for Limits
If c is a constant then limx=c.

X—>C

Proof of the Identity Rule for Limits:
To prove that limx=c, we need to find a 6 >0 such that for

X—C

every £ >0, |[x—c| <& whenever |[x—c|< & . Choosing & =¢ satisfies this condition.

Scalar Product Rule for Limits
Suppose that lim f (x) =L for finite L and that k is constant.

Then limkf (x) =k -lim f (x) =kL

Proof of the Scalar Product Rule for Limits:
Since we are given that lim f (x) = L, there must be some function, call it J, (¢), such

that for every & >0, |f(x)—L| <& whenever |x—c| < &, (¢) . Now we need to find
a S (¢) such that for all e >0, |kf (x) —kL| < & whenever |x—c| < ().

First let's suppose that k > 0. |kf (x)—kL|=k|f (x)—L|<e&,s0 |f(x)—L|<e/k . Inthis
case, letting J,; (¢) =9, (¢ /k) satisfies the limit condition.

Now suppose that k =0. Since f(x) hasalimitat x=c, we know from the definition of
a limit that f (x) is defined in an open interval D that contains ¢ (except maybe

at c itself). In particular, we know that f(x) doesn't blow up to infinity within D (except
maybe at ¢, but that won't affect the limit), so that 0f (x) =0 in D. Since kf (x) is the
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constant function 0 in D, the limit limkf (x) =0 by the Constant Rule for Limits.

Finally, suppose that k <0. |kf (x)—kL|=—k|f(x)-L|<e&,s0 |f(x)-L|<-&/k. Inthis
case, letting S, (¢) =9, (—e/ k) satisfies the limit condition.

Sum Rule for Limits
Suppose that lim f (x) =L and limg(x) =M. Then

Ixing[f(x)+g(x)]= leng f(x)+|xin'cl g(x)=L+M

Proof of the Sum Rule for Limits:
Since we are given that lim f (x) =L and limg(x) = M, there must be functions, call

them &, (¢) and &,(¢), such that for all >0, |f(x)-L| <& whenever |x—c|< & (¢),
and .|g(x)—M|< e whenever |x—c|< 5, (¢).

Adding the two inequalities gives |f (x) - L|+|g(x) - M| < 2&. By the triangle inequality
we have | f (x) - L|+|g(x) =M |2|(f (x)- L)+ (g(x) —=M)| = |(f () +g(x)) - (L+M)|, so
we have |(f(x)+g(x))—(L+M)|<2¢ whenever |x—c|< &, (¢) and |x—c|<5,(¢).

Let 5,,(¢) be the smaller of o, (¢/2) and J,(s/2). Thenthis ¢ satisfies the definition
of a limit for Ixigg[f(x)+g(x)] having limit L+ M .

Difference Rule for Limits
Suppose that lim f (x) =L and limg(x) =M. Then

lim[f (x) - g()]=1lim f(x) ~limg(x) =L -M

Proof of the Difference Rule for Limits: Define h(x) =—g(x) . By the Scalar Product
Rule for Limits, limh(x) =—M . Then by the Sum Rule for

Limits, Ixiircl(f(x)—g(x))zlxiﬂg(f(x)Jrh(x)) =L-M.

Product Rule for Limits
Suppose that lim f(x) =L and limg(x) =M. Then

lim[ f (x)g(x)]=lim f (x)limg(x) = LM
Proof of the Product Rule for Limits:

Let ¢ be any positive number. The assumptions imply the existence of the positive
numbers 4,,5,, d, such that



@O |fx-L< when 0<|x—c|< 6,

&
2(1+|M))

&
2 —-M|<——— —
2  Jo(x |<2(1+|L|) when 0 <|x—c|< 4,

()  |9(x)-M|<1 when 0<|x—c|< 3,

According to the condition (3) we see that
l9()|=|g9(x)-M +M|<|g(x) =M |+|M|<1+|M| when 0<|x-c|< 3,

Supposing then that 0 < |x—c|< min{¢,, &,,5,} and using (1) and (2) we obtain
[ F)90()-LM| =[f(x)g(x)-Lg(x)+Lg(x)-LM|
<[f () g(x) - Lg(x)|+|Lg(x) - LM|
=|9C9[-|f ()~ L[ +|L]-|g() - M|

<(@+M) )

L_{_ (1+||_| L
2(1+|M]) 201+ L)

=&

Quotient Rule for Limits
Suppose that lim f (x)=L and limg(x)=M and M #0. Then
f(x) limf(x) |

X—>C

im =
x>c g(x) limg(x) M

Proof of the Quotient Rule for Limits:

If we can show that IimL = i, then we can define a
X—>C g(x) M

function, h(x) as h(x) :(i and appeal to the Product Rule for Limits to prove the
g(x

theorem. So we just need to prove that lim 1 = i.
X—C g(x) M

Let £ be any positive number. The assumptions imply the existence of the positive
numbers &, 5, such that

@  |g(x)-M|<eM|@+|M]) when 0<|x—c|< 5,
(2)  |9(x)-M]|<1 when 0<|x-c|<3,

According to the condition (2) we see that
lg(X)|=[g(x) =M +M|<|g(x) =M |+|M|<1+|M| when 0<|x—c|< 3,
which implies that
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1

—>
9(x)

when 0<|x—c|< 4,

©) ‘

1+|M|

Supposing then that 0 < |x—c|< min{s,,5,} and using (1) and (3) we obtain
‘L_i _[M-9(9
g(x) M Mg (x)
9(x)-M
Mg (x)
1 |[g(0-M|
g()| | M

1 "g(x)—M|
M| M

1 _g|M|(1+|M|)|
1+|M| M

=&

Theorem: (Squeeze Theorem)
Suppose that g(x) < f(x) <h(x) holds for all x in some open interval containing c,

except possibly at x =c itself. Suppose also that limg(x) =limh(x)=L.
Then lim f(x) =L also.

X—C

Proof of the Squeeze Theorem:
From the assumptions, we know that there existsa & such

that [g(x)—L| <& and |h(x)—L|< & when 0<|x—¢|<&.

These inequalities are equivalentto L—e<g(X)<L+¢ and L-e<h(X)<L+¢
when 0<|x—c|<&.

Using what we know about the relative ordering of f (x),g(x), and h(x), we have
L—e<g(x)< f(x)<h(x)<L+e when 0<|x—¢|<&.

or

—e<g(x)—L< f(x)—L<h(x)—L <& when 0<|x—c|<5.

So

| f(x)—L|<max(]g(x)-L|,|h(x)—L|) <& when 0<|x—c|<5.



Chapter 11 Exercises

Basic Limit Exercises
1. Iirr;(4x2 —3x+1) 2. lim(x%)

X—5

One-Sided Limits
Evaluate the following limits or state that the limit does not exist.

3 2
. XT+X .
3. lim—S—— 4, lim | x® + x| =X
x>0~ X~ 4+ 2X X—=7"
5. lim V1-x2 6. lim y1-x2
x—-1" X—>-1"

Two-Sided Limits
Evaluate the following limits or state that the limit does not exist.

7 I|mi 8. IimL
x—>-1x—1 x—4 X — 4
2
9. lim—+_ 10. 1im X2=2
x>2 X —2 x>-3 X+3
2 2
11, lim =2 12, fim X F2x+1
x>3 X—3 x>-1 X+1
3 2 _
13. lim X+1 14. IimX +25X 36
x>-1 x+1 x>4  xX°-16
_ X
15, lim X=® 6. tim >
X—25 \/;_5 x—0 X
2
17, lim—* . 18, lim X *+16
X—2 (X—2) x>3  X—3
2 2
19. lim 2% ~8%=3 20. lim X F2X+1
x>-2 2x°—18 -2 X°—2x+1
21. lim X3 22. lim X+
x->3 X° -9 x=>-1 X% + X
23. lim —; 24, limx*5x— 1
x>l X +1 x—1 2—X
2_
25 lim—X -1 26. lim——>X

x>1 X2 +2x—3 x>1 X% +2x—3
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Limits to Infinity
Evaluate the following limits or state that the limit does not exist.

2
27. lim 7 28. lim X " 2¥+1
x>0 X+ 3X+ 2 x>—o  3x°+1
2
29. lim 23"2 +1’; 30. lim 3x* —2x+1
X—>—00 X — X—>—00
2
31. lim 2% =32 32. lim6
x>0 X° — 064 X—>00
2 2
33. lim 2% T4 34. lim 22341
xoo X' 42 x>0 2X°+3
3 2 2
35. lim X X" +1 36. lim <. 2
x>0 3X° +X+5 x>® X° —2

Limits of Piecewise Functions
Evaluate the following limits or state that the limit does not exist.

37. Consider the function
— 2 1
F(x) = (x=2) !fx<2
X—3 if x> 2.
a. lim f(x) b. lim f(x) C. Iin’21 f(x)
X—2" X—

x—2"

38. Consider the function
—2x+1 ifx<0

g(x)=9x+1 if0<x<4
X*+2 ifx>4

a. lim g(x) b. lim g(x) c. limg(x)
x—4" Xx—4~ x—0"

d. lim g(x) e. Iing g(x) f. Iirrf g(x)
x—0" X—> X—>

39. Consider the function

2x-3 ifx<2
h(x) =48 ifx=2
—Xx+3 ifx>2.
a. Iingh(x) b. lim h(x)
X—> X—2"
c. limh(x) d. Iir721 h(x)
x—2" X—>






Solutions to Selected Exercises Chapters 1-7

Chapter 1
Section 1.1
1.10 3. (x—8)" +(y+10)" =8
5. (x=7) +(y+2)" =293 7. (x=5) +(y-8) =13
f"
o 6
9. 74
11. (0,3++/5) and (0,3—+/5) 13. (1.3416407865, 7.683281573)
15. (-1.07335, 2.8533) 17. 29.87 miles
Section 1.2
2m o
3 70
30°
?_r;
-135° 4
300°
1.
3.7 5. 150° 7.325°
9.54° 11, 87 13. =
9 2
15. 35 miles 17. 8t cm 19. 5.7596 miles
21. 28.6479° 23.14.1372 cm?

25. 3960 rad/min  630.254 RPM

27.2.094 in/sec, /12 rad/sec, 2.5 RPM

29. 75,398.22 mm/min = 1.257 m/sec

31. Angular speed: n/12 rad/hr. Linear speed: 1036.73 miles/hr



Section 1.3

Lalll bl 3 _4
5
s 4B , 55
S 4
9. a. reference: 45°. Quadrant IlI. sin(225°):—g. cos(225°):—£
b. reference: 60°. Quadrant IV. sin(300°):—£. cos(300°)=%
c. reference: 45°. Quadrant 1. sin(135°):%. cos(135°):—§
o : 1 3
d. reference: 30°. Quadrant . sm(210°):—5. cos(2100):—7
11. a. reference: . Quadrant I11. sin o7 =—£. co o7 =——2
4 2 4 2
b. reference: —. Quadrant IlI. sin(zj:—l. oS = =——3
6 2 6 2
. reference: = Quadrant IV. sin T :—ﬁ cos(s—j=l
3 3 2 3 2
d. reference: —. Quadrant Il. sin 3z =£ cos 3z =——2
4 2 2
13. a. sin 3z =—£ coS 3 :——2
4 2 4 2
. 237rj 237 3
b. sinf — |=—== cos| — |=—
6 2
c. sin —ij—l cos(—z}:o
2 2
d. sin(57)=0  cos(57)=-1
15. a. 2?” b. 100° c. 40° d. 5?” e. 235°



17. a. 5?7[ b. 280° c. 220° d. 2?” e. 55°

19. (-11.491, -9.642)

Section 1.4

1. sec(8)=+/2, csc(6)=+/2, tan(8) =1, cot(#) =1

3. sec(@):—ﬁ, csc(6)=2, tan(H):—g, cot(@)z—«/g

Zf an(0) =3, cot(0) =L

5. sec(0)=-2, csc(0) =

3
7. a. sec(135°)=—2 b. csc(210°) —2 ¢ tan(60°)=+/3.  d. cot(225°)=1
9. cos(&):—ﬁ, sec(e):—ﬂ, csc(e):f, tan(é?):—ﬂ, cot(6’):——7
4 7 3 7 3

11. sin(9)=—¥, csc(9)=—¥, sec(d)=-3, tan(6) =22, cot(9)=g

. 12 5 13 13 5
13. sin(0) ===, cos(0)=—, 0)==-", csc(0)==> , cot(0)=—

sin(0) 3 cos(0) B sec(6) csc(6) cot(6) o
15. a. sin(0.15) = 0.1494 cos(0.15) = 0.9888  tan(0.15) = 0.1511

b. sin(4) = -0.7568 cos(4) =-0.6536  tan(4) = 1.1578

c. sin(70°) = 0.9397 cos(70°) =0.3420  tan(70°) = 2.7475
d.sin(283°) =-0.9744  c0s(283°) = 0.2250 tan(283°) =-4.3315

17. sec(t) 19. tan(t) 21. tan(t) 23. cot(t) 25. (sec(t))2

Section 1.5
sin(A) = ﬂ,co (A)= Wa tan(A)= >
1, 41 41 4
sec(A)= va1 ,csc(A) = Va1 ,Cot(A) = 4
5 4 5
3. c=14,b=73, B=60° 5. a=5.3171, ¢ =11.3257, A=28°

7. a=9.0631, b =4.2262, B = 25° 9. 32.4987 ft



11. 836.2698 ft 13. 460.4069 ft

15. 660.35 feet 17.28.025 ft
19. 143.0427 21. 86.6685
Chapter 2
Section 2.1

54

b bl B

| >
L L
} } } } }

Lu b
——
I

=
tn £
N

U b

L |
' i I I I
e b e s b
} } } } }

U b
I I }
I

'IE"' |
£

5. Amp: 3. Period=2. Midline: y=-4. f(t)=3sin(xt)-4

6. Amp: 2. Period=4. Midline: y=-3. f(t):Zsin(%tj—S

7. Amp: 2. Period=4n. Midline: y=1. f(t)= 2008(%tj+1

8. Amp: 3. Period=r. Midline: y=-1. f(t)=3cos(2t)-1
2

9. Amp: 2. Period=5. Midline: y= 3. f(t):—ZCos(?tj+3

10. Amp: 1. Period= 3. Midline: y=-1. f —sm(—tj 1



11.
12.
13.

14.
15.
16.

17.

18.

19.

20.

21.

22.
23.

24,

Amp: 3, Period = % Shift: 4 left, Midline: y = 5
Amp: 4, Period = 4, Shift: 3 right, Midline: y =7
Amp: 2, Period = ZT” Shift: 7 right, Midline: y =4

Amp: 5, Period = 2?” Shift: 4 left, Midline: y = -2
Amp: 1, Period = 12, Shift: 6 left, Midline: y = -3
Amp: 8, Period = % Shift: 3 left, Midline: y =6

f(x)=asin| Z(x+1)|
f(x) :3sin(%(x+1)j
f(x)=oos( £ (x+2)
f(x) =-2c05{ Z(x-1)|

a. Amp: 12.5. Midline: y =13.5. Period: 10
b, h(t):—12.5008(%tj+13.5

c. h(5)=26 meters
a. Amp: 17.5. Midline: y =20.5. Period: 8

b. h(t)=-175 cos(%tj +205

c. h(4)=38 meters

Section 2.2
1. 11

3.1

5. Period: % Horizontal shift: 8 right

7. Period: 8. Horizontal shift: 1 left
9. Period: 6. Horizontal shift: 3 left



L R )

H

w

TR 4 b koG
RS EE}

11.
| 4+
34
21
i
5 4 5 4 0 BN B
11
21
34
15. 4
17. f (x) = 2sec[%xj—l 19. f (x) = 2csc(%xj+l
21. tan(-x)=1.5 23. sec(—x)=2
25. csc(—x)=5 27. —csc(x)
Section 2.3
1.z 3. -~ 5 7
4 6 3
7.3 9. % 11, -~
4 4 3
13.1.9823 15. -0.9273 17.44.427°
19. & 21. - % 23, 20 25 L
! 6 7 iz
_ 2
g7, N2 =X 29, X

5 " Jox? +1



Section 2.4

1 2% 17 3. 2% 5.~ 7. 3%
4 4 33 2 2 2
9. %+ 27zk,%r+27zk , Where k is an integer
11. %r+ 27rk,%+ 27k , where Kk is an integer
13. £+2—”k,5—7z+2—7[k , Where k is an integer
18 3 18 3
15. 5—7z+2—7zk,7—7[+2—7[k , Where k is an integer
12 3 12 3
17. %Mrk,%zwzk , Where k is an integer
19. Z+2—”k,5—ﬁ+2—7fk , Where k is an integer
4 3 12 3
21. 4+8k, where k is an integer
23. %+ 2k,g+2k , Where k is an integer
25.0.2734, 2.8682 27. 3.7603, 5.6645 29. 2.1532, 4.1300
31.0.7813, 5.5019 33.0.04829, 0.47531 35.0.7381, 1.3563
37.0.9291, 3.0709 39.1.3077, 4.6923
Section 2.5

1. ¢ =+/89, A =57.9946°, B = 32.0054°
3. b=+/176, A =27.8181°, B = 62.1819°

5. y(x) :63in[%(x_1)j+4
7.D(t)= 50—13COS(%(t—5)j

9.a. P(t):129—25cos[%tj b P(t)=129—2500$(%(t—3)j

11. 75 degrees
13.8

15. 2.80869431742
17. 5.035 months



Chapter 3

Section 3.1

p, 7z 3.2,
6 6 3

5. §+8k , and %+8k , Where k is an integer

5z
3

7. 5—”+ kz and 7—7r+ k7, where k is an integer
12 12

9. 0.1339+10k and 8.6614 +10k , where k is an integer

11. 1.1438+2§k and 1.9978+2§k , Where k is an integer

13. %,37”,0.644,2.498 15.0.056, 1.515. 3.197, 4.647
17. 0.2, % 2% 19, 7 o7 17 1z
33 6'6' 6 6
21.1.183, 1.958, 4.325. 5.100 g3, 3% 17 1
26 6
25. 7.7 57 27. 1.823. 4.460
33
29.2.301, 3.983, 0.723, 5.560 31. 3.305, 6.120
33, 0,% 2% 547 57 35, 0,237 ;5% 1%
33733 47474 4
g7, X T 57 47 39. 0,7,1.231,5.052
6'3' 6 3
n =%
33
Section 3.2
. J2+4/6 3 —J2-6
e R
g V26 , N2+46

4 ' 4



0. gsin(x)—%cos(x) 11. —;cos(x)+%sin(x)
13. sec(t) 15. tan(x)

17. 8(cos(5x)—cos(27x)) 19. sin(8x)+sin(2x)

21. 2cos(5t)cos(t) 23. 2sin (5x)cos(2x)

s (5520

b [ﬁj{zj(gw—s} J5+2:5

3 )\ 4)(3)| 4 12

27. 0. 373+2§k and 0. 674+2?k where Kk is an integer

29. 27k, where K is an integer

31. 2+ 4—”k 3z 4—ﬂk z 4—”k , and 7r+4—k , Where k is an integer
7 77 3 3 3

33. — 7” 7k, &Jr k,and —k where k is an integer
12 12 4

35. 24/13sin(x+5.3004) or 2+/13sin(x—0.9828)
37. \/29sin(3x +0.3805 )

39. 0.3681, 3.8544 41.0.7854, 1.8158
43. tan(6t)
Section 3.3
a. — 3\/_ c. — 7 3. cos(56°)
32 32 31
5. co0s(34°) 7. cos(18x)
9. 2sin(16x) 11. 0, 7,2.4189,3.8643

13.0.7297, 2.4119, 3.8713, 5.5535



15, % % 5% 37
6 2 6 2
17.a 27 47 87 107 147 167 27 47
9 9 9 9 9 9 3 3
" 1+cos(10x)
2
21. g—%cos(16x)+%cos(32x)
1 1 1 1
.=~ cos(2x)+ —cos(4x)——cos(2 4
23 T 16cos( X)+16COS( X) 16cos( x)cos(4x)

25. a. \/E+& b. \/1—2\@ C. 1
2 7 7

2

7-43

Section 3.4

1y= Ssin(%(x—B)j—l

3. Amplitude: 8, Period: % second, Frequency: 3 Hz (cycles per second)

5, P(t):—19cos(%tj+4—£t+650 7. F>(t)=—33cos(%tj+9oo(1.o7)t
9. D(t)=10(0.85) cos(36xt) 11. D(t)=17(0.9145) cos(28xt)
13.a. IV b. 1l 15, y=6(4)*+5sin(%x)

17. y=—3sin(£j+2x+7 19. y:8(1 cos| Zx|+3
2 2 2



Section 3.5

(-1
2 2
5, (3&,—3&)

o[ 353 3
2 2

13. (2J§,o.464)

17. (\/ﬁ,azss)

21. r =3sec(d)

25. r=4sin(6)
29. x> +y* =3y
33. x=2

37. A 39.C

49,

41. E

3, (2&,—2\/5)
7. (0,3)
11. (~1.248,2.728)

15. (2J1_3,2.159)
19. (%,4.057)

_ sin(0)
4c0s°(0)
cos(0)
(cos2 (6)-sin’ (9))

3l. y+7x=4

23.r

w

27. r=

35. X*+y*=x+2
43.C 45.D

i 3 5 4 3

55.

72

3

P!



¥ 44 44

61 31 31

4 2_ 2_
-/—\ | /]
ST A s FIXIA T FTE i N i

o 2 24

-6 -3 -3
61. ™. -84 ~7 63. 4 65. 4
Chapter 4
Section 4.1
l.a f (40)=13

b. 2 Tons of garbage per week is produced by a city with a population of 5,000.
3. a. In 1995 there are 30 ducks in the lake
b. In 2000 there are 40 ducks in the late
5.a,b,d, e 7.a,b 9.a,b,d
11.b 13.b,c, e, f 15.f(1)=1, f(3)=1
17. g(2)=4, g(-3)=2 19. f(3)=53, f(2)=1
f(-2) f(-1) f(0) f(1) f(2)
21. 8 6 4 2 0
23. 49 18 3 4 21
25. 4 -1 0 1 -4
27. 4 4414 4732 5 5.236
29. -4 -6 -6 -4 0
31. 5 DNE -3 -1 -1/3
33. 1/4 1/2 1 2 4
5
35. a. -6 b.-16 37.a.5 b. 3
39. a. iii b. viii c. | dii evi fiv gv h. vii
41. a. iv b.ii cv d.l e.vi f.iii
43. (x-3)* +(y+9)° =36
45. (a) (b) ©
A A A _
5 . —
AYAVAVAVARE | B
= = g -
<v age > :V time > <V weight >




47a. t b.a c.r d.L: (c,t) and K: (a, p)

Section 4.2

1.D: [-5, 3) R: [0,2] 3.D:2<t<8 R:6<g(t)<8

5. D: [0,4] R: [-3, 0] 7. [2,) 9. (~0,3]

11. (~0,6)_(6,0) 13, (—oo,—%)u(—%,ooj

15. [-4,4) (4, ) 17. (~o0,~11)_(-11,2)_y(2,0)
f(-1) f(0) f(2) f(4)

19. -4 6 20 34

21. -1 -2 7 5

23. -5 3 3 16

Ts s da 21| Y2 34567

35. 5



Section 4.3
1. a) 6 million dollars per year b) 2 million dollars per year

3. 4-5_ 1 5.6
4-1 3
7.27 g, 32
27
11. 4b+4 13.3
15. 1 17. 9+9h +3h®
13h +169
19. 4x+2h

21. Increasing: (-1.5,2). Decreasing: (—o0,~1.5)U(2,0)
23. Increasing: (—o0,1)u(3,4). Decreasing: (1,3)w(4,00)
25. Increasing, concave up 27. Decreasing, concave down
29. Decreasing, concave up 31. Increasing, concave down

33. Concave up (~,1). Concave down (L o0). Inflection point at (1, 2)
35. Concave down (—o0,3)U(3,0)

10
37. Local minimum at (3, -22). Inflection at (2, -11). \}
Increasing on (3,00). Decreasing (—o0,3)

Concave up (—o0,0)U(2,). Concave down (0,2) 2 -

31

39. Local minimum at (-2, -2) ) 107
Decreasing (—3,-2) 1 sl
Increasing (—2,) L 'l - 20{
Concave up (—3,0) ¥ A T 251

a4
34
41

41. Local minimums at (-3.152, -47.626)
and (2.041, -32.041)
Local maximum at (-0.389, 5.979)
Inflection points at (-2, -24) and (1, -15)
Increasing (—3.152,-0.389) U (2.041, )
Decreasing (—o0,—3.152)(-0.389,2.041)

Concave up (—o0,—2)U (1, 0)

Concave down (—2,1)



Section 4.4
1. (g(0))=36. g(f(0))=-57

3. 1(g(0))=4. g(f(0)=4
54 7.9 9.4 11.7 13.0 154 17.3 19.2

21. f(g(x)):; g(f(x))=7x-36
23. f(g(x))=x+3 g(f(x))=vx*+3
25. f(g(x))=px+1 g(f(x))=5/x+1

27. (g(n(x)))=(Vx-6) +6

29a. (0,2)u(2,) b. (~o0,~2)U(2,0) c. (0,0)
3L.b 33a.er(t»::3§£E%5£¥§l b. 208.94
35. g(X)=x+2f(x)=x 37. f(x)=§,g(x)=x—5

39. f(x)=3+x,g(x)=x-2,0r f(x)=3+x9(x)=+x-2
4la. f(f(x))=a(ax+b)+b=(a*)x+(ab+b)

8 o g(x)=—/6x— 8
V6 +1 1-6

70 5 ) )
e S

5280( 70m’
v(C(m))=22=
e v(C(m) 3600(10+m2j



Section 4.5
1. Horizontal shift right 49 units 3. Horizontal shift left 3 units

5. Vertical shift up 5 units 7. Vertical shift down 2 units

9. Horizontal shift right 2 units, Vertical shift up 3 units

11, f(x+2)+1=+/x+2+1 13. f(x—3)—4:%—4
15. g(x)=f(x-1), h(x)=f(x)+1
= :
7. 9.
54 44
4 31
)
1 1y
I N AT NNV
k/z 2
: e
21 5 23 4
25. y=[x-3-2 27. y=x+3-1 29. y=—/x
]
|
i1
R S R N B
2]
]
31. 54
33a. —f(-x)=-6" b. —f (x+2)-3=-6"*-3
35. y=—(x+1)" +2 37. y=+-x+1

39a. Even b. Neither c. Odd



41.
43.
45.
47.
49,

51.

53.

55.

S7.

Reflect f(x) about the x-axis
Vertically stretch y values by 4
Horizontally compress x values by 1/5
Horizontally stretch x values by 3

Reflect f(x) about the y-axis and vertically stretch y values by 3
f (—4x)=|-4x|

1
f(x+2)-3=—————-3
( ) 3(x+2)2

Wl

f(2(x-5))+1=(2(x-5))* +1

Horizontal shift left 1 unit, vertical stretch y values by 4, vertical shift down 5 units
4 54

4
i
24
4

b ha L 4 La
P

59.

Lo

4

54 becomes

Horizontal shift right 4 units, vertical stretch y values by 2, reflect over x axis,

vertically shift up 3 units.

4.
34 e
: "
2 34
’a 2]
1 1 1 1 1 1 1 }_
-.%-2-31,_1234 B . T 27 § 4 3% 7
= .
-2 -2
-3
-3 ]
41 becomes 54

61. Vertically compress y values by ¥



[C N LT S
[C N LT S

63

b ba b
b ba b

4
4

-5 becomes

. Horizontally stretch x values by 3, vertical shift down 3 units

4
R
2
i

T |
P S

65

S

BT R T & & 4 B~ R T S I P
o, .
N N

54 becomes 4

L

. Reflected over the y axis, horizontally shift right 4 units a(x)=—(x—4)

7 -

67

69

71

73

75.

81.

87.

65 4524 | 1234567 Y eSS d s 2a | 1334367

.
-2
-3
-+ becomes
. This function is increasing on (—1,0) and decreasing on (—o0,—1)

. This function is decreasing on (—,4)

. This function is concave down on (—3,) and concave up on (—,—3)

. This function is concave up everywhere

f(-x) 77. 3f(x) 79. 2f(-x)
Zf(%xj 83. 2f(x)-2 85. — f(x+1)+3
y=-2(x+2)" +3 89. y:(%(x—l)j3+2 91. y =/2(x+2)+1



93. y= -1 ~+3 95. y=-2|x+1+3 97. y=31/—1(x—2)+1
(x=2) 2

99a. Domain:3.5<x<6 d. Range:-9<y<7
Section 4.6

1.6 3.-4 5. %

7a.3 b.2 c.2 d.3

9a.0 b.7 c.1l d.3

11.

fix) |3 |6 |9 [13 |14

13. £(x)=x-3 15. £7(x)=—x+2 17. f-l(x)le_‘l7
19. Restricted domain x>-7, f *(x)= Ix -7
21. Restricted domainx >0, f™*(x)=+vx+5
23a. f (g(x)):({“/x+5)3 -5=x b. g(f(x))=¥x*-5+5=x
c. This means that they are inverse functions (of each other)
Chapter 5
Section 5.1
1. P(t)=1700t + 45000 3. D(t)=10+2t 5. M(n)=40-2n
7. Increasing 9. Decreasing 11. Decreasing
13. Increasing 15. Decreasing 17.3
19. L 21. 4 23. 2
3 5 3

25.-0.05 mph (or 0.05 miles per hour toward her home)



27. Population is decreasing by 400 people per year

29. Monthly charge in dollars has an initial base charge of $24, and increases by $0.10
for each minute talked

31. Terry started at an elevation of 3,000 ft and is descending by 70ft per second.

3 1 11

33. y=—x-1 35. y=3x-2 37. y=——X+—
y 5 y y 3 3
39. y=-15x-3 41. y:§x+1 43. y=-2x+3

45. P(n)=-0.004n+34

47. The 1% ,3" & 4™ tables are linear: respectively

1.g(x)=-3x+5 3. f(x)=5x-5 4, k(x)=3x-2
49a. C =§F—@ b. F :gC+32 c. —9.4°F
9 9 5
Section 5.2
1.E 3.D 5B
o
N ‘
\ i :
.'?.Js._'s.qc\_iﬂﬁ\_}z'_}is'é} .:-.6.5.4._?.:.;;f;_?;_a;
7. 5 9.
2} ]
5 4 2 3 4 ¢ -]
24 14
\ R I 4 3
\ 2
6T 7
-l
11. -8 13. 5
4+ 5
11_://///_/ 4
5 4 3 2 - 3 5 4 ¢ R T+ 5 4 3

15. 17.



R RS
AUNCE

Y5001 24 4 B T 3§ 4 3

b
.
Lok

Aot
L

19.
23.a. g(x):%(x+2)—4 b.% c.-5/2

25. y=3
27. x=-3
Vertical Intercept | Horizontal Intercept
29. (0,2 (2,0)
31. | (0,-5) (5/3, 0)
33. |(0,4) (-10,0)
35. Linel: m=-10 Line2: m=-10 Parallel
37. Linel: m=-2 Line2: m=1 Neither
39. Linel: m= —% Line2: m :g Perpendicular
41. y=-5x-2 43. y=%t+l 45. (-1,1)
47. (1.2, 10) 49. Plan B saves money if the miles are > 111%
Section 5.3
1a. 696 people b. 4 years c. 174 people per year
d. 305 people e. P(t)=305+174t f. 2219 people.

3a. C(x)=0.15x+10

b. The flat monthly fee is $10 and there is an additional $0.15 fee for each additional
minute used

c. $113.05
5a. P(t)=190t+4170 b. 6640 moose
7a. R(t)=16-2.1t b. 5.5 billion cubic feet c. During the year 2017
9. More than 133 minutes 11. More than $42,857.14 worth of jewelry
13. 20.012 square units 15. 6 square units
2
17. A=— 2

2m



19a. Hawaii b. $80,640 c. During the year 1933
21. 26.225 miles

Section 5.4

Quiz comparison
fslilod
45F
40
35

30

Second Quiz

2o

20

151

LTS} IR S T N T T T N T T S S [ TN T ST Y T TN T [N T T TN N T TR [ T S S |
10 15 20 268 30 38 L2 45 =14}
1 First Quiz

http://www.mathcracker.com/scatter plot.php

3. y=1.971x-3.519, r =0.967 5.y =-0.901x+26.04, r =-0.968
7. 17.483 =17 situps 9.D 11. A

13. Yes, trend appears linear because r =0.994 and will exceed 35% near the end of the
year 20109.

Section 5.5

1.y:%|x+2|+1 3. y=-3|x-3+3

RN S
b ba e e
"“%

EEEENRERERRK, B R R B B RN EREREE
-2 -24 -24
T34 -3 -3
4 -4 -
S. 5 7. 5 9. 5
9 13 1

11. X=—= or x=— 13. x=—= or x:%
15. x:—E or Xx=——
3 3
Horizontal Intercepts Vertical Intercept
17. (-6,0) and (4, 0) (0, -8)
19. none O, -7)

21. —11<x<1 or (-1121)


http://www.mathcracker.com/scatter_plot.php

23. x=5,x<-1 or (—oo,~1]U[5,)

25.

13 ) 13
——<Xx<—-=or (-—
3 3 3

Chapter 6

Section 6.1

1.As x >, f(X) >
3.As x>, f(X) >
5.As x —> a0, f(X)—>—0o
7.As x -0, f(x)—>—o
9. 7" Degree, Leading coefficient 4
2" Degree, Leading coefficient -1

11.

13

~3)

As X — —o0, f(X) >
As x — —o0, f(x)——o0
As x — o0, f(X)— -0
As X > —0, f(X) >

. 4" Degree, Leading coefficient -2

15. 3" Degree, Leading coefficient 6

17.As x >, f(X) > -0 As x ——o0, f(X)—>—o0

19.As X >0, f(X) >0 AS X — —o0, f(X) >

21. intercepts: 5, turning points: 4 23. 3

25.5 27.3 29.5

31. Horizontal Intercepts (1,0), (-2, 0), (3, 0) Vertical Intercept (0, 12)
33. Horizontal Intercepts (1/3, 0) (-1/2, 0) Vertical Intercept (0, 2)
Section 6.2

1. f(x)=(x-2)" -3

3. f(x)=-2(x-2f+7 5 f(x)=%(x—3)2—1

Vertex Vertical Intercept | Horizontal Intercepts
7. | (-25.-05) (0.12) (20 (30
9. (2.5,-8.5) 0,4) (0.438,0) (4.562,0)
11. | (0.75,1.25) (0,-1) (0.191,0) (1.309, 0)
13. f(x)=(x—6) 4 15. f(x)=2(x+2)*~18  17.b=32andc=-39
19. f(x)=—§(x+3)(x—1) 21. f(x)=§(x—2)(x—5)
23. f(x)=—%(x—4)2 25. f(x)=—%(x+3)2+2
27a. 234m b. 2909.561 ft c. 47.735 seconds
29. 3 ft b. 111 ft C. 72.497 ft
31.24.91inby24.91in



33. 125 ft by 83% ft

35.24.6344 cm

37.$10.70

Section 6.3

C(t) C, t, intercepts
intercepts

1. (0,48) (4,0), (-1,0), (6,0)

3. (0,0) (0,0), (2,0), (-1,0)

5. (0,0) (0,0), (1,0), (3,0)

7. (-1.646, 0) (3.646, 0) (5,0)

9. Ast—oo, h(t)—> o0
11. As t > oo, p(t)— —o0

17.
19. (3,)

23. [3.5,6]
27. [3,0)

y:—%(x+2)(x—1)(x—3)

31.

365. y=-15(x—1)"(x-3)’

39. y=—(x+1)?*(x-2)

t — —oo, h(t) = —oo
t——oo, p(t —> —0

15.

21, (<o0,-2)(1,3)
25. (= ] (40)
29. (—o0,—4) U(—4,2) (2, )

33, y:%(x—l)z(x—S)z(x+3)
37.y =%(x+2)(x—1)(x—3)

41. y=—%(x+3)(x+2)(x—2)(x—4)



43, y=%(x+4)(x+2)(x—3)2 45, y=%(x+2)2(x—3)2

47. y=%(x+3)(x+2)(x—1)3 49. y=—%(x+3)(x+l)(x—2)2(x—4)
51. Base 2.58, Height 3.336

Section 6.4
1. 4x* +3x—1=(x—3)(4x+15) + 44
3. 5x* —3x% +2x2 1= (x? + 4)5x2 —3x—18)+ (12x+ 71)
5. 9x3+5=(2x—3)(gx2+2x+§]+@

2" "4 8) 8
7. (3x2 —2x+1)=(x—1)(3x+1)+2
9. (3—4x—2x%)= (x+1)(-2x-2) +5
11. (x3+8)=(x+2)(x2—2x+4)+0

13. (18x? ~15x— 25)= [x—%)(le +15)+0

15. (23 +x% + 2x+1)= (x+%)(2x2 + 2)+ 0

(
(2x3—3x+1)=(x—1j[2x2+x—§j—l

2 2) 4
1 (x4—6x2+9)=(x—\/§Xx3+ 3x2—3x—3\/§)+0
21. x®—6x% +11x—6 = (x—1)(x—2)(x—23)

1

\‘

©

23. 3 +4x* —x-2 =3(x—§j(x+1)2
25. X% +2x% —3x—6 = (X + 2)(X +/3)(x —+/3)

2
27. 4x* —28x° +61x* —42x+9= 4(x—%) (x-3)?

Section 6.5
1. All of the real zeros lie in the interval [-7,7]
- Possible rational zeros are +1, +2, +3

3. All of the real zeros lie in the interval [-13,13]
- Possible rational zeros are +1, +2, +3, +4, +6, £12



5. All of the real zeros lie in the interval [-8,8]
- Possible rational zeros are +1, +7

7. All of the real zeros lie in the interval [-3,3]
2 5 10

- Possible rational zeros are +%,+_ + = +—,+1,+2, +£5, +10

17" 17 Tar’

9. All of the real zeros lie in the interval [—E E}

] . 1
- Possible rational zeros are J_rg, +=, +

w| o

11. x=-2, x=1, x=23 (each has mult. 1)
13. x=-2 (mult. 2), x=1 (mult. 1), x=3 (mult. 1)
15. x=7 (mult. 1)

17. x= % , x=++2 (each has mult. 1)

19. x=-2, x= 3+ ;;/_ (each has mult. 1)
21. x=0, x= 54_r1;3/ﬁ (each has mult. 1)

23. x=++/3 (each has mult. 1)
25. x=++/5 (each has mult. 1)
27. x=3-2=-3/2, x=%5 (each has mult. 1)

29. x=2, x=+/2 (each has mult. 1)
31. x=-4 (mult. 3), x=6 (mult. 2)

Section 6.6

1. 3i 3. -12

5. 1++/3i 7. 8—i

9. —11+4i 11. —12+8i

13. 30-10i 15. 11+10i

17. 20 19. §+2i

21. §+§| 23. —i—gi
2 2 25 25

25. f(x)=x?—4x+13=(x—(2+3i))(x—(2-3i)). Zeros: x =2+ 3i

3

27. f(x)=3x*+2x+10= 3£x—[—% £B[x—(—l—@ D Zeros: x——%+@|

3



29. f(x)=x*+6X%+6x+5=(X+5)(x* +x+1) = (x+5)(x—(—% £|B(x [—l—ﬁiD

2
1 43,

Zeros: x = -5, x——§+—|

3L f(x)=x®+3x2 +4x+12= (x+3)(X? +4)= (x+3)(x+2i)(x—2i) . Zeros: x =3, +2i

33 F(x)=x}+7x*+9x-2= (x+2)(x—(—§ ED[ —(_E_‘/_B
2 2 2 2

5 29

Zeros: x=-2,x=——+——
2 2

2 2
35. f(x)=4x*—4x*+13x* -12x+3= (X—Ej (4x +12) (x—%) (X +iv/3)(x—i/3)

Zeros: x = % X = +/3i

37. f()=x*+x3+7x? +9x—18= (x + 2)(x—1)(x2 +9)= (X +2)(x —1)(x + 3i)(x — 3i)
Zeros: x=-2,1,%3i

39.
f(x)=-3x* -8x* -12x* —12x-5= (x+1)2(—3x2 —2x—5) =-3(x +1)2[x—(—:1%+\/§4iﬂ{x —[—; —\/gi}]
Zeros: x=-1, x-—£+£|
3
41, £(x)=x* +9x% +20= (x? +4)(x +5)= (x—2i)(x+ 20)(x—ix5 Jx +iv/5)
Zeros: x =+2i,+i/5
Section 6.7
1.D 3.A
Vertical Horizontal Vertical y- Horizontal x-
Asymptotes Asymptote Intercept intercept
5. X=—4 y=2 (0,-3/4) (3/2,0)
7. X=2 y=0 0,2) DNE
9. X=_4 1% y=1 (0, 5/16) (-1/3,0), (5,0)
11. x=-1, hole at y=1 0,3) (-3,0)
x=1
13. x=4 none (0, Ya) (-1,0), (1/2,0)
y=2x (oblique)
15. x=0, 4 y=0 DNE (-2,0), (2/3,0)
17. Xx=-2, 4 y=1 (0, -15/16) (1,0),(-3,0), (5,0)




———

100+

24 6 & 10

T L = St
— +

3 o2 a1 | 1 2 3 4 5 6 7
b
7. 2+
_§\_
B-K
i
_\u_\_u\_\u_—_\?_""\.u | I | I I | I I |
R EEELEENEEEEEKE
2]
i
e
11. 54
.
2]
§an
5 7 > 3 4 5 8 I
i
2L
At
a4l
15. St

7(x—4)(x+6)

Y =) (xe5)
4(x-3)

1(x+3)(x-2)

29. yzw



3, y— 8= 33, y=_ 2()(x=3)

(x+3)x—2) (x+3)(x-4)
o 2(x-1) _(x-4)x-2)
4

39.a. C(n) =oan b. C(10) ~13.33% ¢.80mL d.as n —»>«,C —>0
+

Section 6.8
1. Domain (4,%)  Inverse f’l(x):\/;+4
3. Domain (—=,0) Inverse f*(x)=—12—x

5. Domain (—o,) Inverse f™(x)=3 X;1

x—9)2 x=9Y
7. f*lx:( +1 9. fH(x)=| ==

(-5 09-(*52)

2-8x 3-7X

11. £ (x)= 13. f7*(x)=
()= (x)==—"

15. f4(x)= X4 17. 65.574 mph

3+4x
19. 34.073 mph 21. 14.142 feet
Chapter 7
Section 7.1
1. Linear 3. Exponential 5. Neither
7. P(t)=11,000(1.085) 9. 47622 Fox
11. $17561.70 13. y=6(5)" 15. y=2000(0.1)"

N
17. y=3(2)' 19. y:(%j 5(%}‘5 = 2.93(0.699)" 21. y=%(2)*
23.34.32mg 25. 1.39%; $155,368.09 27. $4,813.55
29. Annual ~$7353.84 Quarterly ~ $7,469.63 Monthly ~ $7,496.71
Continuously ~ $7,510.44

31. 3.03% 33. 7.4 years

35a. w(t)=(1.113)(1.046) b. $1.11 c. Below what the model predicts ~$5.70



Section 7.2
1.B 3. A 5. E 7.D 9.C

o4 52 A 2 5 4005 S . r—a— T3

w

(ORI S
— kmo\nm
[ Y

oot

ta L
Lol

11. 13. 15.

17. y=4"+4 19. y=4** 21. y=—4*
23.As x> f(x)—>—0.As x> -0 f(x)—>—1
25.As x> f(x)>-2 Asx—>-o f(x)>w

27.As x> f(X)>2 Asx—>-wo f(x)>owo

29. y=-22 11=-4(2)* +1 31 y=-2(2)* +3
33. y=-2(3) +7 35. y= 2(%) —4
Section 7.3
1. 4™ =q 3.a°=b 5.10' =v
7.e"=w 9. log,(y)=x 11. log . (k) =d
13. log(b) =a 15. In(h) =k 17.9
19. 1/8 21. 1000 23. ¢’
25.2 27.-3 29. Y%
31. 4 33.-3 35. -2
37.-1.398 39. 2.708 a1, 10004) ) oo
log (5)
log (38
oo 1) In(17) i (<3>)+5
43, ~—1.392 45, ~0.567 47. 29 5078
log(7) 5 4
log (Sj HE
log(5) 3 5
49, — =) 54449 51, — >/ 8335 53. ~13.412
log(1.03) 3log (1.04) -0.12
8
log 3
55. ~0.678 57. f (t)=300e %" 59. f (t)=10e"**

61. f(t)=150(1.0618)  63. f(t)=50(0.98807)  65. During the year 2013
67. During the year 2074 69. ~34hours 71.13.532 years



Section 7.4
1. log;(4) 3.log,(7) 5.log,(5) 7. log,(2) 9. log(6x°)

11. In(2x') 13. log(x* (x+1)’) 15, Iog()\(/zyJ
17. 15log(x)+13log(y)—19log(z) 19. —2In(a)+4In(b)-5In(c)
21. EIog(x)—ZIog(y) 23. In(y)+%(ln(y)—ln(1— y))

25. %Iog (x)+ %Iog(y)

27. x~-0.717 29. X ~—6.395 31. t~17.329
33. x=§ 35. x~0.123 37. X~ 4.642
39. x~30.158 41. x~—-2.889. 43. x~6.8730r x ~—-0.873
45. X —E~1 091 47. x=10
11
Section 7.5

1. Domain: :x>5 V.A.@ x=5
3. Domain; x<3 V.A @ x=3

5. Domain: x>—% VA @ x:—%
7. Domain: x <0 VA @ x=0
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1 3
17.y=———log(—(x—1 19. y=- I 4
y 002 og (—(x-1)) y 09(3) og(x+4)
3 2
21. y = | 2 23. y=- log(—(x—5
BTTOR ' iog(g) 9



Section 7.6
1. f(t) =13(0.9195)t . 2 mg will remain after 22.3098 minutes

3. f(t)= 200(0.999564)t . £(1000)=129.3311 mg
5.r=-0.06448. Initial mass: 9.9018 mg. After 3 days: 0.01648 mg
7. f(t)= 250(0.9909)t. Half-life = 75.8653 minutes

9. f(t)= a(0.999879)t. 60% (0.60a) would remain after 4222.813 years

11. P(t) =1500(1.02337)t (t in minutes). After 2 hours = 24000. After 100 minutes =

15119

13. a) 610.5143 (about 611) b) 25.6427 minutes c) 10431.21 d) 106.9642 minutes
15. 23.1914 years

17.53.319 hours

19. T(t) :90(0.99166)t +75. a)134.212 deg b) 112.743 minutes

1000
900 1
8001
7001
6001
500 +
400 +
300
200 1

1004

21.a) 1 | 12 54567 & 010 h)100 c)269.487 d)7.324 years

23. log(x)=-0.5. x=10.3162 25. log(x)=15. x=31.623
Whisper Vacuum Jet

D |
o7 10" 10° 10® 107 10° 10° 10* 10° 107 10* 10° 10' 10°
29. 63095.7 times more intense 31. MMS magnitude 5.817
33. a) about 1640671 b) 1.4 hours c) No, because (2.042727 )**%%1*" x g049510%

d) Anja’s data predicts a continuous growth rate of 0.4116, which is much smaller
than the rate 0.495105 you calculated. Our model would overestimate the number of

cells.



35. a) The curve that increases rapidly at first is M(p)
b) H(100) = 0.9775
c¢) Myoglobin: M(20) = 0.9524. Hemoglobin: H(20) = 0.3242
d) At 20 torrs: 0.6282. At 40 torrs: 0.2060. At 60 torrs: 0.0714
"
0.81
0.6 1]

0.41

0.2 7

10 20 50 40 50 60 70 80 90 100 Efficiency seems to be maximized at about 8 torr

37.a) C(t)=1.03526', or C(t)=e"™*"
b) Volume of one cell: %ﬂ(5oxlo-4 )3 ~5.236x10~" cm®, so will need about

1.9099x10° cells for a volume of 1cm®. C (t)=1.9099x10° after 417.3 hours

39. 31.699 days

Section 7.7

L. log(f (x))=log(L.3)x +log(4) 3. log(f(x))=log(0.2)x +1
24 log(fx)) \ log(fix))
1 /—

/ ’ *

4 -3 -2 -1 1 2 3 4 4 -3 -2 -1 1 3 4
s
s

1

1
5. y—e? —ele? ~0.368(1.6487)"

7. y=10"2 =10"210"" = 0.01(0.1)"

9. y=776.682(1.426)" 11. y =731.92(0.738)"

13. Expenditures are approximately $205

15. y= 7.599(1.016)X r=0.83064, y=0.1493x+7.4893, r =0.81713. Using the

better function, we predict electricity will be 11.157 cents per kwh.






Index for Chapters 1-7

Absolute Value Functions, 320

Graphing, 321

Solving, 322

Solving Inequalities, 323
Amplitude, 67, 71
Angle, 17

Coterminal Angles, 18

Degree, 17

Radian, 20

Reference Angles, 37

Standard Position, 17
Angular Velocity, 25
Annual Percentage Rate (APR), 420
Annual Percentage Yield (APY), 422
Arclength, 19
Arcsine, Arccosine and Arctangent, 90
Area of a Sector, 24
Average Rate of Change, 208
Cauchy's Bound, 372
Change of Base, 444, 451
Circles, 8, 164

Area of a Sector, 24

Equation of a Circle, 8

Points on a Circle, 9, 32

Polar Coordinates, 164
Coefficients, 332
Cofunction Identities, 55
Common Log, 442
Completing the square, 340
Complex Conjugate, 380
Complex Factorization Theorem, 381
Complex Number, 378
Composition of Functions, 223

Formulas, 225

Tables and Graphs, 224
Compound Interest, 420
Concavity, 215
Continuous Growth, 423
Correlation Coefficient, 315, 316
Cosecant, 43
Cosecant Function

Domain, 82
Range, 82
Cosine, 31, 53, 66
Cotangent, 43
Cotangent Function
Domain, 83
Period, 83
Range, 83
Coterminal Angles, 18
Damped Harmonic Motion, 155
Decreasing, 212
Degree, 17, 332
Difference of Logs Property, 451
Domain, 195
Double Angle Identities, 141
Double Zero, 353
Doubling Time, 471
Even Functions, 245
Exponential Functions, 413
Finding Equations, 417
Fitting Exponential Functions to Data,
490
Graphs of Exponential Functions, 430
Solving Exponential Equations, 445
Transformations of Exponential
Graphs, 433
Exponential Growth or Decay Function,
414
Exponential Property, 451
Extrapolation, 313
Extrema, 212, 357
Factor Theorem, 365
factored completely, 382
Function, 175
Absolute Value Functions, 320
Composition of Functions, 223
Domain and Range, 195
Exponential Functions, 413
Formulas as Functions, 181
Function Notation, 177
Graphs as Functions, 179
Horizontal Line Test, 181



Index

Inverse of a Function, 264
Linear Functions, 273, 275
Logarithmic Functions, 440
One-to-One Function, 176
Periodic Functions, 63
Piecewise Function, 202
Polar Functions, 164
Power Functions, 329
Quadratic Functions, 337
Radical Functions, 403, 404
Rational Functions, 385, 388
Sinusoidal Functions, 65
Solving & Evaluating, 179
Tables as Functions, 177
Tangent Function, 79
Vertical Line Test, 180
Fundamental Theorem of Algebra, 381
Half-Angle Identities, 148
Half-Life, 468
Horizontal Asymptote, 386, 391
Horizontal Intercept, 290
Horizontal Line Test, 181
Horizontal Lines, 291
Imaginary Number, 378
Complex Conjugate, 380
Complex Number, 378
Increasing, 212
Inflection Point, 215
Intercepts, 343, 351, 352, 356, 392
Graphical Behavior, 352
Writing Equations, 356
Interpolation, 313
Interval Notation, 197
Union, 197
Inverse of a Function, 264
Properties of Inverses, 268
Inverse Properties, 451
Inversely Proportional, 385
Inversely Proportional to the Square,
385
Inverses, 403
irreducible quadratic, 382
Leading Coefficient, 332
Leading Term, 332
Least-Square Regression, 314

Limagons, 165
Linear Functions, 273, 275
Fitting Linear Models to Data, 312
Graphing, 285
Horizontal Intercept, 290
Horizontal Lines, 291
Least-Square Regression, 314
Modeling, 300
Parallel Lines, 291
Perpendicular Lines, 292
Veritcal Lines, 291
Vertical Intercept, 286
Linear Velocity, 25
Local Maximum, 212
Local Minimum, 212
Logarithmic Functions, 440
Change of Base, 444, 451
Common Log, 442
Difference of Logs Property, 451
Exponential Property, 443, 451
Graphs of Logarithmic Functions, 460
Inverse Properties, 440, 451
Logarithmic Scales, 474
Log-Log Graph, 488
Moment Magnitude Scale, 477
Natural Log, 442
Orders of Magnitude, 477
Semi-Log Graph, 488
Sum of Logs Property, 451
The Logarithm, 440
Transformations of the Logarithmic
Function, 462
Log-Log Graph, 488
Long Division, 363
Long Run Behavior, 331, 333, 386
Mathematical Modeling, 273
Midline, 68, 71
Model Breakdown, 314
Moment Magnitude Scale, 477
Natural Log, 442
Negative Angle Identities, 120
Newton's Law of Cooling, 473
Nominal Rate, 420
Odd Functions, 245



One-to-One Function, 176, 181
Orders of Magnitude, 477
Parallel Lines, 291
Period, 63, 71
Periodic Functions, 63
Period, 63
Sinusoidal, 65
Perpendicular Lines, 292
Phase Shift, 74
Piecewise Function, 202
Polar Coordinates
Converting Points, 162
Polar Functions, 164

Converting To and From Cartesian

Coordinates, 167
Limacons, 165
Roses, 165, 166
Polynomial, 332
Coefficients, 332
Degree, 332
Horizontal Intercept, 353, 356
Leading Coefficient, 332
Leading Term, 332
Long Division, 363
Solving Inequalities, 354
Term, 332
Power Functions, 329
Characterisitcs, 330
Power Reduction Identities, 148
Product to Sum Identities, 133
Pythagorean Identity, 33, 47
Alternative Forms, 47, 120
Pythagorean Theorem, 7
Quadratic Formula, 345
Quadratic Functions, 337
Quadratic Formula, 345
Standard Form, 339, 340
Transformation Form, 339
Vertex Form, 339
Radian, 20
Radical Functions, 403, 404
Range, 195
Rate of Change, 208
Average, 208

Using Function Notation, 210
Rational Functions, 385, 388
Intercepts, 392
Long Run Behavior, 390
Rational Roots Theorem, 373
Reciprocal Identities, 120
Reference Angles, 37
Remainder Theorem, 365
Roses, 165, 166
Secant, 43
Secant Function
Domain, 82
Range, 82
Semi-Log Graph, 488
Set-Builder Notation, 197
Short Run Behavior, 333, 337, 343, 351,
386
Sine, 31, 53, 66
Single Zero, 353
Sinusoidal Functions, 65
Amplitude, 67, 71
Damped Harmonic Motion, 155
Midline, 68, 71
Modeling, 109
Period, 63, 71
Phase Shift, 74
Solving Trig Equations, 103
Slope, 275, 276, 286
Decreasing, 275
Increasing, 275
Standard Form, 339, 340
Standard Position, 17
Sum and Difference Identities, 127
Sum of Logs Property, 451
Sum to Product Identities, 134
Symmetry about the origin, 245
Symmetry about the vertical axis, 245
synthetic division, 367
Tangent, 43, 53
Tangent Function, 79
Domain, 79
Period, 79
Range, 79
Term, 332



Index

The Logarithm, 440 Pythagorean ldentity, 33
Toolkit Functions, 185 Reciprocal Identities, 120
Domains and Ranges of Toolkit Sum and Difference Identities, 127
Functions, 200 Sum to Product Identities, 134
Transformation Form, 339 Trigonometry
Transformations of Functions, 235 Cosecant, 43
Combining Horizontal Cosine, 31, 53, 66

Transformations, 251
Combining Vertical Transformations,
250
Horizontal Reflections, 242
Horizontal Shifts, 238
Horizontal Stretch or Compression,

Cotangent, 43
Right Triangles, 53
Secant, 43
Sine, 31, 53, 66
SohCahToa, 53

248 Solving Trig Equations, 103
Vertical Reflections, 242 Tangent, 43, 53
Vertical Shifts, 236 The Pythagorean Theorem, 7
Vertical Stretch or Compression, 246 Unit Circle, 38

Trigonometric Identities, 44 Triple Zero, 353

Alternative Forms of the Pythagorean Unit Circle, 38

Identity, 47, 120 Vertex, 337, 339
Cofunction Identities, 55 Vertex Form, 339
Double Angle Identities, 141 Vertical Asymptote, 386, 389
Half-Angle Identities, 148 Vertical Intercept, 286
Negative Angle Identities, 120 Vertical Line Test, 180
Power Reduction Identities, 148 Vertical Lines, 291

Product to Sum Identities, 133
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annuity
annuity-due, 606
ordinary
definition of, 605
future value, 606
arithmetic sequence, 592
asymptote
of a hyperbola, 571

back substitution, 506
binomial coefficient, 622
Binomial Theorem, 623

center
of a circle, 538
of a hyperbola, 571
of an ellipse, 556
circle
center of, 538
definition of, 538
from slicing a cone, 535
radius of, 538
standard equation, 538

standard equation, alternate, 559

conic sections

definition, 535
conjugate axis of a hyperbola, 572
consistent system, 499
contradiction, 495

dependent system, 500
directrix
of a parabola, 545

eccentricity, 562

ellipse
center, 556
definition of, 556
eccentricity, 562
foci, 556
from slicing a cone, 536
guide rectangle, 559
major axis, 556
minor axis, 556
reflective property, 563
standard equation, 559
vertices, 556

ellipsis (...), 589

equation
contradiction, 495
identity, 495
linear of n variables, 500
linear of two variables, 495

factorial, 592, 620
focal diameter of a parabola, 547
focal length of a parabola, 546
focus (foci)

of a hyperbola, 571

of a parabola, 545

of an ellipse, 556
free variable, 498

Gaussian Elimination, 503
geometric sequence, 592
geometric series, 608
guide rectangle



for a hyperbola, 572 focal diameter, 547

for an ellipse, 559 focal length, 546
focus, 545
hyperbola from slicing a cone, 536
asymptotes, 571 latus rectum, 547
branch, 571 reflective property, 550
center, 571 standard equation
conjugate axis, 572 horizontal, 548
definition of, 571 vertical, 546
foci, 571 vertex, 545
from slicing a cone, 536 paraboloid, 550
guide rectangle, 572 parametric solution, 498
standard equation partial fractions, 513
horizontal, 574 Pascal’s Triangle, 627
vertical, 574 Principle of Mathematical Induction, 612
transverse axis, 571
vertices, 571 radius
hyperboloid, 582 of a circle, 538
recursion equation, 592
identity
statement which is always true, 495 sequence
inconsistent system, 499 n'™ term, 590
independent system, 500 alternating, 590
induction arithmetic
base step, 612 common difference, 592
induction hypothesis, 612 definition of, 592
inductive step, 612 formula for n'® term, 594
inequality sum of first n terms, 605
non-linear, 527 definition of, 590
geometric
latus rectum of a parabola, 547 common ratio, 592
linear equation definition of, 592

n variables, 500
two variables, 495
LORAN, 578

formula for n'® term, 594
sum of first n terms, 605
recursive, 592
series, 607
summation notation
definition of, 600
index of summation, 600
lower limit of summation, 600
parabola properties of, 603
definition of, 545 upper limit of summation, 600
directrix, 545 system of equations

major axis of an ellipse, 556
minor axis of an ellipse, 556

overdetermined system, 500



back-substitution, 506
consistent, 499
definition, 495
dependent, 500
free variable, 498
Gaussian Elimination, 503
inconsistent, 499
independent, 500
leading variable, 502
linear

n variables, 500

two variables, 496
linear in form, 531
non-linear, 522
overdetermined, 500
parametric solution, 498
triangular form, 502
underdetermined, 500

transverse axis of a hyperbola, 571
triangular form, 502

underdetermined system, 500
Unit Circle
definition of, 541

vertex
of a hyperbola, 571
of a parabola, 545
of an ellipse, 556
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