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Chapter 1: Trigonometric Functions of Angles

In the previous chapters we have explored a variety of functions which could be
combined to form a variety of shapes. In this discussion, one common shape has been
missing: the circle. We already know certain things about the circle, like how to find area
and circumference, and the relationship between radius and diameter, but now, in this
chapter, we explore the circle and its unique features that lead us into the rich world of
trigonometry.

SECtION 1.1 CIICLES ..ottt st 7
N Lo 1028 B BN 1 T (TSRS 17
Section 1.3 Points on Circles Using Sine and CoSINe...........cceecvverieeiienieniieenieeieeneen. 31
Section 1.4 The Other Trigonometric FUNCtioNS .........ccccvveeiiieniiieriieeiie e, 43
Section 1.5 Right Triangle TrigOnOmetry .........cccvevvieriieriieniieeiieiieeie e 53

Section 1.1 Circles

To begin, we need to remember how to find distances. Starting with the Pythagorean
Theorem, which relates the sides of a right triangle, we can find the distance between two
points.

Pythagorean Theorem

The Pythagorean Theoremnstates that the sum of the squares of the legs of a right
triangle will equal the square of the hypotenuse of the triangle.

In graphical form, given the triangle shown,a’ +b> =c”. a &

b

We can use the Pythagorean Theorem to find the distance between two points on a graph.

Find the distance between the points (-3, 2) and (2, 5).

By plotting these points on the plane, we can then
draw a right triangle with these points at each end
of the hypotenuse. We can calculate horizontal
width of the triangle to be 5 and the vertical height
to be 3. From these we can find the distance
between the points using the Pythagorean
Theorem: ) RE )

e o g \ e W

dist> =5*+3% =34

dist = \/3_4

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.




8 Chapter 1

Notice that the width of the triangle was calculated using the difference between the x
(input) values of the two points, and the height of the triangle was found using the
difference between the y (output) values of the two points. Generalizing this process
gives us the general distance formula.

Distance Formula
The distance between two points (x,,y,) and (x,,y,) can be calculated as

dist =)(x, —x,)* +(y, — )

Try it Now
\ 1. Find the distance between the points (1, 6) and (3, -5).

Circles
If we wanted to find an equation to represent a circle with (x, )
a radius of » centered at a point (4, k), we notice that the
distance between any point (x, y) on the circle and the
center point is always the same: ». Noting this, we can
use our distance formula to write an equation for the
radius:

r=yx=h)+(y-k)’

Squaring both sides of the equation gives us the standard equation for a circle.

Equation of a Circle
‘ The equation of a circlecentered at the point (4, k) with radius 7 can be written as

(x—h)2 +(y—k)2 =r?

Notice that a circle does not pass the vertical line test. It is not possible to write y as a
function of x or vice versa.

xample 2
Write an equation for a circle centered at the point (-3, 2) with radius 4.

Using the equation from above, & = -3, k= 2, and the radius » = 4. Using these in our
formula,

(x—(=3)* +(y-2)* =47 simplified a bit, this gives

(x+3)° +(y—2)* =16
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Example 3
Write an equation for the circle graphed here. ;
This circle is centered at the origin, the point (0, 0). By /; \
measuring horizontally or vertically from the center out to 1
the circle, we can see the radius is 3. Using this information + B T I e e e
in our formula gives: f -1 :
(x=0)* +(y—0)* =37 simplified a bit, this gives -2-/

x*+y* =9 4

2. Write an equation for a circle centered at (4, -2) with radius 6.

Notice that, relative to a circle centered at the origin, horizontal and vertical shifts of the

circle are revealed in the values of / and k, which are the coordinates for the center of the
circle.

Points on a Circle
As noted earlier, an equation for a circle cannot be written so that y is a function of x or

vice versa. To find coordinates on the circle given only the x or y value, we must solve
algebraically for the unknown values.

Find the points on a circle of radius 5 centered at the origin with an x value of 3.

We begin by writing an equation for the circle centered at the origin with a radius of 5.
2 2
X +y =25

Substituting in the desired x value of 3 gives an equation we can solve for y
3 +y° =25

y>=25-9=16

y=+16 = +4

There are two points on the circle with an x value of 3: (3, 4) and (3, -4).
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Find the x intercepts of a circle with radius 6 centered at the point (2, 4).

We can start by writing an equation for the circle.
(x-2)>+(y-4)>=36

To find the x intercepts, we need to find the points where y = 0. Substituting in zero for
v, we can solve for x.

(x=2)>+(0-4)> =36
(x=2)>+16=36
(x-2)> =20
x—2=im
x=2++/20=24245

The x intercepts of the circle are (2 + 2«/5 ,O) and (2 — 2«/§ ,O)

[Example 6

In a town, Main Street runs east to west, and Meridian Road runs north to south. A
pizza store is located on Meridian 2 miles south of the intersection of Main and
Meridian. If the store advertises that it delivers within a 3 mile radius, how much of
Main Street do they deliver to?

This type of question is one in which introducing a coordinate system and drawing a
picture can help us solve the problem. We could either place the origin at the
intersection of the two streets, or place the origin at the pizza store itself. It is often
easier to work with circles centered at the origin, so we’ll place the origin at the pizza
store, though either approach would work fine.

Placing the origin at the pizza store, the delivery area
with radius 3 miles can be described as the region inside

the circle described by x* + 3> =9. Main Street,

located 2 miles north of the pizza store and running east
to west, can be described by the equation y = 2.

To find the portion of Main Street the store will deliver

to, we first find the boundary of their delivery region by
looking for where the delivery circle intersects Main
Street. To find the intersection, we look for the points

on the circle where y = 2. Substituting y = 2 into the

circle equation lets us solve for the corresponding x values.
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x*+2%=9

x’=9-4=5

x =45~ £2.236

This means the pizza store will deliver 2.236 miles down Main Street east of Meridian

and 2.236 miles down Main Street west of Meridian. We can conclude that the pizza
store delivers to a 4.472 mile segment of Main St.

In addition to finding where a vertical or horizontal line intersects the circle, we can also
find where an arbitrary line intersects a circle.

Find where the line f(x) = 4x intersects the circle (x —2)*> +y° =16.

Normally, to find an intersection of two functions f{x) and g(x) we would solve for the x
value that would make the function equal by solving the equation f(x) = g(x). In the
case of a circle, it isn’t possible to represent the equation as a function, but we can
utilize the same idea. The output value of the line determines the y value:

y = f(x)=4x. We want the y value of the circle to equal the y value of the line, which

is the output value of the function. To do this, we can substitute the expression for y
from the line into the circle equation.

(x-2)>+y* =16 we replace y with the line formula: y = 4x

(x-2)>+(4x)* =16 expand

x* —dx+4+16x" =16 and simplify

17x* —4x+4=16 since this equation is quadratic, we arrange one side to be 0

17x* —4x-12=0

Since this quadratic doesn’t appear to be easily factorable, we can use the quadratic
formula to solve for x:

N —(—4)£(-4)* —4(17)(-12) _4+4832
- 2(17) Y

, or approximately x = 0.966 or -0.731

From these x values we can use either equation to find the corresponding y values.
Since the line equation is easier to evaluate, we might choose to use it:
v = £(0.966) = 4(0.966) = 3.864

y=f(-0.731) = 4(-0.731) = -2.923

The line intersects the circle at the points (0.966, 3.864) and (-0.731, -2.923).
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3. A small radio transmitter broadcasts in a 50 mile radius. If you drive along a straight
line from a city 60 miles north of the transmitter to a second city 70 miles east of the
transmitter, during how much of the drive will you pick up a signal from the
transmitter?

Important Topics of This Section

Distance formula

Equation of a Circle

Finding the x coordinate of a point on the circle given the y coordinate or vice versa
Finding the intersection of a circle and a line

Try it Now Answers
1. 5v5

2. (x=4)°’+(y+2)° =36
60 Y
X+ (60 —%xj =507 gives x = 14 or x = 45.29, corresponding to points (14, 48)and

(45.29, 21.18), resulting in a distance of 41.21 miles.
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Section 1.1 Exercises

1. Find the distance between the points (5,3) and (-1,-5).

2. Find the distance between the points (3,3) and (-3,-2).

3. Write an equation of the circle centered at (8 , -10) with radius 8.

4. Write an equation of the circle centered at (-9, 9) with radius 16.

5. Write an equation of the circle centered at (7, -2) that passes through (-10, 0).

Write an equation of the circle centered at (3, -7) that passes through (15, 13).

Sl IS

9. Sketch a graph of (x—Z)2 +(y+3)2 =9.

10. Sketch a graph of (x+l)2 +(y—2)2 =16.
11. Find the y intercept(s) of the circle with center (2, 3) with radius 3.

12. Find the x intercept(s) of the circle with center (2, 3) with radius 4.

13. At what point in the first quadrant does the line with equation y=2x+5 intersect a
circle with radius 3 and center (0, 5)?

14. At what point in the first quadrant does the line with equation y=x+2 intersect the

circle with radius 6 and center (0, 2)?

13

Write an equation for a circle where the points (2, 6) and (8, 10) lie along a diameter.

Write an equation for a circle where the points (-3, 3) and (5, 7) lie along a diameter.

15. At what point in the second quadrant does the line with equation y=2x+5 intersect a

circle with radius 3 and center (-2, 0)?

16. At what point in the first quadrant does the line with equation y=x+2 intersect the

circle with radius 6 and center (-1,0)?

17. A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight
line from a city 70 miles north of the transmitter to a second city 74 miles east of the

transmitter, during how much of the drive will you pick up a signal from the
transmitter?

18. A small radio transmitter broadcasts in a 44 mile radius. If you drive along a straight
line from a city 56 miles south of the transmitter to a second city 53 miles west of the

transmitter, during how much of the drive will you pick up a signal from the
transmitter?
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19.

20.

Chapter 1

A tunnel connecting two portions of a space / A

station has a circular cross-section of radius 15 A Sl
s peckK

feet. Two walkway decks are constructed in the
- - = x-axis

tunnel. Deck A is along a horizontal diameter and =4
another parallel Deck B is 2 feet below Deck A. \ /Y N/
Because the space station is in a weightless \ Deck B
environment, you can walk vertically upright r=bt

along Deck A, or vertically upside down along \

Deck B. You have been assigned to paint “safety

(a) Cross-section of tunnel.

stripes” on each deck level, so that a 6 foot ( i n )
person can safely walk upright along either deck. Deck A+, ﬁ
Determine the width of the “safe walk zone” on - - ~m -
each deck. [UW] Deck B~ ';’

v [:] — Safe walk zone ¥

(b) Walk zones.

A crawling tractor sprinkler is

located as pictured here, 100 feet

south of a sidewalk. Once the water | heisa
is turned on, the sprinkler waters a

circular disc of radius 20 feet and W ‘ E

=

moves north along the hose at the
rate of %2 inch/second. The hose is
perpendicular to the 10 ft. wide
sidewalk. Assume there is grass on : , |
both sides of the sidewalk. [UW] | eyl

a) Impose a coordinate system.
Describe the initial coordinates
of the sprinkler and find
equations of the lines forming and find equations of the lines forming the north
and south boundaries of the sidewalk.

b) When will the water first strike the sidewalk?

c) When will the water from the sprinkler fall completely north of the sidewalk?

d) Find the total amount of time water from the sprinkler falls on the sidewalk.

e) Sketch a picture of the situation after 33 minutes. Draw an accurate picture of the
watered portion of the sidewalk.

f) Find the area of grass watered after one hour.

B ) tractor sprinkler

. A
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21. Erik’s disabled sailboat is floating anchored 3 miles East and 2 miles north of
Kingston. A ferry leaves Kingston heading toward Edmonds at 12 mph. Edmonds is
6 miles due east of Kingston'. After 20 minutes the ferry turns, heading due south.
Ballard is 8 miles south and 1 mile west of Edmonds. Impose coordinates with

Ballard as the origin. [UW]

y sailboat =
™~ P F
i |
i / / !
/ Kingstone, @ Edmonds

/ \ |

/l’ |

.‘/ |
‘J‘ |

/ "

4 North |
|

|

a) Find equations for the lines along which the ferry is moving and draw in these
lines.

b) The sailboat has a radar scope that will detect any object within 3 miles of the
sailboat. Looking down from above, as in the picture, the radar region looks like a
circular disk. The boundary is the “edge” or circle around this disk, the interior is
everything inside of the circle, and the exterior is everything outside of the circle.
Give the mathematical description (an equation or inequality) of the boundary,
interior and exterior of the radar zone. Sketch an accurate picture of the radar
zone by determining where the line connecting Kingston and Edmonds would
cross the radar zone.

c) When does the ferry enter the radar zone?

d) Where and when does the ferry exit the radar zone?

e) How long does the ferry spend inside the radar zone?

" This is not actually true, sorry.
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22. Nora spends part of her summer driving a combine during the wheat harvest. Assume
she starts at the indicated position heading east at 10 ft/sec toward a circular wheat
field of radius 200 ft. The combine cuts a swath 20 feet wide and begins when the
corner of the machine labeled “a” is 60 feet north and 60 feet west of the western-
most edge of the field. [UW]

combine

!\

a

@
center

wheat field tf

a) When does Nora’s combine first start cutting the wheat?

b) When does Nora’s combine first start cutting a swath 20 feet wide?

c) Find the total amount of time wheat is being cut during this pass across the field.
d) Estimate the area of the swath cut during this pass across the field.

23. The vertical cross-section of a drainage ditch is
pictured to the right. Here, R indicates in each
case the radius of a circle with R = 10 feet,
where all of the indicated circle centers lie along
a horizontal line 10 feet above and parallel to
the ditch bottom. Assume that water is flowing
into the ditch so that the level above the bottom EM

is rising at a rate of 2 inches per minute. [UW] R\ !

3D—view of ditch

a) When will the ditch be completely full?

b) Find a piecewise defined function that
models the vertical cross-section of the ditch.

c) What is the width of the filled portion of the ditch after 1 hour and 18 minutes?

d) When will the filled portion of the ditch be 42 feet wide? 50 feet wide? 73 feet
wide?

vertical cross-section
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Section 1.2 Angles

Because many applications involving circles also involve q rotation of the circle, it is
natural to introduce a measure for the rotation, or angle, between two rays (line segments)
emanating from the center of a circle. The angle measurement you are most likely
familiar with is degrees, so we’ll begin there.

Measure of an Angle

The measure of anangleis a measurement between two terminal side
intersecting lines, line segments or rays, starting at the initial side
and ending at the terminal side. It is a rotational measure not a

linear measure. nitial side

angle

Measuring Angles

Degrees
A degreeis a measurement of angle. One full rotation around the circle is equal to 360
degrees, so one degree is 1/360 of a circle.

An angle measured in degrees should always include the unit “degrees” after the
number, or include the degree symbol °. For example, 90 degrees = 90°.

Standard Position
When measuring angles on a circle, unless otherwise directed, we measure angles in
standard position: starting at the positive horizontal axis and with counter-clockwise
rotation.

xample 1
Give the degree measure of the angle shown on the circle.

The vertical and horizontal lines divide the circle into quarters. / m

Since one full rotation is 360 degrees=360°, each quarter rotation k

is 360/4 = 90° or 90 degrees.

Show an angle of 30° on the circle.

An angle of 30°is 1/3 of 90°, so by dividing a quarter rotation into

thirds, we can sketch a line at 30°. CJ
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Going Greek
When representing angles using variables, it is traditional to use Greek letters. Here is a
list of commonly encountered Greek letters.

0 @ or ¢ a p 4
theta phi alpha beta gamma

Working with Angles in Degrees

Notice that since there are 360 degrees in one rotation, an
angle greater than 360 degrees would indicate more than 1
full rotation. Shown on a circle, the resulting direction in
which this angle’s terminal side points would be the same as
for another angle between 0 and 360 degrees. These angles
would be called coterminal.

D
N

Coterminal Angles
After completing their full rotation based on the given angle, two angles are coterminal
if they terminate in the same position, so their terminal sides coincide (point in the same
direction).

xample 3
Find an angle 6 that is coterminal with 800°, where 0° <8 <360°

Since adding or subtracting a full rotation, 360 degrees, would result in an angle with
terminal side pointing in the same direction, we can find coterminal angles by adding or
subtracting 360 degrees. An angle of 800 degrees is coterminal with an angle of 800-
360 = 440 degrees. It would also be coterminal with an angle of 440-360 = 80 degrees.

The angle 6 =80° is coterminal with 800°.

By finding the coterminal angle between 0 and 360 degrees, it can be easier to see
which direction the terminal side of an angle points in.

| 1. Find an angle ¢ that is coterminal with 870°, where 0° < ar < 360°.

On a number line a positive number is measured to the right and a negative number is
measured in the opposite direction (to the left). Similarly a positive angle is measured
counterclockwise and a negative angle is measured in the opposite direction (clockwise).
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xample 4
Show the angle —45° on the circle and find a positive angle « that is coterminal and
0°<a <360°.

Since 45 degrees is half of 90 degrees, we can start at the

positive horizontal axis and measure clockwise half of a 90 3 l?\
degree angle. \ L
| »

Since we can find coterminal angles by adding or subtracting a
full rotation of 360 degrees, we can find a positive coterminal
angle here by adding 360 degrees:

—45°+360°=315°

Try it Now
‘ 2. Find an angle f# coterminal with —300° where 0° < £ <360°.

It can be helpful to have a
familiarity with the frequently
encountered angles in one
rotation of a circle. It is common
to encounter multiples of 30, 45, 150°
60, and 90 degrees. These values
are shown to the right.
Memorizing these angles and
understanding their properties
will be very useful as we study
the properties associated with
angles

180°

210°

270°

Angles in Radians

While measuring angles in degrees may be familiar, doing so often complicates matters
since the units of measure can get in the way of calculations. For this reason, another
measure of angles is commonly used. This measure is based on the distance around a
circle.

subtended (drawn out) by an angle @. It is the portion of the
circumference between the initial and terminal sides of the angle.

Arcle?’lgth is the length of an arc, s, along a circle of radius r K 0
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The length of the arc around an entire circle is called the circumference of a circle. The
circumference of a circle is C =27 . The ratio of the circumference to the radius,
produces the constant 277 . Regardless of the radius, this ratio is always the same, just as
how the degree measure of an angle is independent of the radius.

To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.
Recall the circumference (perimeter) of a circle is C = 27z, where 7 is the radius of the
circle. The smaller circle then has circumference 27(2) = 47 and the larger has

circumference 27 (3) = 67 .

Drawing a 45 degree angle on the two circles, we might be
interested in the length of the arc of the circle that the angle
indicates. In both cases, the 45 degree angle draws out an arc that
is 1/8"™ of the full circumference, so for the smaller circle, the

arclength = é(47r) = %7[ , and for the larger circle, the length of the
arc or arclength

1 3
~Lemy=2r.
g6 =37

Notice what happens if we find the ratio of the arclength divided by the radius of the
circle:

1 1
Smaller circle: 2 _ —7r
2 4
3
i

Larger circle: 4 1 T
3 4

The ratio is the same regardless of the radius of the circle — it only depends on the angle.
This property allows us to define a measure of the angle based on arclength.

The radian measureof an angle is the ratio of the length of the circular arc subtended
by the angle to the radius of the circle.

In other words, if s is the length of an arc of a circle, and r is the radius of the circle,
then

) K
radian measure = —
-

If the circle has radius 1, then the radian measure corresponds to the length of the arc.
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Because radian measure is the ratio of two lengths, it is a unitless measure It is not
necessary to write the label “radians” after a radian measure, and if you see an angle that
is not labeled with “degrees” or the degree symbol, you should assume that it is a radian
measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1
rotation equals 360 degrees, 360°. We can also track one rotation around a circle by
finding the circumference, C =2, and for the unit circle C =27z . These two different
ways to rotate around a circle give us a way to convert from degrees to radians.

1 rotation = 360° =27 radians

Y rotation = 180° = xradians

Ya rotation = 90°= 7z /2 radians

Find the radian measure of one third of a full rotation.

For any circle, the arclength along such a rotation would be one third of the

. 1 2 . ..
circumference, C = 3 2mr) = Tﬂr . The radian measure would be the arclength divided

by the radius:

Radian measure = E = 2—7[
3r 3

Converting Between Radians and Degrees

1 degree = Z_ radians
180

or: to convert from degrees to radians, multiply by Z fadians rlegi)ljns
1 radian = @ degrees
7
180°

or: to convert from radians to degrees, multiply by

7 radians
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Exgmple6 |

T
Convert o radians to degrees.

: : . : . 180°
Since we are given a problem in radians and we want degrees, we multiply by 8 .

Remember radians are a unitless measure, so we don’t need to write “radians.”

T . 7 180°
g radians = — -

=30 degrees.
Vs

Example7 . |

Convert 15 degrees to radians.

In this example we start with degrees and want radians so we use the other

conversion—— so that the degree units cancel and we are left with the unitless measure

of radians.
T T

15 degrees = 15°- =
180° 12

3. Convert 7—:)[ radians to degrees.

Just as we listed all the common
angles in degrees on a circle, we
should also list the corresponding
radian values for the common
measures of a circle
corresponding to degree
multiples of 30, 45, 60, and 90
degrees. As with the degree
measurements, it would be
advisable to commit these to
memory.

We can work with the radian
measures of an angle the same
way we work with degrees.
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Find an angle £ that is coterminal with 197” ,where 0 < B <27

When working in degrees, we found coterminal angles by adding or subtracting 360
degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding
or subtracting full rotations of 27 radians.

197 197 87 11lx
—_— 2 =— =

4 4 4 4

117z . . .
The angleT is coterminal, but not less than 27 , so we subtract another rotation.

117z 11z 87 3«

The angle 377[ is coterminal with 1977z

4. Find an angle ¢ that is coterminal with —17?7[ where 0< ¢ <2rx.

Arclength and Area of a Sector
Recall that the radian measure of an angle was defined as the ratio of the arclength of a

. . . s . . .
circular arc to the radius of the circle, & =—. From this relationship, we can find
r

arclength along a circle given an angle.

Arclength on a Circle

The length of an arc, s, along a circle of radius » subtended by angle # in radians is
s=rf

Exampleo . __ |

Mercury orbits the sun at a distance of approximately 36 million miles. In one Earth
day, it completes 0.0114 rotation around the sun. If the orbit was perfectly circular,
what distance through space would Mercury travel in one Earth day?

To begin, we will need to convert the decimal rotation value to a radian measure. Since
one rotation = 2 radians,
0.0114 rotation = 27(0.0114) =0.0716 radians.
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Combining this with the given radius of 36 million miles, we can find the arclength:
s =(36)(0.0716) = 2.578 million miles travelled through space.

\ 5. Find the arclength along a circle of radius 10 subtended by an angle of 215 degrees.

In addition to arclength, we can also use angles to find the area of a sector of a circle. A
sector is a portion of a circle contained between two lines from the center, like a slice of
pizza or pie.

Recall that the area of a circle with radius  can be found using the formula A= 7. Ifa
sector is cut out by an angle of @, measured in radians, then the fraction of full circle that

.0 . . :
angle has cut out is Py since 27 is one full rotation. Thus, the area of the sector would

s
be this fraction of the whole area:
2
Area of sector = 0 art = Oz _ l@rz
27 27 2

Area of a Sector

The area of a sectornf a circle with radius » subtended by an angle / /.
6, measured in radians, is \ 4

Area of sector= %Qrz

xample 10
An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees.
What is the area of the sector of grass the sprinkler waters?

First we need to convert the angle measure into radians. Since 30 degrees is one of our
common angles, you ideally should already know the equivalent radian measure, but if
not we can convert:

-

‘,20‘&

30 degrees = 30-2 =Z radians.
180 6

The area of the sector is then Area = %(%j (20)* =104.72 ft*
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6. In central pivot irrigation, a large irrigation “
pipe on wheels rotates around a center point, as
pictured here”. A farmer has a central pivot
system with a radius of 400 meters. If water
restrictions only allow her to water 150
thousand square meters a day, what angle
should she set the system to cover?

Linear and Angular Velocity

When your car drives down a road, it makes sense to describe its speed in terms of miles
per hour or meters per second. These are measures of speed along a line, also called
linear velocity. When a point on a circle rotates, we would describe its angular velocity,
or rotational speed, in radians per second, rotations per minute, or degrees per hour.

Angular and Linear Velocit

As a point moves along a circle of radius 7, its angular velocity, @, can be found as the
angular rotation @ per unit time, 7.

0
w=—

t

The linear velocity, v, of the point can be found as the distance travelled, arclength s,
per unit time, .
s

v=—
t

Exqmplell . . . |

A water wheel completes 1 rotation every 5 seconds. Find the
angular velocity in radians per second.’

The wheel completes 1 rotation = 2z radians in 5 seconds, so the

angular velocity would be @ = 2?” ~1.257 radians per second.

Combining the definitions above with the arclength equation, s =78, we can find a
relationship between angular and linear velocities. The angular velocity equation can be
solved for @, giving € = wt. Substituting this into the arclength equation gives
s=rf=rot.

? http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG CC-BY-SA
3 http://en.wikipedia.org/wiki/File:R%C3%B6mische S%C3%A4gem%C3%BChle.sveg CC-BY
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Substituting this into the linear velocity equation gives

s rot
V=—=——=7®
t t

Relationship Between Linear and Angular Velocit
When the angular velocity is measured in radians per unit time, linear velocity and
angular velocity are related by the equation
V=ro

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are
rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is travelling
down the road.

Here we have an angular velocity and need to find the corresponding linear velocity,
since the linear speed of the outside of the tires is the speed at which the bicycle travels
down the road.

We begin by converting from rotations per minute to radians per minute. It can be
helpful to utilize the units to make this conversion

130 rotations ‘ 27 radians 360 radians

minute  rotation minute

Using the formula from above along with the radius of the wheels, we can find the
linear velocity

v = (14 inches) (3607[ inches

radians

) =50407
minute

minute

You may be wondering where the “radians” went in this last equation. Remember that
radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear velocity into a more familiar measurement,
like miles per hour.

inches 1 feet I mile 60 minutes
50407 .

minute . 12 inches . 5280 feet 1 hour

=14.99 miles per hour (mph).

7. A satellite is rotating around the earth at 27,359 kilometers per hour at an altitude of
242 km above the earth. If the radius of the earth is 6378 kilometers, find the angular
velocity of the satellite.
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[Important Topics of This Section

Degree measure of angle

Radian measure of angle

Conversion between degrees and radians
Common angles in degrees and radians
Coterminal angles

Arclength

Area of a sector

Linear and angular velocity

Try it Now Answers

1. @ =150°
2. f=60°
3. 126°
4 17
6
2157

e

~37.525

6. 107.43°
7. 4.1328 radians per hour
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Section 1.2 Exercises

1.

10.

11.

12.

13.

14.

15.

16.

Indicate each angle on a circle: 30°, 300°, -135°, 70°, z?ﬁ , %[

Iz 3z

Indicate each angle on a circle: 30°, 315°, -135°, 80°,

Convert the angle 180° to radians.

Convert the angle 30° to radians.

Convert the angle 5?7[ from radians to degrees.

Convert the angle HT” from radians to degrees.

Find the angle between 0° and 360° that is coterminal with a 685° angle.

. Find the angle between 0° and 360° that is coterminal with a 451° angle.

Find the angle between 0° and 360° that is coterminal with a -1746° angle.
Find the angle between 0° and 360° that is coterminal with a -1400° angle.

267

Find the angle between 0 and 2x in radians that is coterminal with the angle

Find the angle between 0 and 2rt in radians that is coterminal with the angle Tz .

Find the angle between 0 and 2= in radians that is coterminal with the angle —37”.

Find the angle between 0 and 27 in radians that is coterminal with the angle Iz .

On a circle of radius 7 miles, find the length of the arc that subtends a central angle of
5 radians.

On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1
radian.



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
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On a circle of radius 12 cm, find the length of the arc that subtends a central angle of
120 degrees.

On a circle of radius 9 miles, find the length of the arc that subtends a central angle of
800 degrees.

Find the distance along an arc on the surface of the Earth that subtends a central angle
of 5 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.

Find the distance along an arc on the surface of the Earth that subtends a central angle
of 7 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.

On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3
feet?

On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2
feet?

A sector of a circle has a central angle of 45°. Find the area of the sector if the radius
of the circle is 6 cm.

A sector of a circle has a central angle of 30°. Find the area of the sector if the radius
of the circle is 20 cm.

A truck with 32-in.-diameter wheels is traveling at 60 mi/h. Find the angular speed of
the wheels in rad/min. How many revolutions per minute do the wheels make?

A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h. Find the angular speed
of the wheels in rad/min. How many revolutions per minute do the wheels make?

A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed v, the angular
speed in RPM, and the angular speed in rad/sec?

A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed v, the angular
speed in RPM, and the angular speed in deg/sec?

A CD has diameter of 120 millimeters. When playing audio, the angular speed varies
to keep the linear speed constant where the disc is being read. When reading along
the outer edge of the disc, the angular speed is about 200 RPM (revolutions per
minute). Find the linear speed.

When being burned in a writable CD-R drive, the angular speed of a CD is often
much faster than when playing audio, but the angular speed still varies to keep the
linear speed constant where the disc is being written. When writing along the outer
edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per
minute). Find the linear speed.
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31. You are standing on the equator of the Earth (radius 3960 miles). What is your linear
and angular speed?

32. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution per
hour. [UW]
a) Through how many radians does it turn in 100 minutes?
b) How long does it take the restaurant to rotate through 4 radians?
c) How far does a person sitting by the window move in 100 minutes if the radius of
the restaurant is 21 meters?
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Section 1.3 Points on Circles Using Sine and Cosine

While it is convenient to describe the location of a point on a circle using an angle or a
distance along the circle, relating this information to the x and y coordinates and the circle
equation we explored in Section 5.1 is an important application of trigonometry.

A distress signal is sent from a sailboat during a storm, but the transmission is unclear
and the rescue boat sitting at the marina cannot determine the sailboat’s location. Using
high powered radar, they determine the distress signal is coming from a distance of 20
miles at an angle of 225 degrees from the marina. How many miles east/west and
north/south of the rescue boat is the stranded sailboat?

In a general sense, to investigate this, we begin by
drawing a circle centered at the origin with radius 7, (x,»)
and marking the point on the circle indicated by some
angle 6. This point has coordinates (x, y). r

If we drop a line segment vertically down from this
point to the x axis, we would form a right triangle
inside of the circle.

No matter which quadrant our angle € puts us in we

can draw a triangle by dropping a perpendicular line

segment to the x axis, keeping in mind that the values

of x and y may be positive or negative, depending on the quadrant.

Additionally, if the angle & puts us on an axis, we simply measure the radius as the x or y
with the other value being 0, again ensuring we have appropriate signs on the coordinates
based on the quadrant.

Triangles obtained from different radii will all be similar triangles, meaning
corresponding sides scale proportionally. While the lengths of the sides may change, the
ratios of the side lengths will always remain constant for any given angle.

To be able to refer to these ratios more easily, we will give them names. Since the ratios
depend on the angle, we will write them as functions of the angle €.

Sine and Cosine

For the point (x, y) on a circle of radius  at an angle of &, we
can define two important functions as the ratios of the sides of - (x, )
the corresponding triangle:

The sine function: sin(@) = Y y
r

The cosinefunction: cos(8) = il x |
r
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In this chapter, we will explore these functions using both circles and right triangles. In
the next chapter we will take a closer look at the behavior and characteristics of the sine
and cosine functions.

xample 1
The point (3, 4) is on the circle of radius 5 at some angle . Find cos(€) and sin(8) .

Knowing the radius of the circle and coordinates of the point, we can evaluate the
cosine and sine functions as the ratio of the sides.

cos(0) = = sn0) =2 =
r r

There are a few cosine and sine values which we can determine fairly easily because the
corresponding point on the circle falls on the x or y axis.

[Example 2
Find cos(90°) and sin(90°) 0, r)

On any circle, the terminal side of a 90 degree angle
points straight up, so the coordinates of the .
corresponding point on the circle would be (0, 7). \90

Using our definitions of cosine and sine,

cos(90°) = e 0 =0

sin(90°) =

=1

R AR
NIy N

Try it Now
| 1. Find cosine and sine of the angle 7.

Notice that the definitions above can also be stated as:

Coordinates of the Point on a Circle at a Given Angle

On a circle of radius r at an angle of &, we can find the coordinates of the point K, y)
at that angle using

x =rcos(0)

y =rsin(f)

On a unit circle, a circle with radius 1, x = cos(€) and y =sin(6).
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Utilizing the basic equation for a circle centered at the origin, x* + y* = r*, combined
with the relationships above, we can establish a new identity.

xP+yr=r substituting the relations above,
(rcos(0))* + (rsin(8))* =’ simplifying,

¥ (cos(8))” +r>(sin(0))* = r* dividing by »*

(cos(@))* + (sin(@))* =1 or using shorthand notation

cos’ (@) +sin* (@) =1

Here cos®(8) is a commonly used shorthand notation for (cos(d))’. Be aware that many
calculators and computers do not understand the shorthand notation.

In Section 5.1 we related the Pythagorean Theorem a” +b° = ¢* to the basic equation of
acircle x> + y* =r*, which we have now used to arrive at the Pythagorean Identity.

Pythagorean Identity
The Pythagorean Identity. For any angle 6, cos’(@)+sin’(0)=1.

One use of this identity is that it helps us to find a cosine value of an angle if we know
the sine value of that angle or vice versa. However, since the equation will yield two
possible values, we will need to utilize additional knowledge of the angle to help us find
the desired value.

If sin(6) :% and @ is in the second quadrant, find cos(é) .

Substituting the known value for sine into the Pythagorean identity,

A
cos (6’)+(7j =1

9
cos’ (@) +—=1
© 49

cos’(0) = ﬂ

cos(0) = +\/7 == \45

Since the angle is in the second quadrant, we know the x value of the point would be
negative, so the cosine value should also be negative. Using this additional information,

2J_

we can conclude that cos(f) =————
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Values for Sine and Cosine
At this point, you may have noticed that we haven’t found any cosine or sine values from
angles not on an axis. To do this, we will need to utilize our knowledge of triangles.

First, consider a point on a circle at an angle of 45 degrees, or % ) (x, 1) = (x, x)

At this angle, the x and y coordinates of the corresponding point

on the circle will be equal because 45 degrees divides the first ! y

quadrant in half. Since the x and y values will be the same, the 45°

sine and cosine values will also be equal. Utilizing the X /

Pythagorean Identity,

cosz(%J + sin{%} =1 since the sine and cosine are equal, we can
substitute sine with cosine

cos’ (EJ +cos’ (1) = add like terms

4 4
2cos’ (EJ =1 divide
4
1 . . .. .
cos’ (%} = 5 since the x value is positive, we’ll keep the positive root
cos(%j = % often this value is written with a rationalized denominator

Remember, to rationalize the denominator we multiply by a term equivalent to 1 to get
rid of the radical in the denominator.

Since the sine and cosine are equal, sin[%) = g as well.

The (x, y) coordinates for a point on a circle of radius 1 at an angle of 45 degrees are
(ﬁ Q]

22



Section 1.3 Points on Circles Using Sine and Cosine 35

Find the coordinates of the point on a circle of radius 6 at an angle of %

Using our new knowledge that sin(%) = g and cos(%) = g , along with our

relationships that stated x = rcos(d) and y = rsin(f), we can find the coordinates of
the point desired:

c=6eod T )=d Y2 |=3v2
545

2

el

2. Find the coordinates of the point on a circle of radius 3 at an angle of 90°.

Next, we will find the cosine and sine at an angle of

30 degrees, or % To do this, we will first draw a (x, »)

triangle inside a circle with one side at an angle of 30 r
degrees, and another at an angle of -30 degrees. If the 30°
resulting two right triangles are combined into one
large triangle, notice that all three angles of this larger
triangle will be 60 degrees.

Since all the angles are equal, the sides will all be equal as well. The vertical line has
length 2y, and since the sides are all equal we can conclude that 2y =r, or y = % Using

this, we can find the sine value:

sm(g):z:z:

r
r r 2

1_1
ro 2
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Using the Pythagorean Identity, we can find the cosine value:
cos?| Z |+ sin{%j =1

A

COos

COS2

6
z
6
Vs 3 . . .. , ..
v since the y value is positive, we’ll keep the positive root
s \f V3
cos| — |=,/—=—
6 4 2
The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are

3
22 )

By drawing a the triangle inside the unit circle with a 30 degree angle and reflecting it

(%)

: . : T .
over the line y = x, we can find the cosine and sine for 60 degrees, or 3 without any

additional work.

/’ 1
Sy =x
V3
A \ 2
30° 2
V3
2

By this symmetry, we can see the coordinates of the point on the unit circle at an angle of

60 degrees will be (%,?J , giving

(ﬂj 1 . (ﬂj \/g
cos|] — |=— and sin| — |=—
3 2 3 2

We have now found the cosine and sine values for all of the commonly encountered
angles in the first quadrant of the unit circle.

Angle 0 Z, or 30° ﬁ, or 45° Z, or 60° E, or 90°
6 4 3 2

Cosine 1 NE) 2 1 0
) 2 2

Sine 0 1 V2 V3 !
2 3 2
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For any given angle in the first quadrant, there will be an angle in another quadrant with
the same sine value, and yet another angle in yet another quadrant with the same cosine
value. Since the sine value is the y coordinate on the unit circle, the other angle with the
same sine will share the same y value, but have the opposite x value. Likewise, the angle
with the same cosine will share the same x value, but have the opposite y value.

As shown here, angle a has the same sine value as angle ; the cosine values would be
opposites. The angle £ has the same cosine value as the angle; the sine values would be
opposites.

sin(#) =sin(a) and cos(f) = —cos(a) sin(@) = —sin(f) and cos(f) = cos(f)

It is important to notice the relationship between the angles. If, from the angle, you
measured the smallest angle to the horizontal axis, all would have the same measure in
absolute value. We say that all these angles have a reference angleof 6.

Reference Angle
An angle’s reference angleis the size of the
smallest angle to the horizontal axis.

A reference angle is always an angle between 0

and 90 degrees, or 0 and % radians.

Angles share the same cosine and sine values as
their reference angles, except for signs (positive or
negative) which can be determined from the
quadrant of the angle.
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Find the reference angle of 150 degrees. Use it to find cos(150°)and sin(150°).

150 degrees is located in the second quadrant. It is 30 degrees short of the horizontal
axis at 180 degrees, so the reference angle is 30 degrees.

This tells us that 150 degrees has the same sine and cosine values as 30 degrees, except

for sign. We know that sin(30°) :% and cos(30°) = ? Since 150 degrees is in the

second quadrant, the x coordinate of the point on the circle would be negative, so the
cosine value will be negative. The y coordinate is positive, so the sine value will be

positive.
sin(150°) :% and cos(150°) = —?

The (x, y) coordinates for the point on a unit circle at an angle of 150° are (

~3 1
5

2

Using symmetry and reference angles, we can fill in cosine and sine values at the rest of
the special angles on the unit circle. Take time to learn the (x, y) coordinates of all of the
major angles in the first quadrant!

90°, =, (0,1)
120°,2—”,[—1,—3} 2 600,5[1 3}

0°,0,(1,0)
360°, 277, (1,0)
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Example6 . |

Find the coordinates of the point on a circle of radius 12 at an angle of 7?” .

Note that this angle is in the third quadrant, where both x and y are negative. Keeping
this in mind can help you check your signs of the sine and cosine function.

x= 1200{%) = 1z(£] =63

2

y=12sin[ 2= ] =12{ L= 26
6 2

The coordinates of the point are (—6\/5 ,—0) .

Try it Now

3. Find the coordinates of the point on a circle of radius 5 at an angle of 5?” .

[Example 7
We now have the tools to return to the sailboat question posed at the beginning of this
section.

A distress signal is sent from a sailboat during a N
storm, but the transmission is unclear and the rescue
boat sitting at the marina cannot determine the
sailboat’s location. Using high powered radar, they 2750
determine the distress signal is coming from a W @ E
distance of 20 miles at an angle of 225 degrees from AT

the marina. How many miles east/west and
north/south of the rescue boat is the stranded sailboat?

,~"20 mil

We can now answer the question by finding the
coordinates of the point on a circle with a radius of 20
miles at an angle of 225 degrees.

N
2

x =20cos(225°) = 20( J ~ —14.142 miles

y =20sin(225°) = 20(_ fj ~ —14.142 miles

The sailboat is located 14.142 miles west and 14.142 miles south of the marina.
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The special values of sine and cosine in the first quadrant are very useful to know, since
knowing them allows you to quickly evaluate the sine and cosine of very common angles
without needing to look at a reference or use your calculator. However, scenarios do
come up where we need to know the sine and cosine of other angles.

To find the cosine and sine of any other angle, we turn to a computer or calculator. Be
aware: most calculators can be set into “degree” or “radian” mode, which tells the
calculator the units for the input value. When you evaluate “cos(30)” on your calculator,
it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the
cosine of 30 radians if the calculator is in radian mode. Most computer software with
cosine and sine functions only operates in radian mode.

Evaluate the cosine of 20 degrees using a calculator or computer.

On a calculator that can be put in degree mode, you can evaluate this directly to be
approximately 0.939693.

On a computer or calculator without degree mode, you would first need to convert the

angle to radians, or equivalently evaluate the expression cos| 20 - .
180

| mportant Topics of This Section

The sine function

The cosine function

Pythagorean Identity

Unit Circle values

Reference angles

Using technology to find points on a circle

1. cos(r)=—1 sin(z)=0
x=3cos(%]=3o0=0
2.
(7
=3sin| —|=3-1=3
y (2

22

S {zﬁ



Section 1.3 Points on Circles Using Sine and Cosine 41

Section 1.3 Exercises

1. Find the quadrant in which the terminal point determined by ¢ lies if
a. sin(¢) <0 and cos(t) <0 b. sin(z) >0 and cos(t) <0

2. Find the quadrant in which the terminal point determined by ¢ lies if
a. sin(¢) <0 and cos(z) >0 b. sin(¢) >0 and cos(¢) >0

3. The point P is on the unit circle. If the y-coordinate of P is 3’ and P is in quadrant II,

find the x coordinate.

4. The point P is on the unit circle. If the x-coordinate of P is %, and P is in quadrant

IV, find the y coordinate.

5. If cos(0) = % and € is in the 4" quadrant, find sin ().
6. If cos(@) % and 0 is in the 1* quadrant, find sin(@).
7. If sm(@) % and 0 is in the 2™ quadrant, find cos(é?)
8. If sin(0)=—— and 0is in the 3" quadrant, find cos(8).

9. For each of the following angles, find the reference angle and which quadrant the

angle lies in. Then compute sine and cosine of the angle.
a. 225° b. 300° c. 135° d. 210°

10. For each of the following angles, find the reference angle and which quadrant the

angle lies in. Then compute sine and cosine of the angle.
a. 120° b. 315° c. 250° d. 150°

11. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
Sr Tr Sr 3z
a. — b. — c. — d —
4 6 3 4
12. For each of the following angles, find the reference angle and which quadrant the
angle lies in. Then compute sine and cosine of the angle.
4r 2r Sz s

a. — b. — c. — d —
3 3 6 4
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13. Give exact values for sin (@) and cos(8) for each of these angles.

37 b, 2% c. - X d. 57

6 2
14. Give exact values for sin(6) and cos(8) for each of these angles.

N 2 c. - X d. 107
3 4 6

15. Find an angle 8 with 0 <8 <360° or 0 <@ < 2z that has the same sine value as:

a. b. 80° c. 140° d. wil e. 305°

Wy

16. Find an angle & with 0 <8 <360° or 0 <& <27z that has the same sine value as:

a. b. 15° c. 160° d. I e. 340°

NG

17. Find an angle @ with 0 <8 <360° or 0 <& <27 that has the same cosine value as:

a. % b. 80° c. 140° 4 4 e. 305°

18. Find an angle @ with 0 <8 <360° or 0 <& <27 that has the same cosine value as:

a. Z b. 15° c. 160° 4" e. 340°
4 6

19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle
of 220°.

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle
of 280°.

21. Marla is running clockwise around a circular track. She runs at a constant speed of 3
meters per second. She takes 46 seconds to complete one lap of the track. From her
starting point, it takes her 12 seconds to reach the northernmost point of the track. Impose
a coordinate system with the center of the track at the origin, and the northernmost point
on the positive y-axis. [UW]

a) Give Marla’s coordinates at her starting point.

b) Give Marla’s coordinates when she has been running for 10 seconds.

c) Give Marla’s coordinates when she has been running for 901.3 seconds.
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Section 1.4 The Other Trigonometric Functions

In the previous section, we defined the sine and cosine functions as ratios of the sides of a
right triangle in a circle. Since the triangle has 3 sides there are 6 possible combinations
of ratios. While the sine and cosine are the two prominent ratios that can be formed,
there are four others, and together they define the 6 trigonometric functions.

Tangent, Secant, Cosecant, and Cotangent Functions

For the point (x, y) on a circle of radius » at an angle of &, we
can define four additional important functions as the ratios of the —j (x, )
sides of the corresponding triangle: ’
The tangent function: tan(f) = 2 ) y
rx 4
The secantfunction: sec(d) =— x }
X

The cosecantfunction: csc(d) = r
y

The cotangentfunction: cot(d) = X
y

Geometrically, notice that the definition of tangent corresponds with the slope of the line
segment between the origin (0, 0) and the point (x, y). This relationship can be very
helpful in thinking about tangent values.

You may also notice that the ratios defining the secant, cosecant, and cotangent are the
reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.
Additionally, notice that using our results from the last section,
rsin(@)  sin(@
tan() = £ = 730 _ sin(0)
x rcos(€) cos(6)

Applying this concept to the other trig functions we can state the other reciprocal
identities.

The other four trigonometric functions can be related back to the sine and cosine
functions using these basic relationships:

SO o) =—L ese(@)=——  cot(9) = = 5O
cos(6) cos(0) sin(6) tan(d) sin(@)

tan(f) =
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These relationships are called identities. Identities are statements that are true for all
values of the input on which they are defined. Identities are usually something that can
be derived from definitions and relationships we already know, similar to how the
identities above were derived from the circle relationships of the six trig functions. The
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and
the definitions of sine and cosine. We will discuss the role of identities more after an
example.

Evaluate tan(45°) and sec(%rj.

Since we know the sine and cosine values for these angles, it makes sense to relate the
tangent and secant values back to the sine and cosine values.

tan(45°) = S0 _ % =1
cos(45°) 2 A

Notice this result is consistent with our interpretation of the tangent value as the slope
of the line passing through the origin at the given angle: a line at 45 degrees would
indeed have a slope of 1.

-243

sec(s—”j = ! = ! = _—2, which could also be written as 3

)

1. Evaluate csc(%} .

Just as we often need to simplify algebraic expressions, it is often also necessary or
helpful to simplify trigonometric expressions. To do so, we utilize the definitions and
identities we have established.
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Example2 |
ec()

ian(@) '

Simplify

We can simplify this by rewriting both functions in terms of sine and cosine

sec(6) 3 %os(é?)

tan(9) sin(6)

To divide the fractions we could invert and multiply

cos(@)
= ! 09s(¢9) cancelling the cosines,
cos(#) sin(@)
=— ! = csc(H) simplifying and using the identity
sm(H)
By showing that :ec—gg can be simplified to csc(é’), we have, in fact, established a new
an
identity: that %8 = csc(@).

Occasionally a question may ask you to “prove the identity” or “establish the identity.”
This is the same idea as when an algebra book asks a question like “show that

(x—1)> =x” —2x+1.” In this type of question we must show the algebraic

manipulations that demonstrate that the left and right side of the equation are in fact
equal. You can think of a “prove the identity” problem as a simplification problem where
you know the answer: you know what the end goal of the simplification should be, and
just need to show the steps to get there.

To prove an identity, in most cases you will start with the expression on one side of the
identity and manipulate it using algebra and trigonometric identities until you have
simplified it to the expression on the other side of the equation. Do not treat the identity
like an equation to solve — it isn’t! The proof is establishing if the two expressions are
equal, so we must take care to work with one side at a time rather than applying

an operation simultaneously to both sides of the equation.

1+ cot(ex)

Prove the identity
cse()

=sin(a)+cos(x) .

Since the left side seems a bit more complicated, we will start there and simplify the
expression until we obtain the right side. We can use the right side as a guide for what
might be good steps to make. In this case, the left side involves a fraction while the
right side doesn’t, which suggests we should look to see if the fraction can be reduced.
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Additionally, since the right side involves sine and cosine and the left does not, it
suggests that rewriting the cotangent and cosecant using sine and cosine might be a
good idea.

I+ cot(@) Rewriting the cotangent and cosecant
csc()
n 09s(a)
= %(a) To divide the fractions, we invert and multiply
sin(ex)
_[ 14 908(2) }sin(@) Distributing,
sin(a) 1
=1- sin(a) + C?S(a) Sin(@) Simplifying the fractions,
1 sin(er) 1
=sin(a) +cos(ar) Establishing the identity.

Notice that in the second step, we could have combined the 1 and C'L(W)) before
sin(x

inverting and multiplying. It is very common when proving or simplifying identities for
there to be more than one way to obtain the same result.

We can also utilize identities we have previously learned, like the Pythagorean Identity,
while simplifying or proving identities.

2
Establish the identity M = 1-sin(0).
1+sin(6)

Since the left side of the identity is more complicated, it makes sense to start there. To
simplify this, we will have to reduce the fraction, which would require the numerator to
have a factor in common with the denominator. Additionally, we notice that the right
side only involves sine. Both of these suggest that we need to convert the cosine into
something involving sine.

Recall the Pythagorean Identity told us cos’(#) +sin”(#) = 1. By moving one of the
trig functions to the other side, we can establish:

sin’(0) =1-cos*(6) and cos’ (@) =1-sin*(6)

Utilizing this, we now can establish the identity. We start on one side and manipulate:
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2
M Utilizing the Pythagorean Identity
1+sin(6)
.2
=Ln(9) Factoring the numerator
1+ s1n(l9)
= (1 — sm(é’)Xl i sm(@)) Cancelling the like factors
1+ sm(«9)
=1-sin(9) Establishing the identity

We can also build new identities from previously established identities. For example, if
we divide both sides of the Pythagorean Identity by cosine squared (which is allowed
since we’ve already shown the identity is true),

cos’(@)+sin’(0) 1
cos’(0)  cos’(0)

cos’(6) . sin’(6) _ 1

cos’(0) cos’(0) cos’(6)

Splitting the fraction on the left,

Simplifying and using the definitions of tan and sec
1+tan* () =sec’(0).

‘ 2. Use a similar approach to establish that cot’(€) +1 = csc’(6).

Alternate forms of the Pythagorean Identity
1+ tan*(8) = sec’ ()
cot’(0) +1=csc’(0)

If tan(@) = % and 0 is in the 3" quadrant, find cos(d) .

There are two approaches to this problem, both of which work equally well.

Approach 1

Since tan(d) = 2 and the angle is in the third quadrant, we can imagine a triangle in a
X

circle of some radius so that the point on the circle is (-7, -2). Using the Pythagorean
Theorem, we can find the radius of the circle: (=7)% +(=2)> =%, s0 r =+/53.
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Now we can find the cosine value:

x =7
cos(@)=—=——=

ro 53
Approach 2

Using the 1+ tan” (@) = sec’(#) form of the Pythagorean Identity with the known
tangent value,
1+tan”(0) = sec’ ()

1+ (%j =sec’(0)

33 _ gee? (&)

49
sec(d) = %, /ﬁ = J_r—\/5
49 7

Since the angle is in the third quadrant, the cosine value will be negative so the secant
value will also be negative. Keeping the negative result, and using definition of secant,

53

sec(f) =—

9) -

L __ V53 Inverting both sides
cos(6) 7
cos(@) = ] _ 753

V53 53

3. 1f sec(d) = —% and %< ¢ <7, find tan(g) and sin(g).

mportant Topics of This Section

6 Trigonometric Functions:
Sine
Cosine
Tangent
Cosecant
Secant
Cotangent

Trig identities



Try it Now Answers

cos’(0) +sin*(0) _ |

sin’ @

cos’(6) . sin®(0) 1
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3.

sin’(0) sin’(0) sin’(0)

cot’(0) +1=csc’(6)

J30

sin(g)=—=  tan($)=

4
-3

5
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Section 1.4 Exercises

1.

10.

11

12.

13.

14.

If 0= % , find exact values for sec(&),csc(8), tan(8), cot(6) .
If 6= 77” . find exact values for sec(8),csc(6), tan(6), cot(6).
If 6= 5?” . find exact values for sec(8),csc(6), tan(6), cot(6).
It 6 =% , find exact values for sec(8),csc(8), tan(8), cot(6).

If 6= 27” , find exact values for sec(@),csc(8), tan(8), cot(8) .

If 6= 47” , find exact values for sec(@),csc(8), tan(8), cot(8).

Evaluate: a. sec(135°) b. csc(210°) c. tan(60°) d. cot(225°)

. Evaluate: a. sec(30°) b. csc(315°) c. tan(135°) d. cot(150°)

If sin(0) :%, and @ is in quadrant II, find cos(8), sec(@),csc(8), tan(8), cot ().

If sin(0) :%, and 6 is in quadrant II, find cos(8), sec(8),csc(8), tan(8), cot(6).

If cos(@) = —% ,and @ is in quadrant III, find

sin(@), sec(é’),csc(é’), tan(&’), cot(@) .

If cos(0) :%, and 6 is in quadrant I, find sin (@), sec(8),csc(8), tan(8), cot(8).
If tan(0) :%, and 0 < <9<%, find sin (@), cos(8),sec(8), csc(8), cot ().

If tan(6)=4,and 0<6 <%, find sin (@), cos(8),sec(8), csc(8), cot ().



Section 1.4 The Other Trigonometric Functions 51

15. Use a calculator to find sine, cosine, and tangent of the following values:

a.0.15 b. 4 c. 70° d. 283°
16. Use a calculator to find sine, cosine, and tangent of the following values:
a. 0.5 b.5.2 c. 10° d. 195°

Simplify each of the following to an expression involving a single trig function with no
fractions.

17. csc(f) tan(¢)

18. cos(t)csc (t)

19.

20.

21.

22.

23.

24.

25.
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Prove the identities.

-2
1+cos(8)
1
28. tan’(¢) = -1
0= e )

29. sec(a)—cos(a)=sin(a)tan(a)

1+tan’ (b)

30. T(b) =csc’(b)
31. Ci:igi;l:f(fc);) =cos(x)cot(x)
sin(6)—cos(0)

32.

33.

34. 1+ cot(x) = cos(x)(sec(x) + csc(x))

I+cos(u)  sin(u)

u
35. =
sin(u)  1—cos(u)

sin* () —cos*(7)
sin () —cos(y)

. (1 + cos(A))(l - cos(A))

sin(4)

37.

=sin(y)+cos(y)

=sin(A4)
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Section 1.5 Right Triangle Trigonometry

In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of
a triangle drawn inside a circle, and spent the rest of that section discussing the role of
those functions in finding points on the circle. In this section, we return to the triangle,
and explore the applications of the trigonometric functions to right triangles where circles
may not be involved.

Recall that we defined sine and cosine as — (x, )
: s
sin(f) = . -
Yy
cos(f) = X 0
’/' T
X I

Separating the triangle from the circle, we can make equivalent but more general
definitions of the sine, cosine, and tangent on a right triangle. On the right triangle, we
will label the hypotenuse as well as the side opposite the angle and the side adjacent (next
to) the angle.

Right Triangle Relationships

Given a right triangle with an angle of &

sin(6) = opposite
hypotenuse hypotenuse

cos(6) = adjacent opposite
hypotenuse 9
opposite

tan(f) = ——— .

©) adjacent adjacent

A common mnemonic for remembering these relationships is SohCahToa, formed from
the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse,
Tangent is opposite over adjacent.”

Given the triangle shown, find the value for cos(e).

The side adjacent to the angle is 15, and the 17
hypotenuse of the triangle is 17, so 8
adjacent 15

cos(x) =

hypotenuse 17
15
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When working with general right triangles, the same rules apply regardless of the
orientation of the triangle. In fact, we can evaluate the sine and cosine of either of the
two acute angles in the triangle.

Adjacent to 3
Opposite o

Adjacent to a
Opposite

Hypotenuse

Exgmple2 . . . |

Using the triangle shown, evaluate cos(«),

sin(er), cos(f), and sin(f).

adjacenttoa 3

cos() =——m=—
hypotenuse 5
sin(a) = opposite & _ 4
hypotenuse 5
cos(fB) = adjacent to _ 4
hypotenuse 5
sin(3) = opposite S _ 3

hypotenuse 5

1. A right triangle is drawn with angle & opposite a side with length 33, angle f

opposite a side with length 56, and hypotenuse 65. Find the sine and cosine of o
and .

You may have noticed that in the above example that cos(a) = sin(f) and
cos(f) =sin(er). This makes sense since the side opposite « is also adjacent to . Since
the three angles in a triangle need to add to m, or 180 degrees, then the other two angles

must add to %, or 90 degrees, so [ = % —a,and a = % — [ . Since cos(«) = sin(f),

then cos(a) = sin(% — aj.
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Cofunction Identities
The cofunction identities for sine and cosine

—sinl Z — in(@) = cosl = —
cos(d) = s1n( 5 Hj sin(6) cos( 5 9)

In the previous examples we evaluated the sine and cosine on triangles where we knew
all three sides of the triangle. Right triangle trigonometry becomes powerful when we
start looking at triangles in which we know an angle but don’t know all the sides.

[Example 3
Find the unknown sides of the triangle pictured here.

Since sin(g) = —2PPOSIe
hypotenuse

7

sin(30°) = —

(30°) 5
From this, we can solve for the side b.

bsin(30°) =7

7
sin(30°)
To obtain a value, we can evaluate the sine and simplify
b ! 14

To find the value for side a, we could use the cosine, or simply apply the Pythagorean
Theorem:

a’+7%* =b?
a’+7* =14
a=+/147

Notice that if we know at least one of the non-right angles of a right triangle and one side,
we can find the rest of the sides and angles.

2. A right triangle has one angle of % and a hypotenuse of 20. Find the unknown

sides and angles of the triangle.
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Example4 . |

To find the height of a tree, a person walks to a point 30 feet from the base of the tree,
and measures the angle from the ground to the top of the tree to be 57 degrees. Find the
height of the tree.

We can introduce a variable, 4, to represent the height

of the tree. The two sides of the triangle that are most

important to us are the side opposite the angle, the

height of the tree we are looking for, and the adjacent

side, the side we are told is 30 feet long. 570

The trigonometric function which relates the side 30 feet
opposite of the angle and the side adjacent to the angle
is the tangent.

opposite &
adjacent " 30
h =30tan(57°) Using technology we can approximate a value
h =30tan(57°) =~ 46.2 feet

tan(57°) = Solving for A,

The tree is approximately 46 feet tall.

Examples . . |

A person standing on the roof of a 100 foot building is looking towards a skyscraper a
few blocks away, wondering how tall it is. She measures the angle of declination from
the roof of the building to the base of the skyscraper to be 20 degrees and the angle of
inclination to the top of the skyscraper to be 42 degrees.

To approach this problem, it would be
good to start with a picture. Although
we are interested in the height, 4, of the
skyscraper, it can be helpful to also label

other unknown quantities in the picture — a
in this case the horizontal distance x h
between the buildings and a, the height 42° X
of the skyscraper above the person. ST L
T o . 100 ft 100 4
o start solving this problem, notice we

have two right triangles. In the top
triangle, we know one angle is 42
degrees, but we don’t know any of the sides of the triangle, so we don’t yet know
enough to work with this triangle.
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In the lower right triangle, we know one angle is 20 degrees, and we know the vertical
height measurement of 100 ft. Since we know these two pieces of information, we can
solve for the unknown distance x.

an(20°) = opposite _ 100

: Solving for x
adjacent  x

xtan(20°) =100
100
X =
tan(20°)

Now that we have found the distance x, we know enough information to solve the top
right triangle.

tan(42°) = OSP—OSlti =4 ﬁ
adjacent x %an(20°)
tan(42°) = atan(20°)
100

100tan(42°) = a tan(20°)
100tan(42°) 4
tan(20°)

Approximating a value,

= 1001an(32%) 10 4 feet
tan(20°)

Adding the height of the first building, we determine that the skyscraper is about 347
feet tall.

Important Topics of This Section
SOH CAH TOA

Cofunction identities
Applications with right triangles

Try it Now Answers

. 33 56 . 56 33
1. sin(a)=— cos(ax)=— sin(f)=—cos(f)=—
(@) > (@) pr (#) T V)] >

2. cos(zj _ adjacent _ Adj so, adjacent = 20005(£j = 20(l =10
3) hypoteuse 20 3 2

sin(zj = Opposite = Opp so, opposite =20 sin(zj =20 V3 1043
3 hypoteuse 20 3 2

. _ p
Missing angle = 30 degrees or %
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Section 1.5 Exercises

Note: pictures may not be drawn to scale.

In each of the triangles below, find sin(A4),cos(4),tan(4),sec(4),csc(4),cot(4).

3. 4,
B
c 10 a
’ A
30° 60
b C
S 10 a 6 B
C
A 62° 7
o
c 35
b
7. 8.
LB 12
a
10°
b

9. A 33-ft ladder leans against a building so that the angle between the ground and the
ladder is 80°. How high does the ladder reach up the side of the building?

10. A 23-ft ladder leans against a building so that the angle between the ground and the
ladder is 80°. How high does the ladder reach up the side of the building?



11.

12.

13.

14.

15.

16.

17.

18.

19.
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The angle of elevation to the top of a building in New York is found to be 9 degrees
from the ground at a distance of 1 mile from the base of the building. Using this
information, find the height of the building.

The angle of elevation to the top of a building in Seattle is found to be 2 degrees from
the ground at a distance of 2 miles from the base of the building. Using this
information, find the height of the building.

A radio tower is located 400 feet from a building. From a window in the building, a
person determines that the angle of elevation to the top of the tower is 36° and that
the angle of depression to the bottom of the tower is 23°. How tall is the tower?

A radio tower is located 325 feet from a building. From a window in the building, a
person determines that the angle of elevation to the top of the tower is 43° and that
the angle of depression to the bottom of the tower is 31°. How tall is the tower?

A 200 foot tall monument is located in the distance. From a window in a building, a
person determines that the angle of elevation to the top of the monument is 15° and
that the angle of depression to the bottom of the tower is 2°. How far is the person
from the monument?

A 400 foot tall monument is located in the distance. From a window in a building, a
person determines that the angle of elevation to the top of the monument is 18° and
that the angle of depression to the bottom of the tower is 3°. How far is the person
from the monument?

There is an antenna on the top of a building. From a location 300 feet from the base
of the building, the angle of elevation to the top of the building is measured to be 40°.
From the same location, the angle of elevation to the top of the antenna is measured
to be 43°. Find the height of the antenna.

There is lightning rod on the top of a building. From a location 500 feet from the
base of the building, the angle of elevation to the top of the building is measured to be
36°. From the same location, the angle of elevation to the top of the lightning rod is
measured to be 38°. Find the height of the lightning rod.

Find the length x. 20. Find the length x.
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21.

23.

24.

Chapter 1
Find the length x. 22. Find the length x.
115 119
560 350 700 260

— x —— — » ——
A plane is flying 2000 feet above sea level :
toward a mountain. The pilot observes the top of .
the mountain to be 18° above the horizontal, then P soiTioe- et k\E
immediately flies the plane at an angle of 20° 2000 fit // 1 N\
above horizontal. The airspeed of the plane is / A \\\
100 mph. After 5 minutes, the plane is directly Sg-Scalevel A

above the top of the mountain. How high is the
plane above the top of the mountain (when it passes over)? What is the height of the
mountain? [UW]

Three airplanes depart SeaTac Airport. A Northwest flight is heading in a direction
50° counterclockwise from east, an Alaska flight is heading 115° counterclockwise
from east and a Delta flight is heading 20° clockwise from east. Find the location of
the Northwest flight when it is 20 miles north of SeaTac. Find the location of the
Alaska flight when it is 50 miles west of SeaTac. Find the location of the Delta flight
when it is 30 miles east of SeaTac. [UW]

North
Alaska Northwest
50°
West "‘. East
) w E

SeaTac 20"
South Delta

(a) The flight paths of three (b) Modeling the paths of each

airplanes. flight.




25.

26.
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The crew of a helicopter needs to

land temporarily in a forest and spot a T \: B
flat piece of ground (a clearing in the 100 feet =7y

are uncertain whether it is wide
enough. They make two
measurements from A (see picture)

s
¥
forest) as a potential landing site, but | =i A

~h.
X,/

“/”/. ‘/O:

o ::W:l:l_D

finding o = 25° and = 54°. They |

rise vertically 100 feet to B and

measure Y = 47°. Determine the width of the clearing to the nearest foot. [UW]

A Forest Service helicopter needs to determine
the width of a deep canyon. While hovering,
they measure the angle y = 48° at position B
(see picture), then descend 400 feet to position
A and make two measurements: o = 13° (the
measure of £ EAD), = 53° (the measure of
Z CAD). Determine the width of the canyon
to the nearest foot. [UW]

. E «
: clearing
1 f V—‘
- wa B
400 fti—"~
LA
C E canyon_fD
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Chapter 2: Periodic Functions

In the previous chapter, the trigonometric functions were introduced as ratios of sides of a
right triangle, and related to points on a circle. We noticed how the x and y values of the
points did not change with repeated revolutions around the circle by finding coterminal
angles. In this chapter, we will take a closer look at the important characteristics and
applications of these types of functions, and begin solving equations involving them.

Section 2.1 Sinusoidal Graphs ........ccceeiciiiiiiieiiiiee e 63
Section 2.2 Graphs of the Other Trig FUNCtions...........cccvevieriiienieiiiieniecieeie e 79
Section 2.3 Inverse Trig FUNCHONS ........ceieviiiiiiiiieciie et 89
Section 2.4 Solving Trig EQUAtIONS ........cccueiiiiiriieiiieiieeieeiie ettt 97
Section 2.5 Modeling with Trigonometric Functions..........ccccoeevveeviieeiieeniieesnieeee, 107

Section 2.1 Sinusoidal Graphs

The London Eye' is a huge Ferris wheel with diameter
135 meters (443 feet) in London, England, which
completes one rotation every 30 minutes. When we
look at the behavior of this Ferris wheel it is clear that it
completes 1 cycle, or 1 revolution, and then repeats this
revolution over and over again.

This is an example of a periodic function, because the
Ferris wheel repeats its revolution or one cycle every 30
minutes, and so we say it has a period of 30 minutes.

In this section, we will work to sketch a graph of a
rider’s height above the ground over time and express
this height as a function of time.

Periodic Functions

A periodic function is a function for which a specific horizontal shift, P, results in the
original function: f(x+ P)= f(x) for all values of x. When this occurs we call the

smallest such horizontal shift with P > 0 the period of the function.

You might immediately guess that there is a connection here to finding points on a circle,
since the height above ground would correspond to the y value of a point on the circle.
We can determine the y value by using the sine function. To get a better sense of this
function’s behavior, we can create a table of values we know, and use them to sketch a
graph of the sine and cosine functions.

! London Eye photo by authors, 2010, CC-BY

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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Listing some of the values for sine and cosine on a unit circle,

0 O =z |z |z |z |2z |3 5T 7
6 4 3 2 3 4 6

S T 2 LA U I S VA RC I
2 |2 |2 2 |2 | 2

sin 0Ly Y3 b 3 (V2 L0
2 |2 |2 2 |2 |?

Here you can see how for each angle, we use the y value of the point on the circle to
determine the output value of the sine function.

f(0) = sin(0)
________________ _]f.._-_________

Plotting more points gives the full shape of the sine and cosine functions.

1f16) = sin(0)

i 2 I

Notice how the sine values are positive between 0 and ©t, which correspond to the values
of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between n
and 2m, corresponding to quadrants 3 and 4.
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2(8) = cos(0)

] ] ] ] ] ] 9
I I I
Jm2 Jmd 2

Like the sine function we can track the value of the cosine function through the 4
quadrants of the unit circle as we place it on a graph.

Both of these functions are defined for all real numbers, since we can evaluate the sine
and cosine of any angle. By thinking of sine and cosine as coordinates of points on a unit
circle, it becomes clear that the range of both functions must be the interval [-1,1].

Domain and Range of Sine and Cosine
The domain of sine and cosine is all real numbers, (—o0,).

The range of sine and cosine is the interval [-1, 1].

Both these graphs are called sinusoidal graphs.

In both graphs, the shape of the graph begins repeating after 2. Indeed, since any
coterminal angles will have the same sine and cosine values, we could conclude that
sin(@ + 27) = sin(f) and cos(€ + 27) = cos(f) .

In other words, if you were to shift either graph horizontally by 2x, the resulting shape
would be identical to the original function. Sinusoidal functions are a specific type of
periodic function.

Period of Sine and Cosine
The periods of the sine and cosine functions are both 2.

Looking at these functions on a domain centered at the vertical axis helps reveal
symmetries.
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sine cosine

The sine function is symmetric about the origin, the same symmetry the cubic function
has, making it an odd function. The cosine function is clearly symmetric about the y axis,
the same symmetry as the quadratic function, making it an even function.

Negative Angle Identities
The sine is an odd function, symmetric about the origin, so sin(—€) = —sin(6).

The cosine is an even function, symmetric about the y-axis, so cos(—68) = cos(8).

These identities can be used, among other purposes, for helping with simplification and
proving identities.

You may recall the cofunction identity from last chapter; sin(8) = cos(% - 6).

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of
each other. We can prove this by using the cofunction identity and the negative angle
identity for cosine.

sin(f) = cos(£ - 6’) = cos(— 0+ zj = cos(— (6’ - ED = cos(é? - E)
2 2 2 2

Now we can clearly see that if we horizontally shift the cosine function to the right by n/2
we get the sine function.

Remember this shift is not representing the period of the function. It only shows that the
cosine and sine function are transformations of each other.

Simplify $NC9)
tan(d)
sin(-0) Using the even/odd identity
tan(6)
Ln(@) Rewriting the tangent
tan(6)
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ﬁ Inverting and multiplying
cos(6)
_sin(@)- 529 Gimplifying we get
sin(@)
—cos(f)

Transforming Sine and Cosine

Example2 . . |

A point rotates around a circle of radius 3. 3l
Sketch a graph of the y coordinate of the
point.

Recall that for a point on a circle of radius 7,
the y coordinate of the point is y = rsin(6),
so in this case, we get the

equation y(6) = 3sin(0).

I

31

The constant 3 causes a vertical stretch of the y values of the function by a factor of 3.

Notice that the period of the function does not change.

Since the outputs of the graph will now oscillate between -3 and 3, we say that the
amplitude of the sine wave is 3.

Try it Now
1. What is the amplitude of the function f(8) = 7cos(d) ? Sketch a graph of this
function.

xample 3

A circle with radius 3 feet is mounted with its center 4
feet off the ground. The point closest to the ground is
labeled P. Sketch a graph of the height above ground of
the point P as the circle is rotated, then find a function

that gives the height in terms of the angle of rotation. 4
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Sketching the height, we note that it will
start 1 foot above the ground, then increase
up to 7 feet above the ground, and continue
to oscillate 3 feet above and below the
center value of 4 feet.

I S

b

Although we could use a transformation of \’—
either the sine or cosine function, we start by

looking for characteristics that would make
one function easier to use than the other. -t

We decide to use a cosine function because it starts at the highest or lowest value, while
a sine function starts at the middle value. A standard cosine starts at the highest value,
and this graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic
cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in
the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically
shifted up by 4. Putting these transformations together,

h(6) =—-3cos(0)+4

The center value of a sinusoidal function, the value that the function oscillates above
and below, is called the midline of the function, corresponding to a vertical shift.

The function f(6) = cos(f) + k has midline at y = k.

2. What is the midline of the function f(8) =3cos(#)—4? Sketch a graph of the
function.

To answer the Ferris wheel problem at the beginning of the section, we need to be able to
express our sine and cosine functions at inputs of time. To do so, we will utilize
composition. Since the sine function takes an input of an angle, we will look for a
function that takes time as an input and outputs an angle. If we can find a suitable

0(t) function, then we can compose this with our f(€) = cos(d) function to obtain a

sinusoidal function of time: f(¢) = cos(8(?)).
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xample 4
A point completes 1 revolution every 2 minutes around a circle of radius 5. Find the x
coordinate of the point as a function of time, if it starts at (5, 0).

Normally, we would express the x coordinate of a point on a unit circle
using x = rcos(#) , here we write the function x(8) =5cos(6).

The rotation rate of 1 revolution every 2 minutes is an angular velocity. We can use this
rate to find a formula for the angle as a function of time. The point begins at an angle
of 0. Since the point rotates 1 revolution x(0)3
= 2m radians every 2 minutes, it rotates m 4
radians every minute. After  minutes, it
will have rotated:

0(t) = mt radians

— kg e

Composing this with the cosine function,
we obtain a function of time.
x(t) =5cos(6(t)) = Scos(xt)

P

Notice that this composition has the effect of a horizontal compression, changing the
period of the function.

To see how the period relates to the stretch or compression coefficient B in the equation
f()= sin(Bt), note that the period will be the time it takes to complete one full

revolution of a circle. If a point takes P minutes to complete 1 revolution, then the

angular velocity is M- Then 6(¢) = 2—7Tt . Composing with a sine function,
P minutes P

f(t)=sin(6(¢)) = sin(z?ﬂtj

From this, we can determine the relationship between the coefficient B and the period:
2 . . . . .

B= 5 Notice that the stretch or compression coefficient B is a ratio of the “normal

period of a sinusoidal function” to the “new period.” If we know the stretch or

. . . 2
compression coefficient B, we can solve for the “new period”: P=—.
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Examples |

What is the period of the function f(¢) = sin(%tj ?

Using the relationship above, the stretch/compression factor is B = e so the period

=27z-§=12.
T

will be P=2—”=
B

RN

While it is common to compose sine or cosine with functions involving time, the
composition can be done so that the input represents any reasonable quantity.

xample 6

A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked
in red. The wheel then begins rolling down the street. Write a formula for the height
above ground of the red point after the bicycle has travelled x inches.

The height of the point begins at the lowest value, 0, Starting
increases to the highest value of 28 inches, and
continues to oscillate above and below a center height
of 14 inches. In terms of the angle of rotation, 6:

h(@) = —14cos(f) +14

In this case, x is representing a linear distance the Rotated by ¢
wheel has travelled, corresponding to an arclength

along the circle. Since arclength and angle can be 0
related by s =8, in this case we can write x =146,

which allows us to express the angle in terms of x:

0(x) = ﬁ

Composing this with our cosine-based function from above,

h(x) = h(6(x)) = —14005(%) +14=-14 cos(ixj +14

The period of this function would be P = %r = ZTE =2 -14 =287, the circumference
14

of the circle. This makes sense — the wheel completes one full revolution after the

bicycle has travelled a distance equivalent to the circumference of the wheel.
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Summarizing our transformations so far:

Transformations of Sine and Cosine

Given an equation in the form f(¢) = Asin(Bt)+ k or f(t)=4 cos(Bt)+ k
A is the vertical stretch, and is the amplitude of the function.

B is the horizontal stretch/compression, and is related to the period, P, by P = %[

k is the vertical shift and determines the midline of the function.

Example7 . |

Determine the midline, amplitude, and period of the function f(z) =3 sin(2t)+ 1.

The amplitude is 3
The period is P=2—ﬁ=2—ﬂ:7r
B 2

The midline is at y =1

Amplitude, midline, and period, when combined with vertical flips, allow us to write
equations for a variety of sinusoidal situations.

3. If asinusoidal function starts on the midline at point (0,3), has an amplitude of 2,
and a period of 4, write a formula for the function.
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Example8 . |

Find a formula for the sinusoidal function 41
graphed here.

The graph oscillates from a low of -1 to a
high of 3, putting the midline at y =1,
halfway between.

b T N T A
The amplitude will be 2, the distance from _ v
the midline to the highest value (or lowest

value) of the graph. 24

The period of the graph is 8. We can measure this from the first peak at x = -2 to the
second at x = 6. Since the period is 8, the stretch/compression factor we will use will be
2r 2m 7w

P 8 4

At x = 0, the graph is at the midline value, which tells us the graph can most easily be
represented as a sine function. Since the graph then decreases, this must be a vertical
reflection of the sine function. Putting this all together,

ft)=-2 sin(%tj +1

With these transformations, we are ready to answer the Ferris wheel problem from the
beginning of the section.

The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in London,
England, which completes one rotation every 30 minutes. Riders board from a platform
2 meters above the ground. Express a rider’s height above ground as a function of time
in minutes.

With a diameter of 135 meters, the wheel has a radius of 67.5 meters. The height will
oscillate with amplitude of 67.5 meters above and below the center.

Passengers board 2 meters above ground level, so the center of the wheel must be
located 67.5 + 2 = 69.5 meters above ground level. The midline of the oscillation will
be at 69.5 meters.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with
period of 30 minutes.

Lastly, since the rider boards at the lowest point, the height will start at the smallest
value and increase, following the shape of a flipped cosine curve.
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Putting these together:

Amplitude: 67.5

Midline: 69.5

Period: 30, s0 B = 2z -
30

Shape: -cos

An equation for the rider’s height would be
h(t) = —67.5 cos(%tj +69.5

4. The Ferris wheel at the Puyallup Fair” has a diameter of about 70
feet and takes 3 minutes to complete a full rotation. Passengers
board from a platform 10 feet above the ground. Write an
equation for a rider’s height above ground over time.

While these transformations are sufficient to represent many situations, occasionally we
encounter a sinusoidal function that does not have a vertical intercept at the lowest point,
highest point, or midline. In these cases, we need to use horizontal shifts. Recall that
when the inside of the function is factored, it reveals the horizontal shift.

Horizontal Shifts of Sine and Cosine
Given an equation in the form f(t) = 4 sin(B(t - h))+ k or f(t)= Acos(B(t - h))+ k
h 1s the horizontal shift of the function

xample 10
(T, 0z
Sketch a graph of f(¢) = 3sm(zt - Zj .

To reveal the horizontal shift, we first need to factor inside the function:

f)=3 sin(% (t - 1))

? Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY
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This graph will have the shape of a sine function, starting at the midline and increasing,

with an amplitude of 3. The period of the graph will be P = %[ = 2z =2r- 4 =8.

a T
4
Finally, the graph will be shifted to the right by 1.

4__
31
2..
74
/I 3 3 4 6 7 & i

rat
ot
S N

In some physics and mathematics books, you will hear the horizontal shift referred to as
phase shift In other physics and mathematics books, they would say the phase shift of

the equation above is T the value in the unfactored form. Because of this ambiguity, we

will not use the term phase shift any further, and will only talk about the horizontal shift.

xample 11
Find a formula for the function graphed here.
Z 4

With highest value at 1 and lowest value at -5, H
the midline will be halfway between at -2. ]

The distance from the midline to the highest or
lowest value gives an amplitude of 3.

The period of the graph is 6, which can be
measured from the peak at x = 1 to the next peak

. . L 2
at x =7, or from the distance between the lowest points. This gives B = ?ﬁ %
For the shape and shift, we have more than one option. We could either write this as:
A cosine shifted 1 to the right
A negative cosine shifted 2 to the left

A sine shifted % to the left
A negative sine shifted 2.5 to the right
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While any of these would be fine, the cosine shifts are easier to work with than the sine
shifts in this case, because they involve integer values. Writing these:

y(x)=3 cos(% (x— 1)) -2 or

y(x)=-3 cos(% (x+ 2)) -2

Again, these functions are equivalent, so both yield the same graph.

Try it Now
5. Write a formula for the function graphed
here.

9
&
7
]
5
4
K
2
A

;};'254'3’5;"39:'0:'::'2

| mportant Topics of This Section
Periodic functions
Sine and cosine function from the unit circle
Domain and range of sine and cosine functions
Sinusoidal functions
Negative angle identity
Simplifying expressions
Transformations
Amplitude
Midline
Period
Horizontal shifts

Try it Now Answers

1.7
2.-4

3. f(x)=2sin(%xj+3

4. h(t)=-35cos (%rtj +45

5. Two possibilities: f(x) =4cos (% (x— 3.5)) +4 or f(x)=4sin (% (x— l)j +4
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Section 2.1 Exercises

1. Sketch a graph of f (x)=-3sin(x).
2. Sketch a graph of f(x)=4sin(x).
3. Sketch a graph of f(x)=2cos(x).
4. Sketch a graph of f(x)=—4cos(x).

For the graphs below, determine the amplitude, midline, and period, then find a formula
for the function.

{lli.'lur:udu

It
24
34
41

' EEEREPRERERK 21
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For each of the following equations, find the amplitude, period, horizontal shift, and
midline.

1. y=3sin(8(x+4))+5
12. y:4sin[%(x—3)j+7

13. y=2sin(3x—21)+4

14. y=5sin(5x+20)-2
15. y:sin(£x+7rj—3
6
16. y =8sin 7—7Tx+7—7Z +6
6 2

Find a formula for each of the functions graphed below.

I3 12 A1 10 g &

17.

18.
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19.

21.

22.

23.

24.

Chapter 2
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Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 50 degrees at midnight and the high and low
temperature during the day are 57 and 43 degrees, respectively. Assuming ¢ is the
number of hours since midnight, find a function for the temperature, D, in terms of ¢.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature is 68 degrees at midnight and the high and low
temperature during the day are 80 and 56 degrees, respectively. Assuming ¢ is the
number of hours since midnight, find a function for the temperature, D, in terms of z.

A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 10 minutes. The function
h(t) gives your height in meters above the ground ¢ minutes after the wheel begins to

turn.
a. Find the amplitude, midline, and period of A (¢).

b. Find a formula for the height function A(r).

c. How high are you off the ground after 5 minutes?

A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 8 minutes. The function
h(t) gives your height in meters above the ground ¢ minutes after the wheel begins to

turn.
a. Find the amplitude, midline, and period of A(t).
b. Find a formula for the height function A().

c. How high are you off the ground after 4 minutes?
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Section 2.2 Graphs of the Other Trig Functions

In this section, we will explore the graphs of the other four trigonometric functions.
We’ll begin with the tangent function. Recall that in Chapter 5 we defined tangent as y/x
or sine/cosine, so you can think of the tangent as the slope of a line through the origin
making the given angle with the positive x axis. At an angle of 0, the line would be
horizontal with a slope of zero. As the angle increases towards /2, the slope increases
more and more. At an angle of n/2, the line would be vertical and the slope would be
undefined. Immediately past /2, the line would have a steep negative slope, giving a
large negative tangent value. There is a break in the function at n/2, where the tangent
value jumps from large positive to large negative.

| 44 |
We can use these ideas along with the definition of i 3l
tangent to sketch a graph. Since tangent is defined '
as sine/cosine, we can determine that tangent will , ,
be zero when sine is zero: at -wt, 0, 7w, and so on. It
Likewise, tangent will be undefined when cosine is /
zero: at -m/2, w/2, and so on. /T /2 P2

! 11 !
The tangent is positive from 0 to n/2 and & to 3n/2, Hl
corresponding to quadrants 1 and 3 of the unit
circle.

2+

5

-3t

I
Using technology, we can obtain a graph of tangent on a standard grid.

Notice that the graph appears to repeat itself. For
any angle on the circle, there is a second angle with
the same slope and tangent value halfway around the
circle, so the graph repeats itself with a period of «;
we can see one continuous cycle from - /2 to n/2,

o e s

before it jumps and repeats itself.

The graph has vertical asymptotes and the tangent is
undefined wherever a line at that angle would be
vertical: at /2, 3w/2, and so on. While the domain
of the function is limited in this way, the range of the
function is all real numbers.

Ad & D

Features of the Graph of Tangent

The graph of the tangent functionm(€) = tan(8)
The period of the tangent function is

: . T . .
The domain of the tangent function is 6 # > + kr , where k is an integer

The range of the tangent function is all real numbers, (—o0,0)
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With the tangent function, like the sine and cosine functions, horizontal
stretches/compressions are distinct from vertical stretches/compressions. The horizontal
stretch can typically be determined from the period of the graph. With tangent graphs, it
is often necessary to determine a vertical stretch using a point on the graph.

xample 1
Find a formula for the function graphed
here.

The graph has the shape of a tangent

function, however the period appears to
be 8. We can see one full continuous | | | | | | |
cycle from -4 to 4, suggesting a 8 6 4 2 24 5 R
horizontal stretch. To stretch « to 8, the 24
input values would have to be

P

multiplied by§. Since the constant &
T
in f(0)=atan(k0)is the reciprocal of
the horizontal stretch 8 , the equation must have form
V4

£ =a tan(% 0) :

We can also think of this the same way we did with sine and cosine. The period of the
tangent function is 7 but it has been transformed and now it is 8; remember the ratio of

the “normal period” to the “new period” is gand so this becomes the value on the

inside of the function that tells us how it was horizontally stretched.

To find the vertical stretch a, we can use a point on the graph. Using the point (2, 2)
2 =aqtan £-2 :atanZ . Sincetan£ =1, a=2
8 4 4

This function would have a formula f(8) = 2 tan(% 6).

1. Sketch a graph of f(6) =3 tan(% 6’) .
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1
cos(6)
Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote
in the graph at n/2, 3n/2, etc. Since the cosine is always no more than one in absolute
value, the secant, being the reciprocal, will always be no less than one in absolute value.
Using technology, we can generate the graph. The graph of the cosine is shown dashed
so you can see the relationship.

£(6) = sec(®) =ﬁ@
a4

For the graph of secant, we remember the reciprocal identity where sec(d) =

The graph of cosecant is similar. In fact, since sin(@) = cos(% — 9), it follows that

csc(f) = sec(g - 9) , suggesting the cosecant graph is a horizontal shift of the secant

graph. This graph will be undefined where sine is 0. Recall from the unit circle that this
occurs at 0, , 2m, etc. The graph of sine is shown dashed along with the graph of the
cosecant.

£(6) = cse(0) = —

sin(0)
44

fl
—-d
!

I 2 54 5 47

&
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eatures of the Graph of Secant and Cosecant

The secant and cosecant graphs have period 2= like the sine and cosine functions.
Secant has domain 6 # > + kz , where k is an integer

Cosecant has domain € # kr, where £ is an integer
Both secant and cosecant have range of (—o0,—1]U[1,0)

Sketch a graph of f(8) =2 csc(% 0) +1. What is the domain and range of this

function?

The basic cosecant graph has vertical asymptotes at the integer multiples of 7. Because

of the factor % inside the cosecant, the graph will be compressed by 2 , so the vertical
V4

asymptotes will be compressed to 6 = 2. kr =2k . In other words, the graph will have
V4

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly
be 6 # 2k, where k is an integer.

The basic sine graph has a range of [-1, 1]. The vertical stretch by 2 will stretch this to
[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3].

The basic cosecant graph has a range of (—w,—1]U[1,). The vertical stretch by 2 will
stretch this to (—o0,—2]U[2,0), and the vertical shift up 1 will shift the range of this
function to (—o0,—1]U[3,0).

i L \"‘ E '\_‘
.llll. s _."' o

6
5
4
3
2
1
;

Sketching a graph,

n

i
——t
Y -5 i

T

Notice how the graph of the transformed cosecant relates to the graph of

f(@)=2 sin(% 0) +1 shown dashed.
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it Now
2. Given the graph of

f(e)=2 cos(% 0] +1 shown, sketch

the graph of g(0) = 2sec(% Qj +1 on \

the same axes. 4 A N2

T

[B¥}
L

N

Finally, we’ll look at the graph of cotangent. Based on its definition as the ratio of cosine
to sine, it will be undefined when the sine is zero: at at 0, m, 2w, etc. The resulting graph
is similar to that of the tangent. In fact, it is a horizontal flip and shift of the tangent
function, as we’ll see shortly in Example 3.

1 cos(d
S () = cot(6) = tan(4) - sin((ﬁ))
_.__; 4
N
2 4
]

Features of the Graph of Cotangent
The cotangent graph has period n
Cotangent has domain @ # kz , where £ is an integer
Cotangent has range of all real numbers, (-, )

In Section 6.1 we determined that the sine function was an odd function and the cosine
was an even function by observing the graph and establishing the negative angle
identities for cosine and sine. Similarly, you may notice from its graph that the tangent
function appears to be odd. We can verify this using the negative angle identities for sine
and cosine:

tan(~ 6) = sin(~ ) _ —sin(9)

cos(-0)  cos(d)

= —tan(6)

The secant, like the cosine it is based on, is an even function, while the cosecant, like the
sine, is an odd function.
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Prove that tan(@)= - cot(é’ - %j

tan(@) Using the definition of tangent
= s1n(6) Using the cofunction identities
cos(6)

(@}
o
n
7N\
NN
|
)
N—

=—— 2 Using the definition of cotangent

|
B
VRN
(NI
|
N
N

(SN

- 49] Factoring a negative from the inside

y

S
|

oY

Il
(@)
]
=

B Using the negative angle identity for cot

Important Topics of This Section

The tangent and cotangent functions
Period
Domain
Range

The secant and cosecant functions
Period
Domain
Range

Transformations

Negative Angle identities
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it Now Answers

/:s-i-i‘t-s’z: T334 5% 7
7.
o

2. 4
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Section 2.2 Exercises

Match each trigonometric function with one of the graphs.

1. f(x)=tan(x) 2. f(x)=sec(x)
3. f(x)=csc(x) 4. f(x)=cot(x)

Iy 3 45 6

Find the period and horizontal shift of each of the following functions.
5. f(x)=2tan(4x-32)

6. g( ) 3tan(6x+42

7. h(x)= ZSec(Z x+1j
8. k(x) 3sec(2(x+;rn
9. m(x) 6csc[—x+7rj

10. n( ) 4csc(5—”x—20—”j
3 3
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11. Sketch a graph of #7 above.
12. Sketch a graph of #8 above.
13. Sketch a graph of #9 above.
14. Sketch a graph of #10 above.

15. Sketch a graph of j(x) = tan (%x} .

16. Sketch a graph of p(7)=2tan (t—%j .

Find a formula for each function graphed below.

54
e
54
54
o
31
24
-+
a*-:afi?.fi:f_;.l!-;.;'f; 5 5 4 5 I3 3§ 4 5 s
-2
.3
e
5
=51
-?- ﬂ
17. -5 18.
l‘_;‘_
;".
el
51
4_
a1 Lu
5 I I R B B T S DI S B
-3+ -3+
L 4
Bt 54
1 £
T4 7
19. 41 20. 5
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21.If tanx =-1.5, find tan(—x).
22.If tanx =3, find tan(—x).
23. If secx =2, find sec(—x).
24.If secx =—4, find sec(—x).
25.If cscx =—5, find csc(—x).
26.If cscx =2, find csc(—x) .

Simplify each of the following expressions completely.
27. cot(—x)cos(—x)+sin(—x)
28. cos(—x)+ tan(—x)sin(—x)
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Section 2.3 Inverse Trig Functions

In previous sections we have evaluated the trigonometric functions at various angles, but
at times we need to know what angle would yield a specific sine, cosine, or tangent value.
For this, we need inverse functions. Recall that for a one-to-one function, if f(a)=0>,

then an inverse function would satisfy /' (b)=a.

You probably are already recognizing an issue — that the sine, cosine, and tangent
functions are not one-to-one functions. To define an inverse of these functions, we will
need to restrict the domain of these functions to yield a new function that is one-to-one.
We choose a domain for each function that includes the angle zero.

b

Sine, limited to [—%,%} Cosine, limited to [0, 7z] Tangent, limited to (—% %J

14 1

R R PR NV

-2 /2 /. T -2 /2

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse
tangent functions.

nverse Sine, Cosine, and Tangent Functions

For angles in the interval | — %,%} , if sin(&) = a, then sin™’ (a) =0
For angles in the interval [0, 7], if cos(@)=a , then cos™'(a)= 6
For angles in the interval —%,%) ,if tan(@) = a, then tan™' (a) =0

sin™' (x) has domain [-1, 1] and range [—%,%}
cos™' (x) has domain [-1, 1] and range [0, 7]

2

tan”' (x) has domain of all real numbers and range [—% %}
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The sin™' (x) is sometimes called the arcsine function, and notated arcsin(a).
The cos™ (x) is sometimes called the arccosinefunction, and notated arccos(a).

The tan™' (x) is sometimes called the arctangent function, and notated arctan(a).

The graphs of the inverse functions are shown here:

sin”' (x) L cos™ (x) tan”' (x) )

_=_f } B I | I 345
I+
dt -1

24 i 2

Notice that the output of each of these inverse functions is an angle.

xample 1
Evaluate

a) sinl(%j b) sin™ [— gj c) cosl[— ?] d) tan"'(1)

STRET i I . .
a) Evaluating sin I(EJ is the same as asking what angle would have a sine value of % .

In other words, what angle 6 would satisfy sin(@) = % ? There are multiple angles that

would satisfy this relationship, such as % and 5?” , but we know we need the angle in

the interval {—%,%} , so the answer will be sin™ (%j = % . Remember that the

inverse is a function so for each input, we will get exactly one output.

b) Evaluating sin _1(— %} , we know that %[ and %[ both have a sine value of

2
-5 but neither is in the interval [—%,%} . For that, we need the negative angle

coterminal with 7—7[ sin” —Q -
4 2 4
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c) Evaluating cos_l(— 73} , we are looking for an angle in the interval [0,72'] with a

3

cosine value of — 73 The angle that satisfies this is cos™ [— —J = S .

2 6

d) Evaluating tan~' (1), we are looking for an angle in the interval (— %,%) with a

tangent value of 1. The correct angle is tan™' (1) =

NG

1. Evaluate
a) sin~'(~1) b) tan'(~1) c) cos'(-1) d) cos™ (%j

xample 2
Evaluate sin™’ (0.97) using your calculator.

Since the output of the inverse function is an angle, your calculator will give you a
degree value if in degree mode, and a radian value if in radian mode.

In radian mode, sin™'(0.97) ~1.3252 In degree mode, sin™ (0.97) ~ 75.93°

Try it Now
‘ 2. Evaluate cos™ (— 0.4) using your calculator.

In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a
triangle given one side and an additional angle. Using the inverse trig functions, we can
solve for the angles of a right triangle given two sides.

xample 3

Solve the triangle for the angle 6.

Since we know the hypotenuse and the side adjacent 12
to the angle, it makes sense for us to use the cosine ]
function. 9
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cos(8) = % Using the definition of the inverse,

0 =cos™ (%) Evaluating

60 ~0.7227, or about 41.4096°

There are times when we need to compose a trigonometric function with an inverse
trigonometric function. In these cases, we can find exact values for the resulting
expressions

Exampled |

Evaluate sin™ (COS(BTEJJ )

a) Here, we can directly evaluate the inside of the composition.

137) 3

os| — |=—
6 2

Now, we can evaluate the inverse function as we did earlier.

sin”™ (EJ -z

3. Evaluate cos™ (sin(— %D )

Example5 |
Find an exact value for sin(cos_l (%)J )

Beginning with the inside, we can say there is some angle so & = cos™' (gj , which

means cos(#) = %, and we are looking for sin(¢). We can use the Pythagorean identity

to do this.
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sin*(@)+cos*(0) =1 Using our known value for cosine
2
sin’ (0) + (%) = Solving for sine
sin?(0)=1- g
9 3
() =+ |2 — 13
sin(0) Y s

Since we know that the inverse cosine always gives an angle on the interval [0, 72'], we

know that the sine of that angle must be positive, so sin (cos1 (%D =sin(f) = %

Example6 . |

Find an exact value for sin(tan - (%D

While we could use a similar technique as in the last example, we
will demonstrate a different technique here. From the inside, we

. 7 . .
know there is an angle so tan(@)= h We can envision this as the

opposite and adjacent sides on a right triangle. 0

Using the Pythagorean Theorem, we can find the hypotenuse of
this triangle:

4% +7° = hypotenuse’
hypotenuse = J65

Now, we can evaluate the sine of the angle as opposite side divided by hypotenuse

sin(0)= ——

V65

This gives us our desired composition

ol tan (7)) 2 sin(g) =L
sm[tan (4jj—sm(9)—\/g.

‘ 4. Evaluate cos(sin_l (gj]
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We can also find compositions involving algebraic expressions.

xample 7

Find a simplified expression for cos(sin - (%D ,for —3<x<3.

We know there is an angle 8 so that sin(&) = g . Using the Pythagorean Theorem,

sin’(@)+cos*(0) =1 Using our known expression for sine
2
(gj +cos’(9)=1 Solving for cosine
x2
cos’(@)=1- o
2 2
cos(0) = + 9‘9’“ =i“9;x

. . . . . T
Since we know that the inverse sine must give an angle on the interval {— E,E} , We

can deduce that the cosine of that angle must be positive. This gives us

. l(xj 9—x’
cos|sin” | —||=
3 3

Try it Now

‘ 5. Find a simplified expression for sin(tan_1 (4x)), for —i <x< l

4

Inverse trig functions: arcsine, arccosine and arctangent

Domain restrictions

Evaluating inverses using unit circle values and the calculator
Simplifying numerical expressions involving the inverse trig functions
Simplifying algebraic expressions involving the inverse trig functions
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ry it Now Answers

v

Loa) -7 b)—% 0) 7 d)%

2.1.9823 or 113.578°
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Section 2.3 Exercises

Evaluate the following expressions.

ot 2 (V3 (1
l.sm(zJ 2.sm[2] 3,Sm(2j
5. cos™ GJ 6. cos™' (%J 7. cos™ [—%J 8. cos™ (—?]

9. tan™ (1) 10. tanfl(\/g) 11.

Use your calculator to evaluate each expression.

13. cos™' (- 0.4) 14. cos™(0.8) 15.
Find the angle 6.
10
7
0
17. 18.

Evaluate the following expressions.

19, sin” ((gj} 2.
21. sin (005[4_”}) 2.
)

cos(tan '(4 ) 26.

23. cos(sm -

4. sin™ (—ﬁj
2

tan™' (—\/5) 12. tan™' (—1)
sin”'(~0.8) 16. tan™'(6)
12
0
19

cos™ [sin

cos™ (sin

sin(cos_1
- -l
tan(sm [

Find a simplified expression for each of the following.

217. sin(cos_1 (%D ,for =5<x<5 28. tan(cos"1 [gj} ,for —2<x<2

29. sin(tan_1 (3x)) 30. cos(tan_1 (4x))
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Section 2.4 Solving Trig Equations
In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could

be determined by the equation A(¢) = -67.5 cos(% tj +69.5.

If we wanted to know length of time during which the rider is more than 100 meters
above ground, we would need to solve equations involving trig functions.

Solving using known values
In the last chapter, we learned sine and cosine values at commonly encountered angles.
We can use these to solve sine and cosine equations involving these common angles.

Solve sin(t)= % for all possible values of 7.

Notice this is asking us to identify all angles, ¢, that have a sine value of # = % While

evaluating a function always produces one result, solving for an input can yield multiple

solutions. Two solutions should immediately jump to mind from the last chapter: ¢ = %

Sx o
and ¢ = o because they are the common angles on the unit circle.

Looking at a graph confirms that there are more than these two solutions. While eight
are seen on this graph, there are an infinite number of solutions!

f;‘-ff—f{?Wﬁ 5 4 3.2 -1 72 aw 7 8 éw
g4

Remember that any coterminal angle will also have the same sine value, so any angle
coterminal with these two is also a solution. Coterminal angles can be found by adding
full rotations of 2w, so we end up with a set of solutions:

t =7 4 27k where kis an integer, and ¢ = %T + 27k where k 1s an integer
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[Example 2

A circle of radius 5+/2 intersects the line x = -5 at two points. Find the angles @ on the
interval 0 < @ < 27, where the circle and line intersect.

The x coordinate of a point on a circle can be found as x = rcos(6), so the x coordinate

of points on this circle would be x = 5v/2 cos(d). To find where the line x = -5
intersects the circle, we can solve for where the x value on the circle would be -5

~5=5\2 cos(9) Isolating the cosine
— =cos(0) Recall that -1 ﬂ , S0 we are solving
V2 V22

We can recognize this as one of our special cosine values 517
from our unit circle, and it corresponds with angles

6’=3—ﬂ and c9=5—”
4 4
Try it Now

1. Solve tan(¢)=1 for all possible values of 7.

[Example 3
The depth of water at a dock rises and falls with the tide, following the equation

f(@)= 4sin(% tj + 7, where ¢ is measured in hours after midnight. A boat requires a

depth of 9 feet to tie up at the dock. Between what times will the depth be 9 feet?

To find when the depth is 9 feet, we need to solve f{z) = 9.

4 sin(% tj +7=9 Isolating the sine
4s1n[E tj =2 Dividing by 4
(7 1 . 1 V2 Sm
sin| —¢ |=— We know sin(@)=— when == or 0=""
12 2 2 6 6

While we know what angles have a sine value of % , because of the horizontal

stretch/compression, it is less clear how to proceed.
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To deal with this, we can make a substitution, defining a new temporary variable u to be

V2 .
U= Et , SO our equation becomes

. 1
sin(u) ==
2

From earlier, we saw the solutions to this equation were

u= %-ﬁ- 27k where k is an integer, and

u= 5?7[ + 27k where k is an integer

. o : : : V4
Undoing our substitution, we can replace the u in the solutions with u = Et and solve

for ¢.

%t = % + 27k where k is an integer, and %t = 5?7[ + 27k where £k is an integer.

Dividing by n/12, we obtain solutions

t =2+ 24k where £ is an integer, and
t =10+ 24k where k is an integer.

The depth will be 9 feet and the boat will
be able to approach the dock between 2am
and 10am.

Notice how in both scenarios, the 24k
shows how every 24 hours the cycle will
be repeated.

2 4 6 & 1012 14 16 18 20 22 24

. 1
In the previous example, looking back at the original simplified equation sm(%tj = >
we can use the ratio of the “normal period” to the stretch factor to find the period.
2—” = 27[(2J = 24 ; notice that the sine function has a period of 24, which is reflected
/4 V4
)
in the solutions: there were two unique solutions on one full cycle of the sine function,
and additional solutions were found by adding multiples of a full period.

‘ 2. Solve 4sin(5¢)—1=1 for all possible values of .
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Solving using the inverse trig functions
The solutions to sin(é?) = 0.3 do not involve any of the “special” values of the trig

functions to we have learned. To find the solutions, we need to use the inverse sine
function.

Use the inverse sine function to find one solution to sin(€)=0.8.

Since this is not a known unit circle value, calculating the inverse, € =sin™' (0.8). This
requires a calculator and we must approximate a value for this angle. If your calculator
is in degree mode, your calculator will give you an angle in degrees as the output. If
your calculator is in radian mode, your calculator will give you an angle in radians. In

radians, 0 =sin”' (0.8) ~0.927, or in degrees, @ =sin”' (0.8) ~53.130°.

If you are working with a composed trig function and you are not solving for an angle,
you will want to ensure that you are working in radians. In calculus, we will almost
always want to work with radians since they are unit-less.

Notice that the inverse trig functions do exactly what you would expect of any function —
for each input they give exactly one output. While this is necessary for these to be a
function, it means that to find a// the solutions to an equation like sin(6)= 0.8, we need

to do more than just evaluate the inverse function.

xample 5
Find all solutions tosin(@)=0.8.

We would expect two unique angles on one cycle to have oSl TS
this sine value. In the previous example, we found one 9
solution to be & =sin™'(0.8)~ 0.927. To find the other, we 0.929

need to answer the question “what other angle has the same
sine value as an angle of 0.927?” On a unit circle, we
would recognize that the second angle would have the same
reference angle and reside in the second quadrant. This

second angle would be located at & = 7 —sin "' (0.8) ,or
approximately O0~r—-0927=2.214

To find more solutions we recall that angles coterminal with these two would have the
same sine value, so we can add full cycles of 2.

0 =sin"'(0.8) + 27k and @ = 7 —sin~' (0.8) + 27k where k is an integer,
or approximately, € =0.927 + 27k and € =2.214+ 27k where k is an integer.
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Find all solutions to sin(x)= —g on the interval 0° < x <360°.

First we will turn our calculator to degree mode. Using the inverse, we can find one

solution x = sin™ (— gj ~ —62.734°. While this angle satisfies the equation, it does not

lie in the domain we are looking for. To find the angles in the desired domain, we start
looking for additional solutions.

First, an angle coterminal with —62.734° will have the same sine. By adding a full
rotation, we can find an angle in the desired domain with the same sine.
x =-62.734°+360° = 297.266°

There is a second angle in the desired domain that lies in the third quadrant. Notice that
62.734° is the reference angle for all solutions, so this second solution would be
62.734° past 180°

X =62.734° +180° = 242.734°

The two solutions on 0° < x <360° are x = 297.266° and x = 242.734°

xample 7
Find all solutions to tan(x)=3 on 0<x<27x.

Using the inverse tangent function, we can find one solution x = tan'(3) ~1.249.

Unlike the sine and cosine, the tangent function only attains any output value once per
cycle, so there is no second solution in any one cycle.

By adding =, a full period of tangent function, we can find
a second angle with the same tangent value. If additional 1.249
solutions were desired, we could continue to add multiples /
of m, so all solutions would take on the form 1
x =1.249 + kr , however we are only interested in 4.391
0<x<2r.

x=1249+ 7 =4.391

The two solutions on 0 < x <27 are x = 1.249 and x = 4.391.

3. Find all solutions to tan(x)=0.7 on 0°<x <360°.



102 Chapter 2

xample 8
Solve 3cos(z)+4 =2 for all solutions on one cycle, 0 <t <27

3cos(t)+4=2 Isolating the cosine
3cos(t)= -2
cos(t) = —% Using the inverse, we can find one solution
t= cosl(— zj ~2.301
3
2.301
Thinking back to the circle, a second angle with the same _§ \

cosine would be located in the third quadrant. Notice that
the location of this angle could be represented as
t =-2.301. To represent this as a positive angle we could

find a coterminal angle by adding a full cycle.
t=-2301+27 =3.982

~2.301
or 3.982

N

The equation has two solutions between 0 and 2, at t = 2.301 and 7 = 3.982.

xample 9

Solve cos(37)=10.2 for all solutions on two cycles, 0 <¢ < 477[

As before, with a horizontal compression it can be helpful to make a substitution,
u =3t. Making this substitution simplifies the equation to a form we have already
solved.

cos(u) =0.2

u=cos'(0.2)~1.369

A second solution on one cycle would be located in the fourth quadrant with the same
reference angle.
u=2r-1369=4914

In this case, we need all solutions on two cycles, so we need to find the solutions on the
second cycle. We can do this by adding a full rotation to the previous two solutions.
u=1369+27=7.653

u=4914+27=11.197

Undoing the substitution, we obtain our four solutions:
3t=1.369, s0 t=0.456
3t=4914s01=1.638
3tr="7.653,s0t=2.551

3t=11.197,s0 t=3.732
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Examplel0 . |

Solve 3sin(z¢)=-2 for all solutions.

3sin(z )= -2 Isolating the sine
sin(m‘) = 2 We make the substitution u = 7¢
3
. 2 . . .
sin(u) = -3 Using the inverse, we find one solution

u= sin‘l(—gj ~—0.730

This angle is in the fourth quadrant. A second angle with the same sine would be in the
third quadrant with 0.730 as a reference angle:
u=r+0.730=3.871

. . o 2
We can write all solutions to the equation sin(u)= -3 as

u=-0.730+ 27k where k is an integer, or
u=3871+2rk

Undoing our substitution, we can replace u in our solutions with u =zt and solve for ¢
xt=-0.730+27k or wt=3.871+2xk Divide by
t=-0.232+2k or t=1.232+2k

4. Solve 5 sin(% tj +3 =0 for all solutions on one cycle, 0 <¢<2rx.

Solving Trig Equations

1) Isolate the trig function on one side of the equation

2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig
function)

3) Use inverse trig functions to find one solution

4) Use symmetries to find a second solution on one cycle (when a second exists)

5) Find additional solutions if needed by adding full periods

6) Undo the substitution

We now can return to the question we began the section with.
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The height of a rider on the London Eye Ferris wheel can be determined by the equation

h(t) =—67.5 cos(%tj +69.5. How long is the rider more than 100 meters above

ground?

To find how long the rider is above 100 meters, we first find the times at which the rider
is at a height of 100 meters by solving /(?) = 100.

100 =-67.5 cos(%tj +69.5 Isolating the cosine

30.5=-67.5 cos[ﬁ t)
15

305 _ cos| =1 We make the substitution u = ——¢
—-67.5 15 15

30.5 . . .
15 cos(u) Using the inverse, we find one solution

u=cos’ 305 ~ 2.040
67.5

This angle is in the second quadrant. A second angle with
the same cosine would be symmetric in the third quadrant.

This angle could be represented as u = -2.040, but we need a
coterminal positive angle, so we add 2m:
u=2r-2.040~4.244

u=-2.040
or 4.244

Now we can undo the substitution to solve for ¢

%z = 2.040 so0 7 =9.740 minutes after the start of the ride

%t =4.244 so t = 20.264 minutes after the start of the ride

A rider will be at 100 meters after 9.740 minutes, and again after 20.264. From the
behavior of the height graph, we know the rider will be above 100 meters between these
times. A rider will be above 100 meters for 20.265-9.740 = 10.523 minutes of the ride.

Important Topics of This Section
Solving trig equations using known values
Using substitution to solve equations
Finding answers in one cycle or period vs. finding all possible solutions
Method for solving trig equations
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Try it Now Answers

1. Z+72k
4

2. 1= X4 (=T 27
305 6 5
3. x=34.992° or x =180°+34.99° = 214.992°

4. t=3.590 or t=2.410
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Section 2.4 Exercises

Find all solutions on the interval 0< 8 <27 .
1. 2sin(6)=—2 2. 2sin(8)=+3 3. 2cos(9)=1 4. 2c0s(0)=—/2
5. sin(6) =1 6. sin(6)=0 7. cos(0)=0 8. cos(8)=-1

Find all solutions.
9.2cos(0)=+2  10.2cos(@)=-1  1l1.2sin(@)=-1  12. 2sin(8)=—/3

Find all solutions.

13. 25in(30) =1 14. 25in(20) =3 15. 25in(30) = —2
16. 2sin(360) =1 17. 2cos(20) =1 18. 2cos(20) =3
19. 2cos(30) =2 20. 2cos(26) =1 21. cos(%a =1

. T . T
22. sm(;@}z—l 23. 2sin(70)=1. 24, 2cos(g9j=\/§

Find all solutions on the interval 0<x<2x.
25.sin(x)=0.27  26.sin(x)=0.48  27.sin(x)=-0.58  28. sin(x)=-0.34

29. cos(x)=-0.55  30. sin(x)=0.28 31. cos(x)=0.71 32. cos(x)=-0.07

Find the first two positive solutions.
33. 7sin(6x)=2 34. 7sin(5x) =6 35. 5c08(3x)=-3  36. 3cos(4x)=2

3

37. 3sin £x =2 38. 7sin £x =6 39. 5cos| —x|=1 40. 3cos zx =2
4 5 3 2
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Section 2.5 Modeling with Trigonometric Functions

Solving right triangles for angles

In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle
given one side and an additional angle. Using the inverse trig functions, we can solve for
the angles of a right triangle given two sides.

Examplel . ___ |

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its
current location. At what heading should the airplane fly? In other words, if we ignore
air resistance or wind speed, how many degrees north of east should the airplane fly?

We might begin by drawing a picture and labeling all of

the known information. Drawing a triangle, we see we

are looking for the angle a. In this triangle, the side 200
opposite the angle a is 200 miles and the side adjacent
is 300 miles. Since we know the values for the 300
opposite and adjacent sides, it makes sense to use the

tangent function.

tan(a) = % Using the inverse,

a =tan™ (%) ~ (0.588, or equivalently about 33.7 degrees.

The airplane needs to fly at a heading of 33.7 degrees north of east.

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall
for every 4 feet of ladder length®. Find the angle such a ladder forms with the ground.

For any length of ladder, the base needs to be one quarter of the distance
the foot of the ladder is away from the wall. Equivalently, if the base is a
feet from the wall, the ladder can be 4a feet long. Since a is the side 4a
adjacent to the angle and 4a is the hypotenuse, we use the cosine function.
1

cos(f) = 4 Using the inverse ]
4a 4 a

0 =cos™ (%) ~ 75.52 degrees

The ladder forms a 75.52 degree angle with the ground.

3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html



108 Chapter 2

1. One of the cables that anchor the center of the London Eye Ferris wheel to the
ground must be replaced. The center of the Ferris wheel is 69.5 meters above the
ground and the second anchor on the ground is 23 meters from the base of the Ferris
wheel. What is the angle of elevation (from ground up to the center of the Ferris
wheel) and how long is the cable?

In a video game design, a map shows the location of other characters relative to the
player, who is situated at the origin, and the direction they are facing. A character
currently shows on the map at coordinates (-3, 5). If the player rotates
counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate
20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it
as a point on a circle, and we will change the angle of
the point by 20 degrees. To do so, we first need to find
the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find
the radius using the Pythagorean Theorem:

(-3 452 =17

r=+9+25=+/34

To find the angle, we need to decide first if we are going to find the acute angle of the
triangle, the reference angle, or if we are going to find the angle measured in standard
position. While either approach will work, in this case we will do the latter. Since for
any point on a circle we know x = r cos(#) , using our given information we get

—3=4/34 cos(6)
=3 = cos(0)

Ners

-3

0 =cos™'| — |~120.964°
(J3_4 j

While there are two angles that have this cosine value, the angle of 120.964 degrees is

in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to
100.964 degrees. We can then evaluate the coordinates of the rotated point

x = /34 c0s(100.964°) ~ —1.109
y = /34 5in(100.964°) ~ 5.725

The coordinates of the character on the rotated map will be (-1.109, 5.725).
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Modeling with sinusoidal functions

Many modeling situations involve functions that are periodic. Previously we learned that
sinusoidal functions are a special type of periodic function. Problems that involve
quantities that oscillate can often be modeled by a sine or cosine function and once we
create a suitable model for the problem we can use that model to answer various
questions.

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of
16 hours in July*. When should you plant a garden if you want to do it during a month
where there are 14 hours of daylight?

To model this, we first note that the hours of daylight oscillate with a period of 12
months. With a low of 8.5 and a high of 16, the midline will be halfway between these
16 +8.5

values, at =12.25. The amplitude will be half the difference between the

16-8.5

highest and lowest values: =3.75, or equivalently the distance from the

midline to the high or low value, 16-12.25=3.75. Letting January be ¢ = 0, the graph
starts at the lowest value, so it can be modeled as a flipped cosine graph. Putting this
together, we get a model:

T 61

h(t)=-3.75 cos(—tj +12.25 s

6 -

101

-cos(?) represents the flipped cosine, e

3.75 is the amplitude, T

12.25 is the midline, i
Ezg corresponds to the horizontal stretch, VRN TN

found by using the ratio of the “original period / new period”
h(t) is our model for hours of day light # months after January.

To find when there will be 14 hours of daylight, we solve A(?) = 14.

14=-3.75 cos(%tj +12.25 Isolating the cosine
1.75=-3.75 cos(% t} Subtracting 12.25 and dividing by -3.75
_L7 = cos| 2+ Using the inverse

3.75 6

* http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html
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%t =cos” (— ;%) ~ 2.0563 multiplying by the reciprocal

t=2.0563- 6 =3.927 =3.927 months past January

7
There will be 14 hours of daylight 3.927 months into the year, or near the end of April.
While there would be a second time in the year when there are 14 hours of daylight,

since we are planting a garden, we would want to know the first solution, in spring, so
we do not need to find the second solution in this case.

Try it Now
2. The author’s 160
monthly gas usage 10 H1+— |—
(in therms) is shown 120~ —1 ]

) 100 H — — n
here. Find a go | | | [ | ]
function to model eold 1 | [ |
the data. 40— — 1 -

2 il i
0 T T T T T T T T T L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
xample 6

An object is connected to the wall with a spring that has a

natural length of 20 cm. The object is pulled back 8 cm past W
the natural length and released. The object oscillates 3 times

per second. Find an equation for the horizontal position of the

object ignoring the effects of friction. How much time during each cycle is the object
more than 27 cm from the wall?

If we use the distance from the wall, x, as the desired output, then the object will
oscillate equally on either side of the spring’s natural length of 20, putting the midline
of the function at 20 cm.

If we release the object 8 cm past the natural length, the amplitude of the oscillation will
be 8 cm.

We are beginning at the largest value and so this function can most easily be modeled
using a cosine function.

Since the object oscillates 3 times per second, it has a frequency of 3 and the period of
one oscillation is 1/3 of second. Using this we find the horizontal compression using the

ratios of the periods: 12/—7; =6rx.
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Using all this, we can build our model:
x(t) = 8cos(671)+ 20

To find when the object is 27 cm from the wall, we can solve x(?) = 27
27 =8cos(67t)+20 Isolating the cosine

7 =8cos(671)

% = cos(67zt) Using the inverse

67t =cos” Gj ~ 0.505

. 0.505
6r

=0.0268

Based on the shape of the graph, we can
conclude that the object will spend the first
0.0268 seconds more than 27 cm from the
wall. Based on the symmetry of the function,
the object will spend another 0.0268 seconds
more than 27 cm from the wall at the end of
the cycle. Altogether, the object spends
0.0536 seconds each cycle at a distance
greater than 27 cm from the wall. 104

o 02 03 04 05 06 07 08 09 |

In some problems, we can use trigonometric functions to model behaviors more
complicated than the basic sinusoidal function.

xample 7

A rigid rod with length 10 cm is attached
to a circle of radius 4cm at point 4 as
shown here. The point B is able to freely

move along the horizontal axis, driving a 4 Qcm
piston’. If the wheel rotates 0
counterclockwise at 5 revolutions per

second, find the location of point B as a
function of time. When will the point B
be 12 cm from the center of the circle?

A

_|Do

To find the position of point B, we can begin by finding the coordinates of point 4.
Since it is a point on a circle with radius 4, we can express its coordinates as
(4cos(0),4sin(#)) , where 6 is the angle shown.

5 For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/enginel.gif
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The angular velocity is 5 revolutions per second, or equivalently 10z radians per
second. After t seconds, the wheel will rotate by & =107x¢ radians. Substituting this,

we can find the coordinates of 4 in terms of 7.
(4cos(107t),4sin(107t))

Notice that this is the same value we would have obtained by observing that the period
of the rotation is 1/5 of a second and calculating the stretch/compression factor:

"original" 27 _ 10
" " 1 -
new A

Now that we have the coordinates of the point
A, we can relate this to the point B. By
drawing a vertical line segment from 4 to the

A
10 cm
horizontal axis, we can form a right triangle. / N
The height of the triangle is the y coordinate b
of the point A: 4sin(10z¢). Using the J
Pythagorean Theorem, we can find the base
length of the triangle:

(4sin(1071))" +b* =107
b* =100 —16sin>(107¢)
b =/100-16sin*(1071)

Looking at the x coordinate of the point 4, we can see that the triangle we drew is
shifted to the right of the y axis by 4cos(10z¢). Combining this offset with the length

of the base of the triangle gives the x coordinate of the point B:
x(t) =4cos(10xt) + \/1 00—16sin’(107¢)

To solve for when the point B will be 12 cm from the center of the circle, we need to
solve x(?) = 12.

12 =4cos(10z¢)+ \/ 100 —16sin*(107¢) Isolate the square root
12—-4cos(107t) = \/l 00—16sin°(107¢) Square both sides
(12—4cos(l Om))2 =100-16sin’(107¢) Expand the left side

144 -96 cos(1077t) +16cos’ (107¢) =100—16sin*(107¢)  Move all terms to the left
44 -96cos(107t) +16cos*(107t) +16sin*(107¢) = 0 Factor out 16
44-96cos(107t) +16(cos” (1071) +sin’ (1071) ) = 0

At this point, we can utilize the Pythagorean Identity, which tells us that
cos’(10z¢) +sin”(10z¢) =1.
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Using this identity, our equation simplifies to

44—-96cos(10zt)+16=0 Combine the constants and move to the right side
-96c¢c0s(107t) =-60 Divide
cos(107z¢t) = % Make a substitution

cos(u) = %

u=cos (6—(;} ~ 0.896 By symmetry we can find a second solution

u=2mr—-0.896 =5.388 Undoing the substitution
107zt =0.896, so ¢t = 0.0285
1077t =5.388,s0¢t=0.1715

The point B will be 12 cm from the center of the circle 0.0285 seconds after the process
begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of
those values.

Important Topics of This Section
Modeling with trig equations
Modeling with sinusoidal functions
Solving right triangles for angles in degrees and radians

Try it Now Answers

1. Angle of elevation for the cable is 71.69 degrees and the cable is 73.21 m long
2. Approximately G(t) = 66cos (% (t— 1)) +87
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Section 2.5 Exercises

In each of the following triangles, solve for the unknown side and angles.

1. 2. B

H 7

15 10

b 12

Find a possible formula for the trigonometric function whose values are in the following
tables.

5.

7. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature for the day is 63 degrees and the low
temperature of 37 degrees occurs at 5 AM. Assuming ¢ is the number of hours since
midnight, find an equation for the temperature, D, in terms of 7.

8. Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature for the day is 92 degrees and the low
temperature of 78 degrees occurs at 4 AM. Assuming ¢ is the number of hours since
midnight, find an equation for the temperature, D, in terms of ¢.

9. A population of rabbits oscillates 25 above and below an average of 129 during the
year, hitting the lowest value in January (¢ = 0).
a. Find an equation for the population, P, in terms of the months since January, ¢.
b. What if the lowest value of the rabbit population occurred in April instead?



10.

11.

12.

13.

14.

15.

16.

17.

18.
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A population of elk oscillates 150 above and below an average of 720 during the year,
hitting the lowest value in January (¢ = 0).
a. Find an equation for the population, P, in terms of the months since January, .
b. What if the lowest value of the rabbit population occurred in March instead?

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature of 105 degrees occurs at 5 PM and the
average temperature for the day is 85 degrees. Find the temperature, to the nearest
degree, at 9 AM.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the high temperature of 84 degrees occurs at 6 PM and the
average temperature for the day is 70 degrees. Find the temperature, to the nearest
degree, at 7 AM.

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature varies between 47 and 63 degrees during the day
and the average daily temperature first occurs at 10 AM. How many hours after
midnight does the temperature first reach 51 degrees?

Outside temperature over the course of a day can be modeled as a sinusoidal function.
Suppose you know the temperature varies between 64 and 86 degrees during the day
and the average daily temperature first occurs at 12 AM. How many hours after
midnight does the temperature first reach 70 degrees?

A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 6 minutes. How many
minutes of the ride are spent higher than 13 meters above the ground?

A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter
above the ground. The six o'clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in 10 minutes. How many
minutes of the ride are spent higher than 27 meters above the ground?

The sea ice area around the North Pole fluctuates between about 6 million square
kilometers in September to 14 million square kilometers in March. Assuming
sinusoidal fluctuation, during how many months are there less than 9 million square
kilometers of sea ice?

The sea ice area around the South Pole fluctuates between about 18 million square
kilometers in September to 3 million square kilometers in March. Assuming
sinusoidal fluctuation, during how many months are there more than 15 million
square kilometers of sea ice?
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per
breath to increase and decrease in a sinusoidal manner, as a function of time. For one
particular patient with this condition, a machine begins recording a plot of volume per
breath versus time (in seconds). Let b(¢) be a function of time ¢ that tells us the

volume (in liters) of a breath that starts at time ¢. During the test, the smallest volume
per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the
test. The largest volume per breath is 1.8 liters and this first occurs for a breath
beginning 55 seconds into the test. [UW]

a. Find a formula for the function b(¢#) whose graph will model the test data for this

patient.
b. If the patient begins a breath every 5 seconds, what are the breath volumes during
the first minute of the test?

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the
water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides.
Suppose there are two high tides and two low tides every day and the height of the
tide varies sinusoidally. [UW]

a. Find a formula for the function y=~Ah(t) that computes the height of the tide above

low tide at time ¢. (In other words, y = 0 corresponds to low tide.)
b. What is the tide height at 11:00 a.m.?

21. A communications satellite orbits the earth ¢
miles above the surface. Assume the radius
of the earth is 3,960 miles. The satellite can Earth
only “see” a portion of the earth’s surface,
bounded by what is called a horizon circle.

This leads to a two-dimensional cross- horizon circle
sectional picture we can use to study the size
of the horizon slice: [UW]

satellite

center of Earth,

satellite
a. Find a formula for a in terms of ¢. Earth

b. If +=30,000 miles, what is o? What
percentage of the circumference of the

earth is covered by the satellite? What : L
CROSS-SECTION

would be the minimum number of such
satellites required to cover the circumference?
c. If+=1,000 miles, what is a? What percentage of the circumference of the earth is
covered by the satellite? What would be the minimum number of such satellites
required to cover the circumference?
d. Suppose you wish to place a satellite into orbit so that 20% of the circumference
is covered by the satellite. What is the required distance #?
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket
filled with nitrous oxide. According to her design, if the atmospheric pressure exerted

on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket
will explode. Tiff worked from a formula p =14.7¢™"* pounds/sq.in. for the

atmospheric pressure /4 miles above sea level. Assume that the rocket is launched at
an angle of a above level ground at sea level with an initial speed of 1400 feet/sec.
Also, assume the height (in feet) of the rocket at time ¢ seconds is given by the

equation y(t) =—-16t> +1400 sin(a)t . [UW]

a. At what altitude will the rocket explode?

b. Ifthe angle of launch is a = 12°, determine the minimum atmospheric pressure
exerted on the rocket during its flight. Will the rocket explode in midair?

c. Ifthe angle of launch is a = 82°, determine the minimum atmospheric pressure
exerted on the rocket during its flight. Will the rocket explode in midair?

d. Find the largest launch angle a so that the rocket will not explode.



118 Chapter 2



Section 3.1 Solving Trigonometric Equations and Identities 119

Chapter 3: Trigonometric Equations and Identities

In the last two chapters we have used basic definitions and relationships to simplify
trigonometric expressions and solve trigonometric equations. In this chapter we will look
at more complex relationships. By conducting a deeper study of trigonometric identities
we can learn to simplify complicated expressions, allowing us to solve more interesting
applications.

Section 3.1 Solving Trigonometric Equations with Identities.............cccceveveeiieennnnne. 119
Section 3.2 Addition and Subtraction Identities ...........cccceereeiriiniiiiiiiniieieeeeeee 127
Section 3.3 Double Angle Identities .........c.ceveeriieriieiiiieiieeie et 141
Section 3.4 Modeling Changing Amplitude and Midline.............cccceeeevienciveenneeenee. 152

Section 3.1 Solving Trigonometric Equations with Identities

In the last chapter, we solved basic trigonometric equations. In this section, we explore
the techniques needed to solve more complicated trig equations.

Building from what we already know makes this a much easier task.
Consider the function f(x) = 2x* +x. If you were asked to solve f(x) = 0, it require
simple algebra:

2x*+x=0 Factor
x(2x+1)=0 Giving solutions
x=0 or x=— 1

2

Similarly, for g(¢) =sin(¢), if we asked you to solve g(¢) =0, you can solve this using

unit circle values:
sin(¢) =0 for ¢t =0, 7, 27 and so on.

Using these same concepts, we consider the composition of these two functions:

f(g()) = 2(sin(¢))* + (sin(z)) = 2sin” (¢) + sin(¢)

This creates an equation that is a polynomial trig function. With these types of functions,
we use algebraic techniques like factoring and the quadratic formula, along with
trigonometric identities and techniques, to solve equations.

As a reminder, here are some of the essential trigonometric identities that we have
learned so far:

This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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ldentities |

Pythagorean Identities
cos’ () +sin’(¢) =1 1+ cot?(¢) = csc (1) 1+ tan”(¢) = sec’(¢)

Negative Angle Identities
sin(—t) = —sin(?) cos(—t) = cos(?) tan(—¢) = —tan(¢)
csc(—t) = —csc(?) sec(—t) = sec(?) cot(—t) = —cot(t)

Reciprocal Identities

1 ~ _sin(?) _
sec(t) = cos(?) eselt) = sin(t) ano = cos(?) o0 tan(?)

Solve 2sin*(¢) +sin(z) = 0 for all solutions with 0 < ¢ < 2.

This equation kind of looks like a quadratic equation, but with sin(7) in place of an
algebraic variable (we often call such an equation “quadratic in sine’’). As with all
quadratic equations, we can use factoring techniques or the quadratic formula. This
expression factors nicely, so we proceed by factoring out the common factor of sin(¢):
sin(7)(2sin(r) +1)=0

Using the zero product theorem, we know that the product on the left will equal zero if
either factor is zero, allowing us to break this equation into two cases:
sin(¢)=0  or 2sin(¢)+1=0

We can solve each of these equations independently
sin(z) =0 From our knowledge of special angles

t=0Qort=n

2sin(t)+1=0

sin(¢) = —% Again from our knowledge of special angles
T 11z
t=-—ort=—r0
6

Altogether, this gives us four solutions to the equation on 0 <¢ <27 :

Tr 11z
t=0,7,—,— 3l
6 6 .

We could check these
answers are reasonable by
graphing the function and

comparing the zeros. a6 a3 w2 2a/3 Smfé T Tals 4a/3 3aR2 S5al3 1lale 2x
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Solve 3sec’(¢) —Ssec(t)—2 =0 for all solutions with 0 <t <27 .

Since the left side of this equation is quadratic in secant, we can try to factor it, and
hope it factors nicely.

If it is easier to for you to consider factoring without the trig function present, consider
using a substitutionu = sec(¢) , resulting in 3u” —5u —2 =0, and then try to factor:

3u® —5u—2=Cu+1)(u-2)

Undoing the substitution,
(3sec(t)+1)(sec(t)—2)=0

Since we have a product equal to zero, we break it into the two cases and solve each
separately.

3sec(t)+1=0 Isolate the secant
sec(t) = —% Rewrite as a cosine
1 1 .
=—— Invert both sides
cos(?) 3
cos(t) =-3

Since the cosine has a range of [-1, 1], the cosine will never take on an output of -3.
There are no solutions to this case.

Continuing with the second case,

sec(t)—2=0 Isolate the secant
sec(t) =2 Rewrite as a cosine
! = Invert both sides
cos(?)
cos(?) =% This gives two solutions
Sm
t="—ort="—
3 3 204
These are the only two solutions on the interval. By
By utilizing technology to graph 104
f(t)=3sec’(t)—5sec(t)—2, a look at a graph 5l
confirms there are only two zeros for this function /S I I R
on the interval [0, 2w), which assures us that we | A 2 3 4 5\ ¢

didn’t miss anything. 5T
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1. Solve 2sin”(¢) +3sin(¢) +1=0 for all solutions with 0 < < 27 .

When solving some trigonometric equations, it becomes necessary to first rewrite the
equation using trigonometric identities. One of the most common is the Pythagorean

Identity, sin”(@)+ cos” (&) = 1 which allows you to rewrite sin” (&) in terms of cos’(6)
or vice versa,

sin®(8) =1-cos*(0)

cos’(0) =1-sin’(0)

This identity becomes very useful whenever an equation involves a combination of sine
and cosine functions.

Solve 2sin*(¢) —cos(¢) =1 for all solutions with 0 <¢ <27 .

Since this equation has a mix of sine and cosine functions, it becomes more complicated
to solve. It is usually easier to work with an equation involving only one trig function.
This is where we can use the Pythagorean Identity.

2sin*(¢) —cos(t) =1 Using sin’(0) =1—cos’(0)
2(1 - cos? (1)) - cos(t) = 1 Distributing the 2
2—2cos’(t)—cos(t) =1

Since this is now quadratic in cosine, we rearrange the equation so one side is zero and
factor.

—2cos’(t)—cos(t)+1=0 Multiply by -1 to simplify the factoring
2co0s”(t) +cos(t)—1=0 Factor
(2cos(t) —1)cos(t) +1)=0

This product will be zero if either factor is zero, so we can break this into two separate
cases and solve each independently.
2cos(r)—1=0 or cos(t)+1=0

cos(t) = % or cos(t) =—1

V4
t=—ort=—  or t=1m
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2. Solve 2sin”(¢) = 3cos(t) for all solutions with 0 < < 27 .

In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant,
cosecant, and cotangent as part of solving an equation.

Solve tan(x) = 3sin(x) for all solutions with 0 < x <27 .

With a combination of tangent and sine, we might try rewriting tangent
tan(x) = 3sin(x)

sin(x) = 3sin(x) Multiplying both sides by cosine
cos(x)

sin(x) = 3sin(x) cos(x)

At this point, you may be tempted to divide both sides of the equation by sin(x). Resist
the urge. When we divide both sides of an equation by a quantity, we are assuming the
quantity is never zero. In this case, when sin(x) = 0 the equation is satisfied, so we’d
lose those solutions if we divided by the sine.

To avoid this problem, we can rearrange the equation so that one side is zero'.
sin(x) —3sin(x)cos(x) =0 Factoring out sin(x) from both parts
sin(x)(l -3 cos(x)) =0

From here, we can see we get solutions when sin(x) =0 or 1-3cos(x) =0.
Using our knowledge of the special angles of the unit circle

sin(x) =0 whenx=0orx =m.

For the second equation, we will need the inverse cosine.

1-3cos(x)=0
cos(x) = 1 Using our calculator or technology
x =cos”' (%) ~1.231 Using symmetry to find a second solution

x=2r-1231=5.052

We have four solutionson 0 < x <27 :
x=0,1.231, m, 5.052

"' You technically can divide by sin(x) as long as you separately consider the case where sin(x) = 0. Since it
is easy to forget this step, the factoring approach used in the example is recommended.
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3. Solve sec(d) = 2cos(#) to find the first four positive solutions.

Examples . |

Solve ?(0) +3cos(8) =2cot(&)tan(8) for all solutions with 0< 6 <27 .
sec

Sec? @ +3cos ((9) =2cot (0) tan (0) Using the reciprocal identities

4cos*(0) +3cos(6) =2 ! tan(&) Simplifying
tan(6)
4cos’ (6)+3cos(0)

=2 Subtracting 2 from each side
4cos’(8)+3cos(0)-2=0

This does not appear to factor nicely so we use the quadratic formula, remembering that
we are solving for cos(6).

cos(9) = 3=V TAAD) _ -34441

2(4) 8

Using the negative square root first,

—3-441
8

cos(0) = =-1.175

This has no solutions, since the cosine can’t be less than -1.

Using the positive square root,

—3+4/41
8

cos(d) = =0.425

0 =cos™ (0.425) =1.131 By symmetry, a second solution can be found
0=2r-1.131=5.152

Important Topics of This Section
Review of Trig Identities
Solving Trig Equations
By Factoring
Using the Quadratic Formula
Utilizing Trig Identities to simplify
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1= 1x 37 lm

b

6 2 6
2 =%
373
3. 9=F 3% 5 1n
4474 4
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Section 3.1 Exercises

Find all solutions on the interval 0<8 <27 .
1. 2sin(8)=-1 2.2sin(0)=v3 3. 2cos(8)=1 4. 2cos(0)=—/2

Find all solutions.

5. ZSin(%szl 6. ZSin(ng:\/E 7. 2c0s(2t):—\/§ 8. 2cos(3r)=-1

9.3cos(%xJ=2 10.8005(%xj:6 11. 7sin(3t)=-2  12. 4sin(4¢)=1

Find all solutions on the interval [0,27) .

13. 10sin(x)cos(x) =6 cos(x) 14. —3sin(¢)=15cos(¢)sin(¢)
15. csc(2x)—9:0 16. sec(26’)=3
17. sec(x)sin(x)—2sin(x)=0 18. tan(x)sin(x)—sin(x)=0
19. sin2x:l 20. 005292l

4 2
21. sec’x=7 22.¢csc’t=3
23. 2sin’ w+3sinw+1=0 24. 8sin’ x+6sin(x)+1=0
25. 2cos’ t+cos (1) =1 26. 8cos’ (0)=3—2cos(6)
27. 4cosz(x)—4=15cos(x) 28. 9sin(w)—2=4sin2(w)
29. 12sin’ (1) +cos(1)-6=0 30. 6¢cos” (x)+7sin(x)—-8=0
31. cos’ ¢ = —6sing 32. sin’ t =cost
33. tan’ (x) =3tan(x) 34. cos’ (1) =—cos(r)
35. tans(x)=tan(x) 36. tans(x)—9tan(x)=0

37. 4sin(x)cos(x)+2sin(x)—2cos(x)—1=0

38. 2sin(x)cos(x)—sin(x)+2cos(x)-1=0

39. tan(x)—3sin(x)=0 40. 3cos(x)=cot(x)

41. 2tan’(¢) =3sec(t) 42. 1-2tan(w) = tan® (w)
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Section 3.2 Addition and Subtraction ldentities
In this section, we begin expanding our repertoire of trigonometric identities.

identities . |

The sum and difference identities

cos(a — ) = cos(a) cos(f) + sin(a) sin(f)
cos(a + ) = cos(a) cos(f) —sin(ex) sin( )
sin(a + f) = sin(a) cos(f) + cos(a) sin( )
sin(a — f) = sin(a) cos(f) — cos(a) sin( )

We will prove the difference of angles identity for cosine. The rest of the identities can
be derived from this one.

Proof of the difference of angles identity for cosine
Consider two points on a unit circle:

P at an angle of a from the positive x axis

with coordinates (cos(a), sin(a))

Q at an angle of B with coordinates P

(cos(B),sin(pB))

Notice the measure of angle POQ is o — .
Label two more points:

C at an angle of a — 3, with coordinates
(cos(ax = B),sin(ar = B)),

D at the point (1, 0).

Notice that the distance from C to D is the
same as the distance from P to Q because
triangle COD is a rotation of triangle POQ.

Using the distance formula to find the distance from P to Q yields
J(cos(ar) —cos(B)) + (sin(a) —sin(B))’

Expanding this
\/cos2 (o) — 2 cos(a) cos(B) + cos” (f) +sin’ (&) — 2sin(a) sin( f) + sin” (B)

Applying the Pythagorean Identity and simplifying
2 2cos(a)cos(f) - 2sin(a)sin(B)
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Similarly, using the distance formula to find the distance from C to D

\/(cos(a -p) - 1)2 + (sin(a -p)- 0)2

Expanding this
\/cosz(a — B)—2cos(a— ) +1+sin’(a - p)

Applying the Pythagorean Identity and simplifying
\/— 2cos(a— f)+2

Since the two distances are the same we set these two formulas equal to each other and
simplify

\/2 —2cos(a)cos(f)—2sin(a)sin(f) = \/— 2cos(a—f)+2

2 —2cos(a)cos(f) —2sin(a)sin(f) = -2cos(a — ) +2

cos(a) cos(f) + sin(a) sin(f) = cos(a — )

Establishing the identity.

1. By writing cos(a + ) as cos(a - (— ﬂ)) , show the sum of angles identity for cosine
follows from the difference of angles identity proven above.

The sum and difference of angles identities are often used to rewrite expressions in other
forms, or to rewrite an angle in terms of simpler angles.

Exampled . . |

Find the exact value of cos(75°).

Since 75° =30°+45°, we can evaluate cos(75°) as
co0s(75°) = cos(30° +45°) Apply the cosine sum of angles identity
=c0s(30°) cos(45°) —sin(30°)sin(45°) Evaluate

e Simpl
2 2 2 2 Py

2. Find the exact value of sin(%j .
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Example2 . |

Rewrite sin(x — %j in terms of sin(x) and cos(x).

sin(x - %) Use the difference of angles identity for sine

= sin(x)cos(%) - cos(x)sin(%j Evaluate the cosine and sine and rearrange

V2 V2

= TSin(x)— TCOS()C)

Additionally, these identities can be used to simplify expressions or prove new identities

Exgmple3 . . |

Prove s%n(a +b) _ tan(a) + tan(d) .
sin(a—b) tan(a)—tan(b)

As with any identity, we need to first decide which side to begin with. Since the left
side involves sum and difference of angles, we might start there

sin(a +b)
sin(a —b)
_sin(a)cos(b) + cos(a)sin(b)
- sin(a) cos(b) — cos(a)sin(b)

Apply the sum and difference of angle identities

Since it is not immediately obvious how to proceed, we might start on the other side,
and see if the path is more apparent.
tan(a) + tan(b)
tan(a) — tan(b)

Rewriting the tangents using the tangent identity

sin(a) N sin(b)
= ZTIT((;;)) - Z::((Z)) Multiplying the top and bottom by cos(a)cos(b)

cos(a) cos(b)

(sin(a) . sin(0)

) B jcos(a) cos(b)
_ cos(a) cos(b) Distributing and simplifying

(sinm) _sin(b) Jcos(mcos(b)

cos(a) cos(b)
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_sin(a)cos(a) +sin(b) cos(b)
- sin(a) cos(a) —sin(b) cos(b)

From above, we recognize this

_sin(a +b)

=— Establishing the identity
sin(a —b)

These identities can also be used to solve equations.

Exampled . |

Solve sin(x)sin(2x) + cos(x)cos(2x) = 73 .

By recognizing the left side of the equation as the result of the difference of angles
identity for cosine, we can simplify the equation

sin(x)sin(2x) + cos(x) cos(2x) = ? Apply the difference of angles identity
cos(x —2x) = %

cos(—x) = %
V3
2

Use the negative angle identity

cos(x) =

Since this is a special cosine value we recognize from the unit circle, we can quickly
write the answers:

T
X = g + 27Zk
, where £ is an integer

=E+2ﬂk

X

Combining Waves of Equal Period
A sinusoidal function of the form f(x) = Asin(Bx + C) can be rewritten using the sum of
angles identity.

Rewrite f(x)= 4sin(3x + %) as a sum of sine and cosine.
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Using the sum of angles identity

4 sin(3x + zj
3

= 4(sin(3x)cos(§) + cos(3x)sin(§n Evaluate the sine and cosine

= 4(sin(3x)- % +cos(3x)- g] Distribute and simplify

= 2sin(3x)+ 2.3 cos(3x)

Notice that the result is a stretch of the sine added to a different stretch of the cosine, but
both have the same horizontal compression, which results in the same period.

We might ask now whether this process can be reversed — can a combination of a sine
and cosine of the same period be written as a single sinusoidal function? To explore this,
we will look in general at the procedure used in the example above.

f(x)=Asin(Bx+C) Use the sum of angles identity
= A(sin(Bx) cos(C) + cos(Bx)sin(C)) Distribute the 4
= Asin(Bx)cos(C) + Acos(Bx)sin(C) Rearrange the terms a bit

= Acos(C)sin(Bx) + Asin(C)cos(Bx)

Based on this result, if we have an expression of the form msin(Bx) + ncos(Bx), we

could rewrite it as a single sinusoidal function if we can find values 4 and C so that
msin(Bx) + ncos(Bx) = Acos(C)sin(Bx) + Asin(C)cos(Bx), which will require that:

™ — cos(C
m = Acos(C) ) ) q cos(C)
) which can be rewritten as
n = Asin(C) £=sin(C)
A
To find 4,
m* +n* =(4cos(C))’ +(4sin(C) )’
= A% cos’*(C) + A? sin*(C)
=4’ (cos2 (C)+sin’(C )) Apply the Pythagorean Identity and simplify
= A4?

Rewriting a Sum of Sine and Cosine as a Single Sine
To rewrite msin(Bx)+ ncos(Bx) as Asin(Bx+ C)

A2 =m? +n?, cos(C) =%, and sin(C) =
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We can use either of the last two equations to solve for possible values of C. Since there
will usually be two possible solutions, we will need to look at both to determine which
quadrant C is in and determine which solution for C satisfies both equations.

Exgmple6 |

Rewrite 4+/3 sin(2x) —4cos(2x) as a single sinusoidal function.

Using the formulas above, 4° = (4«/5)2 +(-4) =16-3+16=64,50 4 =8.

Solving for C,

W33 T e lx
2’ 6

cos(C):T OC:E or C 6

However, since sin(C) = _?4 = —% , the angle that works for both is C = %

Combining these results gives us the expression

8 sin(2x + Mj
6
3. Rewrite —3+2 sin(5x) + 32 cos(5x) as a single sinusoidal function.

Rewriting a combination of sine and cosine of equal periods as a single sinusoidal
function provides an approach for solving some equations.

Example7 . |

Solve 3sin(2x) +4cos(2x) =1 to find two positive solutions.

To approach this, since the sine and cosine have the same period, we can rewrite them
as a single sinusoidal function.

A =(3)+(4)=25,504=5

cos(C) = % ,s0 C = cos_l(gj ~0.927 or C =27 -0.927 =5.356

Since sin(C) = % , a positive value, we need the angle in the first quadrant, C = 0.927.

Using this, our equation becomes
5sin(2x+0.927) =1 Divide by 5

sin(2x +0.927) = % Make the substitution u = 2x + 0.927
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1

sin(u) = 3 The inverse gives a first solution
u =sin™' (%) ~ (0.201 By symmetry, the second solution is
u=mrx-0.201=2.940 A third solution is

u=2r+0.201=6.485

Undoing the substitution, we can find two positive solutions for x.
2x+0.927=0.201 or 2x+0.927=2940 or 2x+0.927 = 6.485
2x =-0.726 2x=2.013 2x =5.558
x=-0.363 x =1.007 x=2.779

Since the first of these is negative, we eliminate it and keep the two positive solutions,
x=1.007 and x =2.779.

The Product-to-Sum and Sum-to-Product Identities

\dentities . . |

The Product-to-Sum Identities

sin(a) cos(f) = %(sin(a + ) +sin(a — ,B))
sin(e)sin(f) = %(cos(a — ) —cos(a + ,B))

cos(a)cos(f) = l(cos(oc + ) +cos(a — ,6’))
2

We will prove the first of these, using the sum and difference of angles identities from the
beginning of the section. The proofs of the other two identities are similar and are left as
an exercise.

Proof of the product-to-sum identity for sin(a)cos(f)
Recall the sum and difference of angles identities from earlier

sin(a + f) = sin(a) cos(f) + cos(a) sin(S)
sin(a — f) = sin(a) cos(f) — cos(a) sin( )

Adding these two equations, we obtain
sin(a + f) +sin(a — f) = 2sin(a) cos(f)

Dividing by 2, we establish the identity
sin(a) cos(f) = %(sin(a + ) +sin(a - fB))
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Example8 |

Write sin(2¢)sin(4¢) as a sum or difference.

Using the product-to-sum identity for a product of sines

sin(2¢)sin(4¢) = %(005(21 —41) — cos(2t + 41))
= %(cos(—Zt) - cos(6t)) If desired, apply the negative angle identity

= (cos(21) ~cos(6n) Distribute

1 1
= —cos(2t) ——cos(6¢t
5 (21) 5 (61)

4. Evaluate cos M cos z .
12 12

The Sum-to-Product Identities

sin(u)+sin(v) = ZSin(u ;—VJCOS(” ;vj
)

sin(u)—sin(v) = 2sin(u ;vjcos(u v

2

u+v u-—-v
COS
2 J ( 2 J

cos(u)+ cos(v) = 2003(

2

o)) 5 5]

We will again prove one of these and leave the rest as an exercise.

Proof of the sum-to-product identity for sine functions

We begin with the product-to-sum identity

sin(a)cos(f) = l(sin(oz + )+ sin(a — ﬂ))
2

We define two new variables:

u=a+p

v=a-pf
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u+v

Adding these equations yields u +v =2« , giving a =

<N

u—

Subtracting the equations yields u —v=24,0r f =

Substituting these expressions into the product-to-sum identity above,

sin(u ;— vj cos(u ; vj = %(Sin(u)+ sin(v)) Multiply by 2 on both sides

2 sin( - er vj cos(u ; vj = sin(u)+ sin(v) Establishing the identity
Exampleo |
Evaluate cos(15°) —cos(75°).

Using the sum-to-product identity for the difference of cosines,
cos(15°) —cos(75°)

=-2 sin(15 75 jsin(ls -7 j Simplify
2 2
= —2sin(45°)sin(-30°) Evaluate
_ 212
2 2 2

ExamplelO . |

Prove the identity cos(4t) ~ cos(2/) =—tan(?).

sin(4¢) + sin(2t)

Since the left side seems more complicated, we can start there and simplify.
cos(4t) — cos(2t)

sin(4¢) + sin(2¢)

. (4t+2tj . (4t—2tj
—2sin sin
2 2

Using the sum-to-product identities

T (4t+2t] (4t—2tj Simplify
2sin cos
2 2
_ = 2sin(3)sin(t) Simplify further
2 sin(3t)cos(t)
= Ln(t) Rewrite as a tangent
cos(t)

= —tan(?) Establishing the identity
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Try it Now
5. Notice that, using the negative angle identity, sin(u)— sin(v) = sin(u) + sin(—v) . Use
this along with the sum of sines identity to prove the sum-to-product identity for

sin(u)—sin(v).

Solve sin (z¢)+sin(37zt) = cos(zt) for all solutions with 0 <7< 2.

In an equation like this, it is not immediately obvious how to proceed. One option
would be to combine the two sine functions on the left side of the equation. Another
would be to move the cosine to the left side of the equation, and combine it with one of
the sines. For no particularly good reason, we’ll begin by combining the sines on the
left side of the equation and see how things work out.

sin(7t)+sin(37t) = cos(xt) Apply the sum to product identity on the left
2sin ( i +237rt j cos ( i _237”J =cos(zt) Simplify

2sin(27t)cos(—7t) = cos(rt) Apply the negative angle identity
2 s1n(27rt) s(7r ) cos(rt) Rearrange the equation to be 0 on one side
2sin(27t)cos(zt)—cos(zt) =0 Factor out the cosine

cos(m)( in(27t)- )

Using the Zero Product Theorem we know that at least one of the two factors must be
. 2 .
zero. The first factor, cos(m‘) , has period P =— =2, so the solution interval of
V4

0 <t < 2 represents one full cycle of this function.

cos(7t)=0 Substitute u = ¢
cos(u)=0 On one cycle, this has solutions
u :% or u = 377[ Undo the substitution

V4 1
Tt=—,801t=—

2 2

kY4 3
Tt=——,80 t =—

2 2

The second factor, 2 sin(27rt) —1, has period of P = i—ﬂ =1, so the solution interval
Vs

0 <t < 2 contains two complete cycles of this function.




2sin(271)-1=0

sin(27t) :%

7 137 Y4
U=2r+—=——oru=2r+—
6 6 6

27zt:£,so t:i
6

12

Zﬂt:S—ﬁ, SO zf:i
12

137 13
2mt=——,80 t =—
12

177 17
2rt=——,80 t =—
6 12

looking at the graph.
1 5113 317

12°12°2°12°2°12

Altogether, we found six solutions on
0 <t <2, which we can confirm by
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Isolate the sine

u=2rt
On one cycle, this has solutions

On the second cycle, the solutions are

17?7[ Undo the substitution

AW
BNVAY

Important Topics of This Section
The sum and difference identities
Combining waves of equal periods
Product-to-sum identities
Sum-to-product identities
Completing proofs

Try it Now Answers

cos(a + ) = cos(a — (—f3))

cos(a)cos(—/f3) + sin() sin(—f3)
cos(a) cos(f) + sin(a)(—sin(3))

cos(a)cos(f) —sin(a) sin( )
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J6 -2

2.
4

3. 6 sin(Sx + 3—”)
4

~2-43
4

5. sin(u) —sin(v) Use negative angle identity for sine

sin(u) + sin(—v)

2 sin(mj cos( “- (_ V)j
2 2 Eliminate the parenthesis

. u-—v u-+v
2 sm( ] cos( j
2 2 Establishing the identity

4,

Use sum-to-product identity for sine

+
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Section 3.2 Exercises

Find an exact value for each of the following.
1. sin(75°) 2. sin(195°) 3. cos(165°) 4. cos(345°)

5. cos 7—” 6. cos x 7. sin 5—” 8. sin 117[
12 12 12 12
Rewrite in terms of sin(x) and cos(x).
9. sin x+£ 10. sin x—3—7Z 1. cos x—s—ﬂ 12. cos x+2—7[
6 4 6 3
13. csc z—t 14. sec £—w 15. cot z—x 16. tan Z—x
2 2 2 2

Simplify each expression.
Rewrite the product as a sum.

—

17. 16sin(16x)sin(1 lx) 18. 20cos(36t)cos(6t)
19. 2sin(5x)cos(3x) 20. 10cos(5x)sin (10x)
Rewrite the sum as a product.

21. cos(6¢)+cos(4t) 22. cos(6u)+cos(4u)
23. sin(3x)+sin(7x) 24. sin(h)+sin(3h)

25. Given sin(a) =§ and cos(b) = —i, with a and b both in the interval {%,ﬁj :

a. Find sin(a+b) b. Find cos(a—b)

26. Given sin(a) =§ and cos(b) = é , with a and b both in the interval [0,%) :

a. Find sin(a—b) b. Find cos(a+b)

Solve each equation for all solutions.
27. sin(3x)cos(6x)—cos(3x)sin(6x)=—0.9
28. sin(6x)cos(11x)—cos(6x)sin(11x)=—0.1
29. ¢ (2x)cos(x)+sin(2x)sin(x)=1
NE)
(5x) cos(

30. cos(5x)cos 3x)—sin(5x)sin(3x)=7
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Solve each equation for all solutions.
31. cos(5x)=—cos(2x)

32. sin(5x) =sin(3x)
33. cos(60)—cos(20) =sin(40)
34. cos(86)—cos(260)=sin(50)

Rewrite as a single function of the form Asin(Bx+C).
35. 4sin(x)—6cos(x) 36. —sin(x)—5cos(x)
37. 53in(3x)+200s(3x) 38. —3sin(5x)+4cos(5x)

Solve for the first two positive solutions.

39. =5sin(x)+3cos(x)=1 40. 3sin(x)+cos(x)=2
41. 3sin(2x)—5cos(2x) =3 42. -3sin(4x)—2cos(4x)=1
Simplify.
13 sin(7t)+sin(5t) 44 sin(9t)—sin(3t)
' cos(7¢)+cos(5t) ' cos (9¢) + cos(3¢)

Prove the identity.
t +1
44. tan (x + Zj &

1-tan(x)
T 1- tan(t)
- tan(z_ 1+tan(t)
46. cos(a+b)+cos(a—b)=2cos(a)cos(b)
cos(a+b) 1-tan(a)tan(b)
47 cos(a—b) 1+tan(a Jtan(b)
48, tan(a+b):s1n( )cos( )+s1n( )cos(b)
tan(a—b) sin(a)cos(a)—sin(b)cos(b)

49. 2sin(a+b)sin(a—b) = cos(2b)—cos(2a)
sin(x)+sin(y) ~tan l ot
>0 cos(x)+cos(y)_t (2( y)j
cos(a+b)
cos(a)cos(b)

52. cos(x+ y)cos(x—y)=cos’ x—sin’ y

51. =1—tan(a)tan(b)
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Section 3.3 Double Angle Identities

Two special cases of the sum of angles identities arise often enough that we choose to
state these identities separately.

ldentities . ... . . .|
The double angle identities

sin(2a) = 2sin(a) cos()
cos(2a) = cos’(a)—sin’(a)
=  1-2sin’(a)
= 2cos’(a)-1

These identities follow from the sum of angles identities.

Proof of the sine double angle identity

sin(2x)

=sin(a + a) Apply the sum of angles identity
= sin(@) cos() + cos(x) sin() Simplify

= 2sin(a)cos(a) Establishing the identity

‘ 1. Show cos(2a) = cos’(a) —sin’ () by using the sum of angles identity for cosine.

For the cosine double angle identity, there are three forms of the identity stated because
the basic form, cos(2a) = cos’(a) —sin” (), can be rewritten using the Pythagorean
Identity. Rearranging the Pythagorean Identity results in the

equality cos”(ar) = 1—sin’(«) , and by substituting this into the basic double angle
identity, we obtain the second form of the double angle identity.

cos(2a) = cos’ (o) —sin’ () Substituting using the Pythagorean identity
cos(2a) =1—sin’(a) —sin’ () Simplifying
cos(2a) =1-2sin*(a)
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Examplel . |

If sin(f) = % and @ is in the second quadrant, find exact values for sin(26) and

cos(26).

To evaluate cos(26) , since we know the value for sin(é), we can use the version of the
double angle that only involves sine.
2
cos(20) =1-2sin*(0) =1-2 3 oo BT
5 25 25

Since the double angle for sine involves both sine and cosine, we’ll need to first find
cos(#) , which we can do using the Pythagorean Identity.

sin’ (@) +cos’(0) =1

(%} +cos’(0) =1

2 N=1-—
COS () 5

cos(f) = i‘[& = ii
25 5

Since 6 is in the second quadrant, we know that cos(6) <0, so

cos(d) = —%

Now we can evaluate the sine double angle
3 _4)_ 24

sin(26) = 2sin(@) cos(F) = 2(;)(— gj = o5

Simplify the expressions
a) 2cos’(12°)-1 b) 8sin(3x)cos(3x)

a) Notice that the expression is in the same form as one version of the double angle
identity for cosine: cos(26) = 2cos’(#)—1. Using this,
2c0s”(12°) =1 = cos(2-12°) = cos(24°)

b) This expression looks similar to the result of the double angle identity for sine.
8sin(3x)cos(3x) Factoring a 4 out of the original expression
4-2sin(3x)cos(3x) Applying the double angle identity

4sin(6x)
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We can use the double angle identities to simplify expressions and prove identities.

Example2 |

cos(2t)

Simplify —————.
Py cos(t) —sin(¢)

With three choices for how to rewrite the double angle, we need to consider which will
be the most useful. To simplify this expression, it would be great if the denominator
would cancel with something in the numerator, which would require a factor of

cos(?) —sin(¢) in the numerator, which is most likely to occur if we rewrite the

numerator with a mix of sine and cosine.

cos(2t)
cos(t) —sin(?)
_cos’(¢)—sin*(¢)
- cos(t) —sin(z)
B (cos(z) — sin(t) )(cos(#) + sin(t))
- cos(¢) —sin(?)
= cos(t) + sin(¢) Resulting in the most simplified form

Apply the double angle identity

Factor the numerator

Cancelling the common factor

Example3 . |

sec’ (@)

Prove sec2at) = ————.
(2e) 2 —sec’(a)

Since the right side seems a bit more complicated than the left side, we begin there.
sec’ (@)
2 —sec’(a)
1

_ cos’(a)
B 1

2
cos” (&)

Rewrite the secants in terms of cosine

At this point, we could rewrite the bottom with common denominators, subtract the
terms, invert and multiply, then simplify. Alternatively, we can multiple both the top

and bottom by cos’ (&), the common denominator:

—————-cos’(ax)
cos’(a) .
= Distribute on the bottom

1 2
(2 - cosz(a)j -cos” (@)
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cos’ ()
2
- cos” (@) Simplify
s cos’(ax)
2cos’ () ——— -
cos” ()
= + Rewrite the denominator as a double angle
2cos’(a)—1
= L Rewrite as a secant
cos(2ar)
=sec(2a) Establishing the identity

‘ 2. Use an identity to find the exact value of cos®(75°)—sin?(75°).

As with other identities, we can also use the double angle identities for solving equations.

Solve cos(2t) = cos(¢) for all solutions with 0 <z <2x.

In general when solving trig equations, it makes things more complicated when we have
a mix of sines and cosines and when we have a mix of functions with different periods.
In this case, we can use a double angle identity to rewrite the cos(2¢). When choosing
which form of the double angle identity to use, we notice that we have a cosine on the
right side of the equation. We try to limit our equation to one trig function, which we
can do by choosing the version of the double angle formula for cosine that only
involves cosine.

cos(2t) = cos(?) Apply the double angle identity
2c0s”(t)—1=cos(?) This is quadratic in cosine, so make one side 0
2co0s’(t)—cos(t)—1=0 Factor

(2 cos(?) + 1)(cos(t) - 1) =0 Break this apart to solve each part separately
2cos(t)+1=0 or cos(t)—1=0 7»-

cos(t) = —% or cos(t) =1

V4 4r
t=—ort=— or t=0
3 3

Looking at a graph of cos(2¢) and cos(¢) shown
together, we can verify that these three solutions on [0, 2w) seem reasonable.




Section 3.3 Double Angle Identities 145

A cannonball is fired with velocity of 100 meters per second. If it is launched at an
angle of 0, the vertical component of the velocity will be 100sin(#) and the horizontal

component will be 100cos(d). Ignoring wind resistance, the height of the cannonball
will follow the equation A(f) = —4.9¢> +100sin(@)¢ and horizontal position will follow
the equation x(z) =100cos(8)¢. If you want to hit a target 900 meters away, at what
angle should you aim the cannon?

To hit the target 900 meters away, we want x(¢) = 900at the time when the cannonball
hits the ground, when 4(¢) = 0. To solve this problem, we will first solve for the time,
t, when the cannonball hits the ground. Our answer will depend upon the angle 8.

h(t)=0

—4.9¢> +100sin(@)t =0 Factor

t(— 4.9t +100 sin(@)) =0 Break this apart to find two solutions
t=0 or

—4.9t+100sin(8) =0 Solve for ¢

—4.9t =-100sin(6)
. 100sin(8)
4.9

This shows that the height is 0 twice, once at £ = 0 when the cannonball is fired, and
again when the cannonball hits the ground after flying through the air. This second
value of ¢ gives the time when the ball hits the ground in terms of the angle 8. We
want the horizontal distance x(z) to be 900 when the ball hits the ground, in other words
_ 100sin(0)

49

when ¢

Since the target is 900 m away we start with

x(t) =900 Use the formula for x(?)
100cos(8)t =900 Substitute the desired time, ¢ from above
100cos(0) 120500 _ g4 Simplify
100° : : .

cos(#)sin(f) = 900 Isolate the cosine and sine product
cos(#)sin(f) = 200(4.9)

1002
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The left side of this equation almost looks like the result of the double angle identity for
sine: sin(26) = 2sin(6)cos(8).

By dividing both sides of the double angle identity by 2, we get

1. . . . .
Esm(Za) = sin(a)cos(ex). Applying this to the equation above,

1 . 900(4.9) .
—sin(20) = —————= Multiply by 2
5 Sin(20) 1002 ultiply by
sin(26) = % Use the inverse sine
20 =sin™' (%) ~1.080 Divide by 2

1.080

0= T =0.540, or about 30.94 degrees

Power Reduction and Half Angle Identities
Another use of the cosine double angle identities is to use them in reverse to rewrite a

squared sine or cosine in terms of the double angle. Starting with one form of the cosine
double angle identity:

cos(2a) =2cos’ (a) -1 Isolate the cosine squared term

cos(2a) +1=2cos*(a) Add 1

cos’(a) = % Divide by 2

cos’(a) = cos(2a) +1 This is called a power reduction identity

2

3. Use another form of the cosine double angle identity to prove the identity
1—-cos(2a)
—

sin’(a) =

Rewrite cos®(x) without any powers.

Since cos*(x) = (cos2 (x))z, we can use the formula we found above

cos*(x) = (0052 (x))2
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2
= (%) Square the numerator and denominator
2x)+1)°
= w Expand the numerator
2
_ o8 (2x)+ j cos(2x) +1 Split apart the fraction
2
_ o8 4(2x) + 2coz(2x) +% Apply the formula above to cos”(2x)
cos?(2x) = cos(2-2x)+1
2
(cos(4x) + lj
2 2cos(2x) 1 o
= + +— Simpli
4 4 4 phity
= cos(4x) + 1 + 1 cos(2x) + 1 Combine the constants
8 8 2 4
4 1
= cos(4x) + —cos(2x) + 3
2 8

The cosine double angle identities can also be used in reverse for evaluating angles that

cos(2a) +1

are half of a common angle. Building from our formula cos’ (&) = , if we let

9) = cos(0) +1 . Taking the square

0 =2a,then o =§ this identity becomes cosz(a

root, we obtain

cos(gj ==, /% , where the sign is determined by the quadrant.

This is called a half-angle identity.

4. Use your results from the last Try it Now to prove the identity

sin(gj ==, f—l —cos(9) .
2 2

Find an exact value for cos(15°).

Since 15 degrees is half of 30 degrees, we can use our result from above:
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cos(15°) = cos(%) =+ w

We can evaluate the cosine. Since 15 degrees is in the first quadrant, we need the
positive result.

ﬁ 1
cos(30°)+1 74_
\ 2 | 2
_ B
4 2

Identities
Half-Angle Identities

cos(gj . [cos(0) +1 sin(gj . [1—cos(0)
2 2 2 2

Power Reduction Identities
cos(22a) +1 sin®(ar) = 1- cozs(Za)

cos’(a) =

Since these identities are easy to derive from the double-angle identities, the power
reduction and half-angle identities are not ones you should need to memorize separately.

Important Topics of This Section
Double angle identity
Power reduction identity
Half angle identity
Using identities
Simplify equations
Prove identities
Solve equations

Try it Now Answers
cos(2ar) = cos(a + )

1. cos(a)cos(a)—sin(a)sin(x)

cos’(a) —sin’(a)
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cos(150°) = -

1-cos(2)
2
1- (cos2 (a)—sin’® (a))
2
1—cos*(a) +sin’ ()
2

sin’(a) +sin’ (&)

2
2sin’ (o)

=sin’*(a)

1—-cos(2x)
2

. _ . |I=cos(2ax)
sin(a) = %, /—2

a=—
2

sin’(a) =
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Section 3.3 Exercises

1. If sin( x) :é and x is in quadrant I, then find exact values for (without solving for x):

a.sin(2x)  b.cos(2x) c. tan(2x)

2.1If cos(x) :g and x is in quadrant I, then find exact values for (without solving for x):

a. sin(2x)  b.cos(2x) c. tan(2x)

Simplify each expression.

3. cos’ (280)—sin2(28°) 4. 2cos’ (370)—1

5. 1-2sin*(17°) 6. cos’(37°)—sin*(37°)
7. cos® (9x)—sin®(9x) 8. cos” (6x)—sin’(6x)
0. 4sin(8x)cos(8x) 10. 6sin(5x)cos(5x)

Solve for all solutions on the interval [0,27) .

11. 6sin(27)+9sin(7)=0 12. 2sin(2¢)+3cos(t)=0

13. 9cos(26)=9cos’ (6)—4 14. 8cos(2a) =8cos’ () -1

15. sin(2t)=cos(t) 16. cos(2t)=sin(t)

17. cos(6x)—cos(3x)=0 18. sin(4x)—sin(2x)=0

Use a double angle, half angle, or power reduction formula to rewrite without exponents.
19. cos*(5x) 20. cos’(6x)

21. sin*(8x) 22. sin*(3x)

23. cos’ xsin* x 24. cos” xsin’ x

25.If csc(x) =7 and 90° < x <180°, then find exact values for (without solving for x):
. [ x X X
a. sin| — b. cos| — c. tan| —
( 2 ] ( 2 ] ( 2 j

26. If sec(x)=4 and 90° < x <180°, then find exact values for (without solving for x):

[ x X X
a. sin| — b. cos| — c. tan| —
(2j (2} (2)
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Prove the identity.
27. (sint—cost)2 =1—sin(2t)
28. (sin2 x—l)2 = cos(2x) +sin® x
2tan(x)
1+tan’ (x)
2sin(x)cos(x)
2cos? (x)-1
31. cot(x)—tan(x)=2cot(2x)
sin(20)
1+cos(26)
1-tan’ ()
1+tan® (a)
1+cos(27) 2cos (1)
34, =
sin(2¢)—cos(z) 2sin(r)-1
35. sin(3x) =3sin(x)cos’ (x)—sin’(x)
36. cos(3x) = cos’ (x) —3sin*(x) cos(x)

29. sin(2x) =

30. tan(2x) =

32. =tan ()

33. cos(Za) =
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Section 3.4 Modeling Changing Amplitude and Midline

While sinusoidal functions can model a variety of behaviors, it is often necessary to
combine sinusoidal functions with linear and exponential curves to model real
applications and behaviors. We begin this section by looking at changes to the midline of
a sinusoidal function. Recall that the midline describes the middle, or average value, of
the sinusoidal function.

Changing Midlines

A population of elk currently averages 2000 elk, and that average has been growing by
4% each year. Due to seasonal fluctuation, the population oscillates from 50 below
average in the winter up to 50 above average in the summer. Find a function that
models the number of elk after ¢ years.

There are two components to the behavior of the elk population: the changing average,
and the oscillation. The average is an exponential growth, starting at 2000 and growing
by 4% each year. Writing a formula for this:

average = initial(1+r)" =2000(1+0.04)'

For the oscillation, since the population oscillates 50 above and below average, the

amplitude will be 50. Since it takes one year for the population to cycle, the period is 1.

We find the value of the horizontal stretch coefficient B = original p‘.mOd = 2z =2r.
new period 1

Additionally, since we weren’t told when ¢ was first measured we will have to decide if
t = 0 corresponds to winter, or summer. If we choose winter then the shape of the
function would be a negative cosine, since it starts at the lowest value.

Putting it all together, the equation would be:
P(t) =-50cos(27xt) + midline

Since the midline represents the average population, we substitute in the exponential
function into the population equation to find our final equation:

P(t) = —50cos(2zt)+2000(1+ 0.04)’

This is an example of changing midline — in this case an exponentially changing midline.

Changing Midline

A function of the form f(¢) = Asin(Bt) + g(¢) will oscillate above and below the
average given by the function g(?).
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Changing midlines can be exponential, linear, or any other type of function. Here are
some examples:

Linear midline Exponential midline Quadratic midline
4+ ;N 7+

1 o I

ey o

il A

SR T dn X 4 Y

X/ 2 ANT %V Y A
2? (\/\}A\/[\/ —————+— S 2 -1t R
il 765432 | 1234567 Sl

f(6)=Asin(Bt)+(mt+b)  f(t)= Asin(Bt)+(ab') f(t) = Asin(Bt) + (at®)

Find a function with linear midline of the form f(¢) = 4 sin(%t} + mt +b that will pass

through the points given below.

t
1) 5 10 |9 8

Since we are given the value of the horizontal compression coefficient we can calculate
original period 27

Bh

Since the sine function is at the midline at the beginning of a cycle and halfway through
a cycle, we would expect this function to be at the midline at # =0 and 7 = 2, since 2 is
half the full period of 4. Based on this, we expect the points (0, 5) and (2, 9) to be
points on the midline. We can clearly see that this is not a constant function and so we
use the two points to calculate a linear function: midline = mt + b . From these two
points we can calculate a slope:

9-5 4
m=——=—=2

2-0 2

the period of this function: new period = =4,

Combining this with the initial value of 5, we have the midline: midline =2t +5, giving
a full function of the form f(¢) = 4 sin(%tj +2t+5. To find the amplitude, we can
plug in a point we haven’t already used, such as (1, 10)

10=4 sin(% (l)j +2(1)+5 Evaluate the sine and combine like terms

10=4+7
A=3




154 Chapter 3

A function of the form given fitting the data would be
f(t)=3 sin(%t) 42645

Alternative Approach
Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9)
into the original equation. Substituting (0, 5),

5=4 sin(% (O)j +m(0)+b Evaluate the sine and simplify
5=b

Substituting (2, 9)

9=4 sin(% (2)j +m(2)+5 Evaluate the sine and simplify
9=2m+5

4=2m

m =2, as we found above. Now we can proceed to find 4 the same way we did before.

xample 3

The number of tourists visiting a ski and hiking resort averages 4000 people annually
and oscillates seasonally, 1000 above and below the average. Due to a marketing
campaign, the average number of tourists has been increasing by 200 each year. Write
an equation for the number of tourists after ¢ years, beginning at the peak season.

Again there are two components to this problem: the oscillation and the average. For
the oscillation, the number of tourists oscillates 1000 above and below average, giving
an amplitude of 1000. Since the oscillation is seasonal, it has a period of 1 year. Since
we are given a starting point of “peak season”, we will model this scenario with a
cosine function.

So far, this gives an equation in the form N(¢) =1000cos(27t)+ midline

The average is currently 4000, and is increasing by 60001
200 each year. This is a constant rate of change, so 5000 A [\ N
this is linear growth, average = 4000+ 200¢. Eﬁ v
3 1
Combining these two pieces gives a function for the 2000+

number of tourists: 1000+
N(t) =1000cos(27t)+4000 + 200z

y I 2 3 4 5 6

Try it Now
1. Given the function g(x)=(x"—1)+8cos(x), describe the midline and amplitude
using words.
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Changing Amplitude

There are also situations in which the amplitude of a sinusoidal function does not stay
constant. Back in Chapter 6, we modeled the motion of a spring using a sinusoidal
function, but had to ignore friction in doing so. If there were friction in the system, we
would expect the amplitude of the oscillation to decrease over time. In the equation

f(t) = Asin(Bt) + k , A gives the amplitude of the oscillation, we can allow the amplitude

to change by replacing this constant 4 with a function A(?).

Changing Amplitude
A function of the form f(¢) = A(¢)sin(Bt) + k will oscillate above and below the
midline with an amplitude given by A4(?).

When thinking about a spring with amplitude decreasing over time, it is tempting to use
the simplest tool for the job — a linear function. But if we attempt to model the amplitude
with a decreasing linear function, such as A(t) =10—¢, we quickly see the problem when

we graph the equation f(¢) = (10 —¢)sin(4¢) .
{’I..

[0

While the amplitude decreases at first as intended, the amplitude hits zero at ¢ = 10, then
continues past the intercept, increasing in absolute value, which is not the expected
behavior. This behavior and function may model the situation on a restricted domain and
we might try to chalk the rest of it up to model breakdown, but in fact springs just don’t
behave like this.

A better model, as you will learn later in physics and calculus, would show the amplitude
decreasing by a fixed percentage each second, leading to an exponential decay model for
the amplitude.

Damped Harmonic Motion

Damped harmonic motion exhibited by springs subject to friction, follows a model of
the form

f(t)=ab'sin(Bt)+k or f(t)=ae" sin(Bf)+k.
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Exampled . |

A spring with natural length of 20 inches is pulled back 6 inches and released. It
oscillates once every 2 seconds. Its amplitude decreases by 20% each second. Find a
function that models the position of the spring ¢ seconds after being released.

Since the spring will oscillate on either side of the natural length, the midline will be at
20 inches. The oscillation has a period of 2 seconds, and so the horizontal compression
coefficient is B = 7. Additionally, it begins at the furthest distance from the wall,

indicating a cosine model. 30t

Meanwhile, the amplitude begins at 6 inches,
and decreases by 20% each second, giving an

amplitude function of A(¢) = 6(1-0.20)".

257

201

Combining this with the sinusoidal
information gives a function for the position  ;s{
of the spring:

f(t) =6(0.80) cos(rt)+ 20 ol 123 456 7 8 900

A spring with natural length of 30 cm is pulled out 10 cm and released. It oscillates 4
times per second. After 2 seconds, the amplitude has decreased to 5 cm. Find a
function that models the position of the spring.

The oscillation has a period of % second, so B = 21—7[ =8x . Since the spring will
Y
oscillate on either side of the natural length, the midline will be at 30 cm. It begins at

the furthest distance from the wall, suggesting a cosine model. Together, this gives
f(t)=A(t)cos(8xt)+30.

For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases
to 5 cm after 2 seconds. This gives two points (0, 10) and (2, 5) that must be satisfied
by an exponential function: A4(0) =10 and 4(2) =5. Since the function is exponential,
we can use the form A(¢) = ab'. Substituting the first point, 10 = ab’, so a = 10.
Substituting in the second point,

5=10b> Divide by 10

% =b? Take the square root
1

b= \/: ~0.707
2
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This gives an amplitude function of A(¢) =10(0.707)". Combining this with the
oscillation,
f(t)=10(0.707)" cos(8xt)+30

2. A certain stock started at a high value of $7 per share and has been oscillating above
and below the average value, with the oscillation decreasing by 2% per year. However,
the average value started at $4 per share and has grown linearly by 50 cents per year.

a. Find a formula for the midline

b. Find a formula for the amplitude.

c. Find a function S(?) that models the value of the stock after ¢ years.

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to
transmit music or other signals by applying the to-be-transmitted signal as the amplitude
of the carrier signal. A musical note with frequency 110 Hz (Hertz = cycles per second)
is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles
per second). If the musical wave has an amplitude of 3, write a function describing the
broadcast wave.

The carrier wave, with a frequency of 2000 cycles per second, would have period ﬁ

of a second, giving an equation of the form sin(40007¢) . Our choice of a sine function
here was arbitrary — it would have worked just was well to use a cosine.

The musical tone, with a frequency of 110 cycles per second, would have a period of

ﬁ of'a second. With an amplitude of 3, this would correspond to a function of the

form 3sin(2207¢). Again our choice of using a sine function is arbitrary.

The musical wave is acting as the amplitude of the carrier wave, so we will multiply the
musical tone’s function by the carrier wave function, resulting in the function
f(t) =3sin(220x1)sin(40007¢)
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Changing midline

Changing amplitude
Linear Changes
Exponential Changes
Damped Harmonic Motion

Try it Now Answers

1. The midline follows the path of the quadratic x> —1and the amplitude is a constant
value of 8.

m(t) = 4+0.5¢
A(t) = 7(0.98)'

S(1)=7(0.98) cos(%t)+4+0.5t



Section 3.4 Modeling Changing Amplitude and Midline 159

Section 3.4 Exercises

Find a possible formula for the trigonometric function whose values are given in the
following tables.

. | x|0 |3 6|9 [12]15]18 2. 4 1618|1012
yl-4]-1[2]-1]-4]-1]2 y|5]1|-3]1]5]1 [-3

X
)

3. The displacement /() , in centimeters, of a mass suspended by a spring is modeled
by the function A(¢)=8sin(67¢), where ¢ is measured in seconds. Find the

amplitude, period, and frequency of this displacement.

4. The displacement A(?), in centimeters, of a mass suspended by a spring is modeled
by the function 4 (t) =11sin(127t), where ¢ is measured in seconds. Find the

amplitude, period, and frequency of this displacement.

5. A population of rabbits oscillates 19 above and below average during the year,
reaching the lowest value in January. The average population starts at 650 rabbits and
increases by 160 each year. Find a function that models the population, P, in terms of
the months since January, ¢.

6. A population of deer oscillates 15 above and below average during the year, reaching
the lowest value in January. The average population starts at 800 deer and increases
by 110 each year. Find a function that models the population, P, in terms of the
months since January, ¢.

7. A population of muskrats oscillates 33 above and below average during the year,
reaching the lowest value in January. The average population starts at 900 muskrats
and increases by 7% each month. Find a function that models the population, P, in
terms of the months since January, ¢.

8. A population of fish oscillates 40 above and below average during the year, reaching
the lowest value in January. The average population starts at 800 fish and increases
by 4% each month. Find a function that models the population, P, in terms of the
months since January, ¢.

9. A spring is attached to the ceiling and pulled 10 cm down from equilibrium and
released. The amplitude decreases by 15% each second. The spring oscillates 18
times each second. Find a function that models the distance, D, the end of the spring
is below equilibrium in terms of seconds, ¢, since the spring was released.
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and

1.

12.

released. The amplitude decreases by 11% each second. The spring oscillates 20
times each second. Find a function that models the distance, D, the end of the spring
is below equilibrium in terms of seconds, ¢, since the spring was released.

A spring is attached to the ceiling and pulled 17 cm down from equilibrium and
released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates
14 times each second. Find a function that models the distance, D the end of the
spring is below equilibrium in terms of seconds, ¢, since the spring was released.

A spring is attached to the ceiling and pulled 19 cm down from equilibrium and
released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates
13 times each second. Find a function that models the distance, D the end of the
spring is below equilibrium in terms of seconds, ¢, since the spring was released.

Match each equation form with one of the graphs.

13.
14.

a. ab” +sin(5x) b. sin(5x)+mx+b
a. ab”sin(5x) b. (mx+b)sin(5x)
3 II 3 1 3 1\Y 3

Find a function of the form y = ab" +csin (% x] that fits the data given.

15.

X101 [2 |3 l6. [x|O0[1 |2 |3
y|16[29]96]379 y|6[34]150 ] 746

Find a function of the form y =asin (% xj + m+bx that fits the data given.

17.

x[0][1]2 |3 18. [x]o [1]2]3
yl7]6]11]16 y|2]6]4]2

Find a function of the form y =ab” cos(%x) + ¢ that fits the data given.

19.

x]0 [1]2]3 20. [xJo[1]2
yl11]3]1]3 yl4l1]-11]1
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Section 4.1 Functions and Function Notation

What is a Function?

The natural world is full of relationships between quantities that change. When we see
these relationships, it is natural for us to ask “If I know one quantity, can I then determine
the other?” This establishes the idea of an input quantity, or independent variable, and a
corresponding output quantity, or dependent variable. From this we get the notion of a
functional relationship in which the output can be determined from the input.

For some quantities, like height and age, there are certainly relationships between these
quantities. Given a specific person and any age, it is easy enough to determine their
height, but if we tried to reverse that relationship and determine height from a given age,
that would be problematic, since most people maintain the same height for many years.

Function: A rule for a relationship between an input, or independent, quantity and an
output, or dependent, quantity in which each input value uniquely determines one
output value. We say “the output is a function of the input.”

In the height and age example above, is height a function of age? Is age a function of
height?

In the height and age example above, it would be correct to say that height is a function
of age, since each age uniquely determines a height. For example, on my 18" birthday,
I had exactly one height of 69 inches.

However, age is not a function of height, since one height input might correspond with
more than one output age. For example, for an input height of 70 inches, there is more
than one output of age since I was 70 inches at the age of 20 and 21.

This chapter is part of Precalculus: An Investigation of Functio@sLippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.
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Example2 . |

At a coffee shop, the menu consists of items and their prices. Is price a function of the
item? Is the item a function of the price?

We could say that price is a function of the item, since each input of an item has one
output of a price corresponding to it. We could not say that item is a function of price,
since two items might have the same price.

In many classes the overall percentage you earn in the course corresponds to a decimal
grade point. Is decimal grade a function of percentage? Is percentage a function of
decimal grade?

For any percentage earned, there would be a decimal grade associated, so we could say
that the decimal grade is a function of percentage. That is, if you input the percentage,
your output would be a decimal grade. Percentage may or may not be a function of
decimal grade, depending upon the teacher’s grading scheme. With some grading
systems, there are a range of percentages that correspond to the same decimal grade.

One-to-One Function
Sometimes in a relationship each input corresponds to exactly one output, and every
output corresponds to exactly one input. We call this kind of relationship a one-to-one
function.

From Example 3, if each unique percentage corresponds to one unique decimal grade
point and each unique decimal grade point corresponds to one unique percentage then it
is a one-to-one function.

Let’s consider bank account information.

1. Is your balance a function of your bank account number?
(if you input a bank account number does it make sense that the output is your balance?)

2. Is your bank account number a function of your balance?
(if you input a balance does it make sense that the output is your bank account number?)

Function Notation

To simplify writing out expressions and equations involving functions, a simplified
notation is often used. We also use descriptive variables to help us remember the
meaning of the quantities in the problem.
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Rather than write “height is a function of age”, we could use the descriptive variable h to
represent height and we could use the descriptive variable a to represent age.

“height is a function of age” if we name the function f we write

“hisfofa” or more simply
h =1f(a) we could instead name the function h and write
h(a) which is read “h of @”

Remember we can use any variable to name the function; the notation h(a) shows us that
h depends on a. The value “@” must be put into the function “h” to get a result. Be
careful - the parentheses indicate that age is input into the function (Note: do not confuse
these parentheses with multiplication!).

Function Notation

The notation output = f(input) defines a function named f. This would be read “output
is f of input”

Introduce function notation to represent a function that takes as input the name of a
month, and gives as output the number of days in that month.

The number of days in a month is a function of the name of the month, so if we name
the function f, we could write “days = f(month)” or d = f(m). If we simply name the
function d, we could write d(m)

For example, d(March) = 31, since March has 31 days. The notation d(m)reminds us
that the number of days, d (the output) is dependent on the name of the month, m (the
input)

xample 5
A function N = f(y) gives the number of police officers, N, in a town in year y. What
does f(2005) = 300 tell us?

When we read f(2005) = 300, we see the input quantity is 2005, which is a value for the
input quantity of the function, the year (y). The output value is 300, the number of
police officers (N), a value for the output quantity. Remember N=f(y). So this tells us
that in the year 2005 there were 300 police officers in the town.

Tables as Functions

Functions can be represented in many ways: Words (as we did in the last few examples),
tables of values, graphs, or formulas. Represented as a table, we are presented with a list
of input and output values.
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In some cases, these values represent everything we know about the relationship, while in
other cases the table is simply providing us a few select values from a more complete
relationship.

Table 1: This table represents the input, number of the month (January = 1, February = 2,
and so on) while the output is the number of days in that month. This represents
everything we know about the months & days for a given year (that is not a leap year)

(input) Month 1 2 3 4 5 6 7 8 9 10 |11 |12
number, M
(output) Days 31 (28 |31 |30 |31 |30 {31 [31 [30 |31 |30 |31
in month, D

Table 2: The table below defines a function Q = g(n). Remember this notation tells us g
is the name of the function that takes the input n and gives the output Q.

n 1 2 3 4 5
Q |8 6 7 6 8

Table 3: This table represents the age of children in years and their corresponding
heights. This represents just some of the data available for height and ages of children.

(input) a, age | 5 5 6 7 8 9 10
in years

(output) h, 40 |42 |44 |47 |50 |52 |54
height inches

Which of these tables define a function (if any)? Are any of them one-to-one?

Input | Output Input | Output Input | Output
2 1 -3 5 1 0
5 3 0 1 5 2
8 6 4 5 5 4

The first and second tables define functions. In both, each input corresponds to exactly
one output. The third table does not define a function since the input value of 5
corresponds with two different output values.

Only the first table is one-to-one; it is both a function, and each output corresponds to
exactly one input. Although table 2 is a function, because each input corresponds to

exactly one output, each output does not correspond to exactly one input so this
function is not one-to-one. Table 3 is not even a function and so we don’t even need to
consider if it is a one-to-one function.
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3. If each percentage earned translated to one letter grade, would this be a function? Is
it one-to-one?

Solving and Evaluating Functions:

When we work with functions, there are two typical things we do: evaluate and solve.
Evaluating a function is what we do when we know an input, and use the function to
determine the corresponding output. Evaluating will always produce one result, since
each input of a function corresponds to exactly one output.

Solving equations involving a function is what we do when we know an output, and use
the function to determine the inputs that would produce that output. Solving a function
could produce more than one solution, since different inputs can produce the same
output.

Using the table shown, where Q=g(n)

[\
w
N
(9}

a) Evaluate ¢(3) n 1

Q |3 6 7 6 8

Evaluating g(3) (read: “g of 3”)

means that we need to determine the output value, Q, of the function g given the input
value of n=3. Looking at the table, we see the output corresponding to n=3 is Q=7,
allowing us to conclude g(3) = 7.

b) Solve g(n)=6

Solving g(n)= 6 means we need to determine what input values, n, produce an output
value of 6. Looking at the table we see there are two solutions: n=2 and n=4.

When we input 2 into the function g, our output is Q=6

When we input 4 into the function g, our output is also Q=6

4. Using the function in Example 7, evaluate g(4)

Graphs as Functions

Oftentimes a graph of a relationship can be used to define a function. By convention,
graphs are typically created with the input quantity along the horizontal axis and the
output quantity along the vertical.
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The most common graph has y on the vertical axis and X on the horizontal axis, and we
say Y is a function of X, or y = f(X) when the function is named f.

y

xample 8
Which of these graphs defines a function y=f(x)? Which of these graphs defines a one-
to-one function?

; : 3
" 4
¢ e  EEEEEENERE EREE
- 1 FEEEER ;
-2
5

Looking at the three graphs above, the first two define a function y=f(x), since for each
input value along the horizontal axis there is exactly one output value corresponding,
determined by the y-value of the graph. The 3™ graph does not define a function y=f(x)
since some input values, such as x=2, correspond with more than one output value.

Graph 1 is not a one-to-one function. For example, the output value 3 has two
corresponding input values, -2 and 2.3

Graph 2 is a one-to-one function; each input corresponds to exactly one output, and
every output corresponds to exactly one input.

Graph 3 is not even a function so there is no reason to even check to see if it is a one-to-
one function.

Vertical Line Test

The vertical line testis a handy way to think about whether a graph defines the vertical
output as a function of the horizontal input. Imagine drawing vertical lines through the
graph. If any vertical line would cross the graph more than once, then the graph does
not define only one vertical output for each horizontal input.
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Horizontal Line Test

Once you have determined that a graph defines a function, an easy way to determine if
it is a one-to-one function is to use the horizontal line test Draw horizontal lines
through the graph. If any horizontal line crosses the graph more than once, then the
graph does not define a one-to-one function.

Evaluating a function using a graph requires taking the given input and using the graph to
look up the corresponding output. Solving a function equation using a graph requires
taking the given output and looking on the graph to determine the corresponding input.

xample 9
Given the graph below,
a) Evaluate f(2)

b) Solve f(x) = 4i

-5
a) To evaluate f(2), we find the input of X=2 on the horizontal axis. Moving up to the

graph gives the point (2, 1), giving an output of y=1. So f(2) =1

b) To solve f(x) = 4, we find the value 4 on the vertical axis because if f(X) = 4 then 4 is
the output. Moving horizontally across the graph gives two points with the output of 4:
(-1,4) and (3,4). These give the two solutions to f(x)=4: x=-1 or x=13

This means f(-1)=4 and f(3)=4, or when the input is -1 or 3, the output is 4.

Notice that while the graph in the previous example is a function, getting two input
values for the output value of 4 shows us that this function is not one-to-one.

5. Using the graph from example 9, solve f(x)=1.

Formulas as Functions

When possible, it is very convenient to define relationships using formulas. Ifitis
possible to express the output as a formula involving the input quantity, then we can
define a function.
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Examplel0 . |

Express the relationship 2n+ 6p =12 as a function p = f(n) if possible.

To express the relationship in this form, we need to be able to write the relationship
where p is a function of n, which means writing it as p = [something involving n].

2n+6p=12 subtract 2n from both sides
6p=12-2n divide both sides by 6 and simplify

12-2n 12 2n__ 1
= -~ -2 -2--n
6 6 6 3

Having rewritten the formula as p=, we can now express p as a function:

1
=f(nN)=2-=n
p=1f(M) 3

It is important to note that not every relationship can be expressed as a function with a
formula.

Note the important feature of an equation written as a function is that the output value can
be determined directly from the input by doing evaluations - no further solving is
required. This allows the relationship to act as a magic box that takes an input, processes
it, and returns an output. Modern technology and computers rely on these functional
relationships, since the evaluation of the function can be programmed into machines,
whereas solving things is much more challenging.

Exgmpledl . . . |

Express the relationship X* + y* =1 as a function y = f(X) if possible.

If we try to solve for y in this equation:
yZ — 1 _ X2

y=+J1-x%

We end up with two outputs corresponding to the same input, so this relationship cannot
be represented as a single function y = f(X)

As with tables and graphs, it is common to evaluate and solve functions involving
formulas. Evaluating will require replacing the input variable in the formula with the
value provided and calculating. Solving will require replacing the output variable in the
formula with the value provided, and solving for the input(s) that would produce that
output.
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Examplel2 . |

Given the function k(t)=1t>+2

a) Evaluate k(2)
b) Solve k(t) =1

a) To evaluate k(2), we plug in the input value 2 into the formula wherever we see the
input variable t, then simplify

k(2)=2"+2
k(2)=8+2
So k(2)=10

b) To solve k(t) = 1, we set the formula for k(t) equal to 1, and solve for the input value
that will produce that output

k(t)=1 substitute the original formula k(t)=t>+2
t'+2=1 subtract 2 from each side

t'=—1 take the cube root of each side

t=—1

When solving an equation using formulas, you can check your answer by using your
solution in the original equation to see if your calculated answer is correct.

We want to know if K(t) =1 is true when t =—1.
K(=1) =(=1)’ +2

=-1+2

= 1 which was the desired result.

Example 3 . . |

Given the function h(p)= p'+2 p

a) Evaluate h(4)
b) Solve h(p)=13

To evaluate h(4) we substitute the value 4 for the input variable p in the given function.
a) h(4)=(4) +2(4)

=16+8
=24
b) h(p)=3 Substitute the original function h(p)= p'+2 p
p’+2p=3 This is quadratic, so we can rearrange the equation to get it =0

p’+2p-3=0 subtract 3 from each side
p’+2p-3=0 this is factorable, so we factor it

(p+3)(p-D=0
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By the zero factor theorem since (p+3)(p—1) =0, either (p+3)=0 or (p—1)=0 (or

both of them equal 0) and so we solve both equations for p, finding p = -3 from the first
equation and p =1 from the second equation.

This gives us the solution: h(p)=3 whenp=1orp=-3

We found two solutions in this case, which tells us this function is not one-to-one.

6. Given the function g(m)=+/ m-4

a. Evaluate g(5)
b. Solve g(m)=2

Basic Toolkit Functions

In this text, we will be exploring functions — the shapes of their graphs, their unique
features, their equations, and how to solve problems with them. When learning to read,
we start with the alphabet. When learning to do arithmetic, we start with numbers.
When working with functions, it is similarly helpful to have a base set of elements to
build from. We call these our “toolkit of functions” — a set of basic named functions for
which we know the graph, equation, and special features.

For these definitions we will use X as the input variable and f(X) as the output variable.

Toolkit Functions

Linear
Constant:

Identity:
Absolute Value:

Power
Quadratic:

Cubic:

Reciprocal:

Square root:

Cube root:

Reciprocal squared:

f (X)=c, where Cis a constant (number)

f(X)= X
f(x) =[x
f(x)=x’
f(x)=x’
1
f(x)=—
X
f(x)=i2
X

f(x)=3x=+/x
f(x)=3/7<
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You will see these toolkit functions, combinations of toolkit functions, their graphs and
their transformations frequently throughout this book. In order to successfully follow
along later in the book, it will be very helpful if you can recognize these toolkit functions
and their features quickly by name, equation, graph and basic table values.

Not every important equation can be written as y = f(X). An example of this is the
equation of a circle. Recall the distance formula for the distance between two points:

dist=/(x, - % ) +(y, -y, )’

A circle with radius r with center at (h, K) can be described as all points (X, y) a distance

of r from the center, so using the distance formula, r = \/ (x=h)* +(y-k)* , giving

Equation of a circle
A circle with radius r with center (h, K) has equation r* = (x—h)’ +(y—k)’

Graphs of the Toolkit Functions

Constant Function: f(X)=2 Identity: f(X)= X Absolute Value: f(Xx)= |X|
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Quadratic: f(X) =X’ Cubic: f(x)=x’ Square root: f(X)=+/X
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: 1 . 1
Cube root: f(X)z%/;( Reciprocal: f(X)=— Reciprocal squared: f(X)=—
X X
41 41
31 3+
21 2+ 2+
I'// 1. 1_
34/53/@/.}%}254 T 123 4 .4.3.2-}1_}.'234
21 2
-3 -3 1
4] '

I mportant Topics of this Section

Definition of a function

Input (independent variable)

Output (dependent variable)

Definition of a one-to-one function

Function notation

Descriptive variables

Functions in words, tables, graphs & formulas
Vertical line test

Horizontal line test

Evaluating a function at a specific input value
Solving a function given a specific output value
Toolkit Functions

Try it Now Answers

1. Yes

2. No

3. Yes it’s a function; No, it’s not one-to-one
4. Q=g(4)=6

5.Xx=0o0rx=2

6.a.9(5)=1 b.m=8
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Section 4.1 Exercises

1. The amount of garbage, G, produced by a city with population p is given by
G=f(p). Gis measured in tons per week, and p is measured in thousands of people.

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage
each week. Express this information in terms of the function f.

b. Explain the meaning of the statement f (5)=2.

2. The number of cubic yards of dirt, D, needed to cover a garden with area a square
feet is given by D =g(a).
a. A garden with area 5000 ft* requires 50 cubic yards of dirt. Express this
information in terms of the function g.
b. Explain the meaning of the statement g(100)=1.

3. Let f(t) be the number of ducks in a lake t years after 1990. Explain the meaning of

each statement:
a. f(5)z30 b. f(lO):40

4. Let h(t) be the height above ground, in feet, of a rocket t seconds after launching.
Explain the meaning of each statement:
a. h(1)=200 b. h(2)=350

5. Select all of the following graphs which represent y as a function of X.
54 54 54




174 Chapter 4

6. Select all of the following graphs which represent y as a function of X.
4 54 5

10.

4
_{_/_,,./
i1

B 33\%
2]
-3
4

c 5

54
1
2_
3_
a5 -}3 3 543
2
-3
4
f 54

Select all of the following tables which represent y as a function of X.

a. |[X|5]|10]15 b. | x|5]10]15 c. [xX|5]10]10
y[3]8 |14 y[3]8 |8 y[3]8 |14
Select all of the following tables which represent y as a function of X.
a. |[X|2]6 |13 b. |[xX|2]|6 |6 c. [xX|2]6 |13
y[3]10]10 y[3]10] 14 y|3]10]14
Select all of the following tables which represent y as a function of X.
a. [ x|y b. [ x |y c. [X |y d [x |y
0]-2 -1 -4 0 [-5 -1 -4
311 2 |3 3 11 1 |2
416 5 14 3 14 4 |2
819 8 |7 9 |8 7
311 12 |11 16 | 13 12 |13
Select all of the following tables which represent y as a function of X.
a. [ X |y b. [ X |y c. [X |y d [x |y
4 1-2 -5 1-3 -1]-3 -1 (-5
3 12 2 |1 1|2 3 11
6 |4 2 |4 514 5 11
9 |7 7 19 9 |8 7
12 | 16 1110 1|2 14|12
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11. Select all of the following tables which represent y as a function of X and are one-to-

one.

a. [ xX|3

8|12

y|4

7

b.

X|13|8]|12 c. | X

8|8

yl|4|7]|13 y

4

7113

12. Select all of the following tables which represent y as a function of X and are one-to-

one.
a. | X|2]8 b. [x[2]8]14 c. | X 8114
y|5]6]13 y|5/6|6 y 6113
13. Select all of the following graphs which are one-to-one functions
5 54 54
44 44 44
N b= N
14 44 14
RN REEEE s R RV EEEEE N EEEE R EEE
-2 -2 -2
M M M
a. =3 b. 54 c. 51
54 54 5
4 4 4
2] 2] -]

14 i i
A;/J\f\?\fq_‘_/f FIIN SAsra 24y FdsEa[rEsis
-2 -2 -2

A ////f? M \x““kxh
d. 5 = f 51

14. Select all of

5

the following graphs which are one-to-one f
54

unctions

5
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Given each function f(X) graphed, evaluate f(1) and f(3)
44 41

RER W ; /1 3 3\ 4 ] /
5] V] 3 74
=+ _1--

15. 44 16, 2+

17. Given the function g(X) graphed here, 18. Given the function f(X) graphed here.
a. Evaluate g(2) a. Evaluate f(4)
b. Solve ¢ ( X) =2 b. Solve f(x)=4

6 &
54 5
] \i.
//;- S|
1 14

sS4 32042543 I EERENEERER
i -1

19. Based on the table below,
a. Evaluate f(3) b. Solve f(x)=1

X 0 |1 [2]3 [4[5]6 [7 [8 ]9
f(x) |74 |28 1]53]56 3364514 |47

20. Based on the table below,
a. Evaluate f(8) b. Solve f(x)=7

X 0O [1]2]3 |4 |5 |6 |7 |8 |9
f(x)|62|8|7|38|86|73|70|39]|75|34

For each of the following functions, evaluate: f(-2), f(-1), f(0), f(1),and f(2)

21. f(x)=4-2x 22. f(x)=8-3x

23. f(X)=8X -7 x+3 24. f(x)=6X -7 x+4

25. f(x)=—x +2x 26. f(x)=5x'+ X

27. f(x)=3+Vx+3 28. f(x)=4-3/x-2

29. f(x)=(x=2)(x+3) 30. f(x)=(x+3)(x-1)’
X=3 X—=2

31. f(x)=? 32. f(x)=r

33. f(x)=2" 34. f(x)=3"



35.

36.

37.

38.

39.

40.
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Suppose f (X)= X’ +8x—4. Compute the following:
a. f(=1)+f(l) b. f(=1)—= (1)

Suppose f (X)= X+ X+3. Compute the following:

a. f(=2)+ f(4)

Let f(t)=3t+5

a. Evaluate f(0)

Let g(p)=6-2p

a. Evaluate g(0)

b. f(=2)- f(4)

b. Solve f(t)=0

b. Solve g( p)=0

Match each function name with its equation.

a. y=X

1. Cube root
3 .. .
b. y=Xx ii.  Reciprocal
c. y= Ix 1.  Linear
1 iv.  Square Root
d y=— v.  Absolute Value
X2 vi.  Quadratic
. y=X vii.  Reciprocal Squared
£ y=x viii.  Cubic
g y=[¥
1
h. y=—
XZ
Match each graph with its equation.
1. ii. iii. iv.
a. y=Xx 1 ¥ : ‘
_ 3 a1 3 B a1
b-y=x f : : f
C y — {/; 4 12 3403 g4 32 —1_ 12543 5442 —1_1 12 5435 54 F 2 —1_1 123473
1 2 2 2
d y=— M 2 :
X 5 5 5
e =X . ..
Y= V. V1. Vi1. V111.
£ y=Xx : ; ;
g y=|X 2 i i f
1 B R ) -1_1 12349 -5 432 -1_1 12 349 e ) 12 3545 BN R, -1_1 12545
h y - 2 2 /2 2
: XZ -3 - -3 -3
~ ~ -~ ~
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41. Match each table with its equation.

iil.

V1.

a. y=x i. |In|Out| ii. |In|Out
b. y=X -2 1-0.5 2| -2
d. y=1/x 1 11 E
e. y= x| 2 105 2 |2
f.y=x 3 10.33 3 13
v In | Out v In | Out
214 2
-1 )1 -1 ]
010 010
1 |1 1 |1
2 |4 4 |2
319 9 |3
42. Match each equation with its table
a. Quadratic i. |In |Out ii. |In |Out
b. Absolute Value 2 1-05 22
c. Square Root 211 -1 111
d. Linear 0 0 10
e. Cubic 1 11 1 1
f. Reciprocal 2 105 7 |2
3 1033 313
iv. | In |Out v. |In | Out
214 2]
-1 )1 -1
010 010
1 |1 1 |1
2 |4 4 |2
319 9 |3

43. Write the equation of the circle centered at (3 ,—9 ) with radius 6.

44. Write the equation of the circle centered at (9 ,—8 ) with radius 11.

45. Sketch a reasonable graph for each of the following functions. [UW]
a.

b.
C.

Height of a person depending on age.

weight of the letter.

In | Out

2 |-8

-1 (-1

010

1 |1

2 |8

3 127

In | Out

212

1)1

010

1 |1

2 |2

3 (3

iii. | In | Out
-2 | -8
-1 ] -1
0 1|0
1 |1
2 |8
3 127
vi. | In | Out

202
-1 1
010
1 |1
2 |2
3 13

Height of the top of your head as you jump on a pogo stick for 5 seconds.
The amount of postage you must put on a first class letter, depending on the
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46. Sketch a reasonable graph for each of the following functions. [UW]

a.
b.

47. Using the graph shown,
a.

b.

Distance of your big toe from the ground as you ride your bike for 10 seconds.
Your height above the water level in a swimming pool after you dive off the high
board.

The percentage of dates and names you’ll remember for a history test, depending

on the time you study. X

y
L __f(x)
tL
r /
Evaluate f(c) /
a
Solve f(x)=p | D ¢ >

d I
- I

Suppose f (b)=z. Find f(2)
What are the coordinates of points L and K? K P+

48. Dave leaves his office in Padelford Hall on his way to teach in Gould Hall. Below are
several different scenarios. In each case, sketch a plausible (reasonable) graph of the
function s= d(t) which keeps track of Dave’s distance S from Padelford Hall at time t.
Take distance units to be “feet” and time units to be “minutes.” Assume Dave’s path
to Gould Hall is long a straight line which is 2400 feet long. [UW]

a.

gould

padelford
B —— I

Dave leaves Padelford Hall and walks at a constant spend until he reaches Gould
Hall 10 minutes later.

Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute. He
then continues on to Gould Hall at the same constant speed he had when he
originally left Padelford Hall.

Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute to
figure out where he is. Dave then continues on to Gould Hall at twice the constant
speed he had when he originally left Padelford Hall.



180 Chapter 4

d. Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes
to reach the half-way point. Then he gets confused and stops for 1 minute to
figure out where he is. Dave is totally lost, so he simply heads back to his office,
walking the same constant speed he had when he originally left Padelford Hall.

e. Dave leaves Padelford heading for Gould Hall at the same instant Angela leaves
Gould Hall heading for Padelford Hall. Both walk at a constant speed, but Angela
walks twice as fast as Dave. Indicate a plot of “distance from Padelford” vs.
“time” for the both Angela and Dave.

f.  Suppose you want to sketch the graph of a new function s = g(t) that keeps track
of Dave’s distance s from Gould Hall at time t. How would your graphs change in

(a)-(e)?
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Section 4.2 Domain and Range

One of our main goals in mathematics is to model the real world with mathematical
functions. In doing so, it is important to keep in mind the limitations of those models we
create.

This table shows a relationship between circumference and height of a tree as it grows.

Circumference, ¢ | 1.7 2.5 5.5 8.2 13.7
Height, h 24.5 | 31 452 |54.6 |92.1

While there is a strong relationship between the two, it would certainly be ridiculous to
talk about a tree with a circumference of -3 feet, or a height of 3000 feet. When we
identify limitations on the inputs and outputs of a function, we are determining the
domain and range of the function.

Domain and Range
Domain: The set of possible input values to a function
Range: The set of possible output values of a function

Using the tree table above, determine a reasonable domain and range.

We could combine the data provided with our own experiences and reason to
approximate the domain and range of the function h = f(c). For the domain, possible
values for the input circumference C, it doesn’t make sense to have negative values, so C
> (. We could make an educated guess at a maximum reasonable value, or look up that
the maximum circumference measured is about 119 feet'. With this information we
would say a reasonable domain is 0 < c<119 feet.

Similarly for the range, it doesn’t make sense to have negative heights, and the
maximum height of a tree could be looked up to be 379 feet, so a reasonable range is
0 <h<379 feet.

When sending a letter through the United States Postal Service, the price depends upon
the weight of the letter”, as shown in the table below. Determine the domain and range.

! http://en.wikipedia.org/wiki/Tree, retrieved July 19, 2010
? http://www.usps.com/prices/first-class-mail-prices.htm, retrieved July 19, 2010
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Letters
Weight not Over | Price
1 ounce $0.44
2 ounces $0.61
3 ounces $0.78
3.5 ounces $0.95

Suppose we notate Weight by w and Price by p, and set up a function named P, where
Price, p is a function of Weight, w. p = P(w).

Since acceptable weights are 3.5 ounces or less, and negative weights don’t make sense,
the domain would be 0 <w<3.5. Technically 0 could be included in the domain, but
logically it would mean we are mailing nothing, so it doesn’t hurt to leave it out.

Since possible prices are from a limited set of values, we can only define the range of
this function by listing the possible values. The range is p = $0.44, $0.61, $0.78, or
$0.95.

1. The population of a small town in the year 1960 was 100 people. Since then the
population has grown to 1400 people reported during the 2010 census. Choose
descriptive variables for your input and output and use interval notation to write the
domain and range.

Notation

In the previous examples, we used inequalities to describe the domain and range of the
functions. This is one way to describe intervals of input and output values, but is not the
only way. Let us take a moment to discuss notation for domain and range.

Using inequalities, such as 0 <c <163, 0 <w<3.5,and 0 <h<379 imply that we are
interested in all values between the low and high values, including the high values in
these examples.

However, occasionally we are interested in a specific list of numbers like the range for
the price to send letters, p=$0.44, $0.61, $0.78, or $0.95. These numbers represent a set
of specific values: {0.44, 0.61, 0.78, 0.95}

Representing values as a set, or giving instructions on how a set is built, leads us to
another type of notation to describe the domain and range.

Suppose we want to describe the values for a variable X that are 10 or greater, but less
than 30. In inequalities, we would write 10 < X< 30.
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When describing domains and ranges, we sometimes extend this into set-builder
notation, which would look like this: {x|10 < x<30}. The curly brackets {} are read as
“the set of”, and the vertical bar | is read as “such that”, so altogether we would read

{X| 10< x< 30} as “the set of X-values such that 10 is less than or equal to X and X is less

than 30.”

When describing ranges in set-builder notation, we could similarly write something like
{f(X)]0< f(X) <100}, or if the output had its own variable, we could use it. So for our

tree height example above, we could write for the range {h |[0<h< 379} . In set-builder
notation, if a domain or range is not limited, we could write {t |t is a real number} , Or

{t |te R} , read as “the set of t-values such that t is an element of the set of real numbers.

A more compact alternative to set-builder notation is interval notation, in which
intervals of values are referred to by the starting and ending values. Curved parentheses
are used for “strictly less than,” and square brackets are used for “less than or equal to.”
Since infinity is not a number, we can’t include it in the interval, so we always use curved
parentheses with co and -co. The table below will help you see how inequalities
correspond to set-builder notation and interval notation:

Inequality Set Builder Notation Interval notation
5<h<10 {h|5<h£10} (5, 10]

5<h<10 {h|5<h<10} [5, 10)

5<h<10 {h|5<h<10} (5, 10)

h<10 {hh<10} (=0,10)

h>10 {h| h>10} [10,00)

all real numbers {h| he R} (—00,0)

To combine two intervals together, using inequalities or set-builder notation we can use
the word “or”. In interval notation, we use the union symbol, U, to combine two
unconnected intervals together.

Describe the intervals of values shown on the line graph below using set builder and
interval notations.

s
St

} t -t
4 3 6 7
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To describe the values, X, that lie in the intervals shown above we would say, “X is a real
number greater than or equal to 1 and less than or equal to 3, or a real number greater
than 5.”

As an inequality itis: 1< X<3or X>5
In set builder notation: {X|1< x<3or x> 5}
In interval notation: [1,3]U(5,0)

Remember when writing or reading interval notation:
Using a square bracket [ means the start value is included in the set
Using a parenthesis ( means the start value is not included in the set

2. Given the following interval, write its meaning in words, set builder notation, and
interval notation.

Domain and Range from Graphs

We can also talk about domain and range based on graphs. Since domain refers to the set
of possible input values, the domain of a graph consists of all the input values shown on
the graph. Remember that input values are almost always shown along the horizontal
axis of the graph. Likewise, since range is the set of possible output values, the range of
a graph we can see from the possible values along the vertical axis of the graph.

Be careful — if the graph continues beyond the window on which we can see the graph,
the domain and range might be larger than the values we can see.
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[Example 4
Determine the domain and range of the graph below.

Alaska Crude Oil Production
(thousand barrels per day)
2,200

_— ‘ L
1,800 —
‘ _fj
snondtt L Ll LTI LLUT VN L]
1,400
1,200
onnnl ARl
|
800 —
600 -
400 ‘ t
wol L] L
o LI L
1975 1980 1985 1990 1995 2000 2005

In the graph above’, the input quantity along the horizontal axis appears to be “year”,
which we could notate with the variable y. The output is “thousands of barrels of oil per
day”, which we might notate with the variable b, for barrels. The graph would likely
continue to the left and right beyond what is shown, but based on the portion of the
graph that is shown to us, we can determine the domain is 1975 <y <2008, and the

range is approximately 180 <b <2010.

In interval notation, the domain would be [1975, 2008] and the range would be about
[180, 2010]. For the range, we have to approximate the smallest and largest outputs
since they don’t fall exactly on the grid lines.

Remember that, as in the previous example, X and Yy are not always the input and output
variables. Using descriptive variables is an important tool to remembering the context of
the problem.

3 http://commons.wikimedia.org/wiki/File:Alaska_Crude_Oil_Production.PNG, CC-BY-SA, July 19, 2010
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3. Given the graph below write the domain and range in interval notation

World Population Increase

100

=1l

. Rt = —
70 /f‘*wvw

NN

40 / U

30

population increase (millions)

20

10

o t t t t t
1950 1960 1970 19580 1990 2000
year

source: LS. Bureau of the Census, International Data Base (via GeoHive)

Domains and Ranges of the Toolkit functions
We will now return to our set of toolkit functions to note the domain and range of each.

Constant Function: f(X)=c

The domain here is not restricted; X can be anything. When this is the case we say the
domain is all real numbers. The outputs are limited to the constant value of the function.
Domain: (—o0,0)

Range: [C]

Since there is only one output value, liseit by itself in square brackets.

Identity Function: f(X)= X
Domain: (—o0,0)

Range: (—o0, )

Quadratic Function: f(X)= X
Domain: (—o0,)

Range: [0,0)
Multiplying a negative or posite number by itself can bnyield a positive output.

Cubic Function: f(x)= X
Domain: (—o0,00)

Range: (—o0,0)
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Reciprocal: f(x)= .

X
Domain: (—o0,0)w (0,00)
Range: (—,0) U (0,)

We cannot divide by 0 so we shexclude 0 from the domain.
One divide by any value can never be 0, so the range will not include 0.

. 1
Reciprocal squared: f(X)=—
X

Domain: (—o0,0) U (0,0)
Range: (0, )
We cannot divide by 0 so we mestlude 0 from the domain.

Cube Root: f(x)= Ix
Domain: (—o0,0)
Range: (—o0, )

Square Root: f(X)= Yx, commonly just written as, f(X)= Jx

Domain: [0, )

Range: [0,0)

When dealing with the set of real numbe&escannot take the square root of a negative
number so the domain is litdd to O or greater.

Absolute Value Function: f(x)=|X

Domain: (—o0,0)

Range: [0,0)

Since absolute value is defined as a distdrmm 0, the output can only be greater than
or equal to O.

Find the domain of each function: a) f(X)=2vx+4 b) g(X)= .

6—-3X

a) Since we cannot take the square root of a negative number, we need the inside of the
square root to be non-negative.

X+42>0 when X>—4.

The domain of f(X) is [—4,).

b) We cannot divide by zero, so we need the denominator to be non-zero.
6 —3x=0 when X= 2, so we must exclude 2 from the domain.
The domain of g(x)is (—,2) U (2,).
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Piecewise Functions
In the toolkit functions we introduced the absolute value function f(X)= |x| .

With a domain of all real numbers and a range of values greater than or equal to 0, the
absolute value can be defined as the magnitude or modulus of a number, a real number
value regardless of sign, the size of the number, or the distance from 0 on the number
line. All of these definitions require the output to be greater than or equal to 0.

If we input 0, or a positive value the output is unchanged
f(x)=x if x>0

If we input a negative value the sign must change from negative to positive.
f(x)=—x if x<0 since multiplying a negative value by -1 makes it positive.

Since this requires two different processes or pieces, the absolute value function is often
called the most basic piecewise defined function.

Piecewise Function

A piecewise functionis a function in which the formula used depends upon the domain
the input lies in. We notate this idea like:

formulal if domain to use formula 1
f(X)=4formula2 if domain to use formula 2

formula3 if domain to use formula 3

Examples . __ |

A museum charges $5 per person for a guided tour with a group of 1 to 9 people, or a
fixed $50 fee for 10 or more people in the group. Set up a function relating the number
of people, n, to the cost, C.

To set up this function, two different formulas would be needed. C = 5n would work
for n values under 10, and C = 50 would work for values of n ten or greater. Notating
this:

{Sn if 0<n<10
C(n)=

50 if nx10

Example6 . ___ |

A cell phone company uses the function below to determine the cost, C, in dollars for g
gigabytes of data transfer.

25 if 0<g<2
25+10(g-2) if g=2

C(g):{
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Find the cost of using 1.5 gigabytes of data, and the cost of using 4 gigabytes of data.

To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which piece
of domain our input falls in. Since 1.5 is less than 2, we use the first formula, giving
C(1.5) = $25.

The find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater
than 2, so we’ll use the second formula. C(4) =25 + 10(4-2) = $45.

xample 7
x> if x<1
Sketch a graph of the function f(X)=<3 if 1<x<2
x if x>2

Since each of the component functions are from our library of Toolkit functions, we
know their shapes. We can imagine graphing each function, then limiting the graph to
the indicated domain. At the endpoints of the domain, we put open circles to indicate
where the endpoint is not included, due to a strictly-less-than inequality, and a closed

circle where the endpoint is included, due to a less-than-or-equal-to inequality.
54 3t 5t
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4. At Pierce College during the 2009-2010 school year tuition rates for in-state residents
were $89.50 per credit for the first 10 credits, $33 per credit for credits 11-18, and for
over 18 credits the rate is $73 per credit'. Write a piecewise defined function for the
total tuition, T, at Pierce College during 2009-2010 as a function of the number of
credits taken, C. Be sure to consider a reasonable domain and range.

Important Topics of this Section

Definition of domain

Definition of range

Inequalities

Interval notation

Set builder notation

Domain and Range from graphs
Domain and Range of toolkit functions
Piecewise defined functions

Try it Now Answers

1. Domain; y = years [1960,2010] ; Range, p = population, [100,1400]

2. a. Values that are less than or equal to -2, or values that are greater than or equal to -
1 and less than 3

b. {x| x<-2 or—1< x<3}
c. (—o,-2]u[-13)

3. Domain; y=years, [1952,2002] ; Range, p=population in millions, [40,88]

89.5c if c<10
4. T(c)=+ 895+33(c—10) if 10<c<18 Tuition, T, as a function of credits, C.
1159+ 73(c—18) if  c>18

Reasonable domain should be whole numbers 0 to (answers may vary), e.g. [0, 23]
Reasonable range should be $0 — (answers may vary), e.g. [0,1524]

4 https://www.pierce.ctc.edu/dist/tuition/ref/files/0910_tuition_rate.pdf, retrieved August 6, 2010
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Section 4.2 Exercises

Write the domain and range of the function using interval notation.

24 54
44
¥4
24
\ j_
EREEETREREEER A RERE
-2
i -
4
1. 7] 2. ;
Write the domain and range of each graph as an inequality.
101° 107"
°1 O\' |
61 61
4+ 4+
2t 2t
t n
N R T T S S N R B TP S S

Suppose that you are holding your toy submarine under the water. You release it and it
begins to ascend. The graph models the depth of the submarine as a function of time,
stopping once the sub surfaces. What is the domain and range of the function in the

graph?
I 1

] I (fitime) | L L, t{time)

-u I 2 13-4 5 6 7 § -4 I i 4 5 6 7 8

e T~ R T S
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d (depth)
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Find the domain of each function

7. f(Xx)=3Jx-2
9. f(x)=3-6-2x

11. f(x):i6
X—

3x+1
]3.f(x):4X+2

VX+4

X—4

15. f(x)=

X=3
700 =S om

8.f(x):5J§I§
10. f(x)=5-+10-2x

Given each function, evaluate: f(-1), f(0), f(2), f(4)

19 f(x)— Ix+3 if x<0
' |7x+6 if x>0

2. f(x)= x>=2 if x<2
' C4+|x=3) i x22

5x if x<0
23. f(x)=93 if 0<x<3

x> if X>3

4x-9 if
20 f(X):{4x—18 if
4-x if
22. f(x):{m ’
X +1 if
24, F(x)={ 4 if
3x+1 if

X<0
X=>0

X<1

X>1

X<0
0<x<L3
X>3
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piecewise function graphed below.

LR &
44 4
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4
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-5+
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-4
-4
-5
29. -4+ 30. 41

Sketch a graph of each piecewise function

x if x<2 4 if
31. f = | | 32. f =
(x) {5 if x>2 (x) {\/} if
33, f(x)= x> if x<0 34, ()= x+1 if
' Cx+2 if x>0 ' X f
3 if X<=-2 -3 if
35. f(x)=q-x+1 if -2<x<1 36. f(x)=9x-1 Iif
3 if x>1 0 if

X<0

x>0

X<1
X1

X<=2
-2< X<L2
X>2
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Section 4.3 Rates of Change and Behavior of Graphs

Since functions represent how an output quantity varies with an input quantity, it is
natural to ask about the rate at which the values of the function are changing.

For example, the function C(t) below gives the average cost, in dollars, of a gallon of
gasoline t years after 2000.

t 2 3 4 5 6 7 8 9
C() 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14

If we were interested in how the gas prices had changed between 2002 and 2009, we
could compute that the cost per gallon had increased from $1.47 to $2.14, an increase of
$0.67. While this is interesting, it might be more useful to look at how much the price
changed per year You are probably noticing that the price didn’t change the same
amount each year, so we would be finding the average rate of changever a specified
amount of time.

The gas price increased by $0.67 from 2002 to 2009, over 7 years, for an average of
$0.67

7years
cents each year.

~ 0.096 dollars per year. On average, the price of gas increased by about 9.6

quantity. The units on a rate of change are “output units per input units”

Some other examples of rates of change would be quantities like:

¢ A population of rats increases by 40 rats per week

e A barista earns $9 per hour (dollars per hour)

e A farmer plants 60,000 onions per acre

e A car can drive 27 miles per gallon

¢ A population of grey whales decreases by 8 whales per year

e The amount of money in your college account decreases by $4,000 per quarter

Average Rate of Change

The average rate of changéetween two input values is the total change of the
function values (output values) divided by the change in the input values.
Change of Output _ Ay _ Y, -,

Average rate of change =
Change of Input AX X, =X
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Examplel . |

Using the cost-of-gas function from earlier, find the average rate of change between
2007 and 2009

From the table, in 2007 the cost of gas was $2.64. In 2009 the cost was $2.14.

The input (years) has changed by 2. The output has changed by $2.14 - $2.64 = -0.50.
—-$0.50

2years

The average rate of change is then = -0.25 dollars per year

Try it Now
1. Using the same cost-of-gas function, find the average rate of change between 2003
and 2008

Notice that in the last example the change of output was negativesince the output value
of the function had decreased. Correspondingly, the average rate of change is negative.

I xample 2
Given the function g(t) shown here, find the average rate of
change on the interval [0, 3].

At t= 0, the graph shows g(0) =1
At t= 3, the graph shows ¢g(3) =4

b I

The output has changed by 3 while the input has changed by 3, giving an average rate of
change of:
4-1 3

B —— :1

30 3

[Example 3

On a road trip, after picking up your friend who lives 10 miles away, you decide to
record your distance from home over time. Find your average speed over the first 6
hours.

t (hours) 0 1 2 3 4 5 6 7
D(t) (miles) |10 55 90 153 214 240 292 300

Here, your average speed is the average rate of change.
You traveled 282 miles in 6 hours, for an average speed of
292-10 282

6-0

=47 miles per hour
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We can more formally state the average rate of change calculation using function
notation.

Average Rate of Chang ing Function Notation
Given a function f(X), the average rate of change on the interval [a, b] is
Change of Output _ f(b)— f(a)

Average rate of change =
Change of Input b-a

Exgmpled |

Compute the average rate of change of f(X) = X" — 1 on the interval [2, 4]
X

We can start by computing the function values at each endpoint of the interval
f(2)=2° —l=4—l:z
2 2 2

f(4)=4" —l=16—1=§

4 4 4

Now computing the average rate of change

63_7 49
Average rate of change = f®-T@_4 2_4_9%
4-2 4-2 2 8

2. Find the average rate of change of f(X)=x— 2+/x on the interval [1,9]

Examples . . |

The magnetic force F, measured in Newtons, between two magnets is related to the

2

distance between the magnets d, in centimeters, by the formula F(d) = PER Find the

average rate of change of force if the distance between the magnets is increased from 2
cm to 6 cm.

We are computing the average rate of change of F(d) = di on the interval [2, 6]

F(6)-F(2)

€2 Evaluating the function

Average rate of change =
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FO-FQ®) _
6-2

2 2
6 27 Simplifying
36 4 Combining the numerator terms

36 Simplifying further
_? Newtons per centimeter

This tells us the magnetic force decreases, on average, by 1/9 Newtons per centimeter
over this interval.

Find the average rate of change of g(t) =t + 3t +1on the interval [0,a]. Your answer

will be an expression involving a.

Using the average rate of change formula

9(a) - 3(0) Evaluating the function
a —_
2 2
(@’ +3a+1)—(0° +3(0) +1) Simplifying
a-0
2
a +3a+l-1 Simplifying further, and factoring
a
a(a+3) Cancelling the common factor a
a
a+3

This result tells us the average rate of change between t = 0 and any other point t = a.
For example, on the interval [0, 5], the average rate of change would be 5+3 = 8.

3. Find the average rate of change of f(X) =X’ +2 on the interval [a,a+ h].
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Graphical Behavior of Functions

As part of exploring how functions change, it is interesting to explore the graphical
behavior of functions.

I ncreasing/Decreasing

A function is increasingon an interval if the function values increase as the inputs
increase. More formally, a function is increasing if f(b) > f(a) for any two input values
aand b in the interval with b>a. The average rate of change of an increasing function
is positive.

A function is decreasingon an interval if the function values decrease as the inputs
increase. More formally, a function is decreasing if f(b) < f(a) for any two input values
aand b in the interval with b>a. The average rate of change of a decreasing function is
negative.

xample 7
Given the function p(t) graphed here, on what 1
intervals does the function appear to be :\
increasing?

2
The function appears to be increasing fromt =1 et

tot=3, and from t=4 on.

In interval notation, we would say the function
appears to be increasing on the interval (1,3)and 2]

the interval (4,)

Notice in the last example that we used open intervals (intervals that don’t include the
endpoints) since the function is neither increasing nor decreasing at t =1, 3, or 4.

ocal Extrema
A point where a function changes from increasing to decreasing is called a local
maximum.

A point where a function changes from decreasing to increasing is called a local
minimum.

Together, local maxima and minima are called the local extrema or local extreme
values, of the function.
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Using the cost of gasoline function from the beginning of the section, find an interval on
which the function appears to be decreasing. Estimate any local extrema using the
table.

t 2 3 4 5 6 7 8 9
C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14

It appears that the cost of gas increased from t = 2 to t = 8. It appears the cost of gas
decreased from t = 8 to t =9, so the function appears to be decreasing on the interval
(8,9).

Since the function appears to change from increasing to decreasing at t = 8, there is
local maximum att=8.

xample 9

. . 2 X
Use a graph to estimate the local extrema of the function f(X)=—+ 3 Use these to
X

REaEE

5 4 3 2 a4 | 1 2 3 4 3

1
Most graphing calculators and graphing 24
utilities can estimate the location of 34
maxima and minima. Below are screen 1

images from two different technologies,
showing the estimate for the local maximum and minimum.

determine the intervals on which the function is increasing.

Using technology to graph the function, it
appears there is a local minimum
somewhere between X=2 and X=3, and a
symmetric local maximum somewhere
between X = -3 and X = -2.

ol

24494398, 1.6329932

i 6 Haximum
H=-c. 449481 §y=-1 g=z00z

Based on these estimates, the function is increasing on the intervals (—o0,—2.449) and
(2.449,:) . Notice that while we expect the extrema to be symmetric, the two different

technologies agree only up to 4 decimals due to the differing approximation algorithms
used by each.
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4. Use a graph of the function f(X) =X’ —6x” —15x+ 20 to estimate the local extrema

of the function. Use these to determine the intervals on which the function is increasing
and decreasing.

Concavity
The total sales, in thousands of dollars, for two companies over 4 weeks are shown.
Company A Company B

141

121
101

ST S S

As you can see, the sales for each company are increasing, but they are increasing in very
different ways. To describe the difference in behavior, we can investigate how the
average rate of change varies over different intervals. Using tables of values,

Company A Company B
Week Sales Rate of Week Sales Rate of
Change Change
0 0 0 0
5 0.5
1 5 1 0.5
2.1 1.5
2 7.1 2 2
1.6 2.5
3 8.7 3 4.5
1.3 3.5
4 10 4 8

From the tables, we can see that the rate of change for company A is decreasingwhile
the rate of change for company B is increasing



141
121
104
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Larger
increase
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Smaller
lincrease

141
121
104

o e O Co

Smaller
increase

Larger
increase l

When the rate of change is getting smaller, as with Company A, we say the function is
concave down When the rate of change is getting larger, as with Company B, we say
the function is concave up

A function is concave upif the rate of change is increasing.

A function is concave downif the rate of change is decreasing.
A point where a function changes from concave up to concave down or vice versa is
called an inflection point.

t h(t) Rate of
Change
0 144
-16
1 128
-48
2 80
-80
3 0

Sketching a graph of the function, we can see that the
function is decreasing. We can calculate some rates of
change to explore the behavior

140t
120+
1001
80t
601
40 1
201

An object is thrown from the top of a building. The object’s height in feet above
ground after t seconds is given by the function h(t) =144 —16t> for 0 <t <3. Describe
the concavity of the graph.

Notice that the rates of change are becoming more negative, so the rates of change are
decreasing This means the function is concave down.
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t

0

2 4

6

8

V(D)

28000

24342

21162

18397

15994

The value, V, of a car after t years is given in the table below. Is the value increasing or
decreasing? Is the function concave up or concave down?

Since the values are getting smaller, we can determine that the value is decreasing. We
can compute rates of change to determine concavity.

t 0 2 4 6 8
V(t) 28000 24342 21162 18397 15994
Rate of change | -1829 | -1590 | -13825 | -12015 |

Since these values are becoming less negative, the rates of change are increasing so
this function is concave up.

5. Is the function described in the table below concave up or concave down?

X

0

5 10

15

20

9(x)

10000

9000

7000

4000

0

Graphically, concave down functions bend downwards like a frown, and

concave up function bend upwards like a smile.

Increasing Decreasing
/_ T
Concave \
Down / \
Concave / \
Up
_/ \
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xample 12

upwards for the remainder of the graph shown.

=-1and x=2.

Try it Now

Estimate from the graph shown the >
intervals on which the function is 41
concave down and concave up.
On the far left, the graph is decreasing 21
but concave up, since it is bending 1+
upwards. It begins increasing at X = -2, , ,
but it continues to bend upwards until 3 -2 I 2 3

_ It
about X = -1.

21

From x = -1 the graph starts to bend -3+

downward, and continues to do so until about X = 2. The graph then begins curving

From this, we can estimate that the graph is concave up on the intervals (—o0,—1) and
(2,00), and is concave down on the interval (—1,2) . The graph has inflection points at X

6. Using the graph from Try it Now 4, f(X) =X’ —6Xx> —15x+ 20, estimate the
intervals on which the function is concave up and concave down.

Behaviors of the Toolkit Functions

We will now return to our toolkit functions and discuss their graphical behavior.

Function Increasing/Decreasing Concavity

Constant Function Neither increasing nor Neither concave up nor down
f(x)=c decreasing

Identity Function Increasing Neither concave up nor down
f(x)=x

Quadratic Function Increasing on (0, 0) Concave up (—o,)
f(x)=x Decreasing on (—0,0)

Minimum at X=0

Cubic Function

f(x)=x

Increasing

Concave down on (—x,0)
Concave up on (0,0)
Inflection point at (0,0)

Reciprocal Decreasing (—0,0) U (0,00)

f(x):i

Concave down on (—,0)
Concave up on (0,0)
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Function Increasing/Decreasing Concavity

Reciprocal squared Increasing on (—,0) Concave up on (—0,0) U (0,0)
F(X)= Lz Decreasing on (0,0)

X
Cube Root Increasing Concave down on (0,)
f(x)= Ix Concave up on (—,0)
Inflection point at (0,0)

Square Root Increasing on (0,) Concave down on (0,)
F()=x

Absolute Value Increasing on (0, 0) Neither concave up or down
f(x)= |x1 Decreasing on (—0,0)

Important Topics of This Section

Rate of Change

Average Rate of Change

Calculating Average Rate of Change using Function Notation
Increasing/Decreasing

Local Maxima and Minima (Extrema)

Inflection points

Concavity

Try it Now Answers

1 $3.01-$1.69  $1.32
" Syears 5years

= (0.264 dollars per year.

2. Average rate of change = HORRIC) = (9_2\/5)_ (I—Zﬁ) = (3)-(1) _2_1
9-1 9-1 9-1 2

3 fa+h—f(a) _ ((a+h)3 +2)—(a3 +2)_ a’+3a’h+3ah’+h’+2-a’ -2

(a+hy—-a h
2 2 3 2 2
3a’h+3ah’ +h’ _ h3a’ +3ah+h ):3a2 + 3aha b
h h
40
4. Based on the graph, the local maximum appears /ﬁ‘\ /

to occur at (-1, 28), and the local minimum SI) IR IR T

occurs at (5,-80). The function is increasing -20¢
on(—o,—1) U (5,0) and decreasing on (—1,5). 401
601
-801

-100
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5. Calculating the rates of change, we see the rates of change become morenegative, so
the rates of change are decreasing This function is concave down.

X 0 5 10 15 20
g(x) 10000 | 9000 7000 4000 0
Rate of change | -1000 | -2000 | -3000 | -4000 |

6. Looking at the graph, it appears the function is concave down on (—,2) and
concave up on (2,00).
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Section 4.3 Exercises

1. The table below gives the annual sales (in millions of dollars) of a product. What was

the average rate of change of annual sales...
a) Between 2001 and 2002?

b) Between 2001 and 2004?

year | 1998

1999

2000

2001

2002 | 2003

2004

2005

2006

sales| 201

219

233

243

249

251

249

243

233

rate of change of population...
a) Between 2002 and 2004?

b) Between 2002 and 2006?

. The table below gives the population of a town, in thousands. What was the average

year 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008
population | 87 84 83 80 77 76 75 78 81
8.
. Based on the graph shown, estimate the 1
average rate of change from X=1 to Xx=4. ‘i'
. Based on the graph shown, estimate the “:
average rate of change from X=2to X=15. 5
-1 o2 3 45
i

Find the average rate of change of each function on the interval specified.
5. f(x)=x* on[l, 5]
7. 9(X)=3%x> -1 on [-3, 3]

9. k(t) = 6t +ti3 on[-1, 3]

Find the average rate of change of each function on the interval specified. Your answers

6. q(X) = X’ on [-4, 2]

8. h(x)=5-2x on [-2, 4]

t? —4t+1
10. pt)=————
P t?+3

will be expressions involving a parameter (b or h).
12. g(X)=2x> -9 on [4, b]

1.
13.

15.

17.
19.

1
at) =
® t+4

f(x)=4x> -7 on[l,b]
h(X) = 3x+ 4 on [2, 2+h]

on [9, 9+h]

j(X)=3%’ on[1, 1+h]
f(X) =2x> +1 on [X, x+h]

14, K(X) = 4x—2 on [3, 3+h]
16. b(x) =

X+3

on [1, 1+h]

18. r(t) = 4t> on [2, 2+h]

20. g(x)=3x> -2 on [X, x+h]

on [-3, 1]
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For each function graphed, estimate the intervals on which the function is increasing and
decreasing.

21.

23.

22.

LTI A PR A =
I 1 1 i 1 1
, t t t 1 t

24.

41

For each table below, select whether the table represents a function that is increasing or
decreasing, and whether the function is concave up or concave down.

25.

29.

X

f(x)

2

4

8

16

NP W N —

32

f(x)

-10

-25

-37

47

N[ ||| —|X

-54

26.

30.

X

9(x)

90

70

80

75

N[N |—

72

9(x)

-200

-190

-160

-100

N B[N —|X

0

27.

31.

X

h(x)

300

290

270

240

N[N |—

200

x

h(x)

—

100

-50

-25

-10

N | |W|N

0

28.

32.

X

k(x)

0

15

25

32

N[N |[—

35

k(x)

-50

-100

-200

-400

DN | B[N — X

-900
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For each function graphed, estimate the intervals on which the function is concave up and
concave down, and the location of any inflection points.

10+
554520 | 123456
24
44
6+
-84
33. 104
1’..
i -2 - 1 ™N2 3
-1t
24
At 24
44 ;
44
35. al 36. sS4

Use a graph to estimate the local extrema and inflection points of each function, and to
estimate the intervals on which the function is increasing, decreasing, concave up, and
concave down.

37. f(X)=x*" —4x’ +5 38. h(x) = x* +5x* +10x* +10x* —1
39. g(t) =tvJt+3 40. k(t) =3t*"° -t

41. m(x) = x* +2x° —12x> —10x+ 4 42. n(x) = x* —8x> +18%x> —6x+2
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Section 4.4 Composition of Functions

Suppose we wanted to calculate how much it costs to heat a house on a particular day of
the year. The cost to heat a house will depend on the average daily temperature, and the
average daily temperature depends on the particular day of the year. Notice how we have
just defined two relationships: The temperature depends on the day, and the cost depends
on the temperature. Using descriptive variables, we can notate these two functions.

The first function, C(T), gives the cost C of heating a house when the average daily
temperature is T degrees Celsius, and the second, T(d), gives the average daily
temperature of a particular city on day d of the year. If we wanted to determine the cost
of heating the house on the 5t day of the year, we could do this by linking our two
functions together, an idea called composition of functions. Using the function T(d), we
could evaluate T(5) to determine the average daily temperature on the 5t day of the year.
We could then use that temperature as the input to the C(T) function to find the cost to
heat the house on the 5™ day of the year: C(T(5)).

Composition of Functions

When the output of one function is used as the input of another, we call the entire
operation a composition of functions We write f(g(x)), and read this as “f of g of X” or
“f composed with g at X”.

An alternate notation for composition uses the composition operator: o
(f o g)(X) is read “f of g of X or “f composed with g at X”, just like f(g(x)).

Suppose c(S)gives the number of calories burned doing S sit-ups, and S(t) gives the
number of sit-ups a person can do in t minutes. Interpret c(S(3)).

When we are asked to interpret, we are being asked to explain the meaning of the
expression in words. The inside expression in the composition is S(3). Since the input
to the S function is time, the 3 is representing 3 minutes, and S(3) is the number of sit-
ups that can be done in 3 minutes. Taking this output and using it as the input to the
c(s)function will gives us the calories that can be burned by the number of sit-ups that
can be done in 3 minutes.

Note that it is not important that the same variable be used for the output of the inside
function and the input to the outside function. However, it iS essential that the units on
the output of the inside function match the units on the input to the outside function, if the
units are specified.
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Suppose f(x) gives miles that can be driven in X hours, and g(y) gives the gallons of gas
used in driving y miles. Which of these expressions is meaningful: f(g(y)) or g(f(x))?

The expression g(y) takes miles as the input and outputs a number of gallons. The
function f(X) is expecting a number of hours as the input; trying to give it a number of
gallons as input does not make sense. Remember the units have to match, and number
of gallons does not match number of hours, so the expression f(g(y)) is meaningless.

The expression f(X) takes hours as input and outputs a number of miles driven. The
function g(y) is expecting a number of miles as the input, so giving the output of the f(x)
function (miles driven) as an input value for g(y), where gallons of gas depends on
miles driven, does make sense. The expression g(f(x)) makes sense, and will give the
number of gallons of gas used, g, driving a certain number of miles, f(X), in X hours.

1. In a department store you see a sign that says 50% off of clearance merchandise, so
final cost C depends on the clearance price, p, according to the function C(p). Clearance
price, p, depends on the original discount, d, given to the clearance item, p(d).

Interpret C(p(d)).

Composition of Functions using Tables and Graphs

When working with functions given as tables and graphs, we can look up values for the
functions using a provided table or graph, as discussed in section 1.1. We start evaluation
from the provided input, and first evaluate the inside function. We can then use the
output of the inside function as the input to the outside function. To remember this,
always work from the inside out.

Using the tables below, evaluate f(g(3)) and g( f(4))

X f(x) X 9(x)
1 6 1 3
2 8 2 5
3 3 3 2
4 1 4 7

To evaluate f(g(3)), we start from the inside with the value 3. We then evaluate the
inside expression g(3) using the table that defines the function g: g(3)=2. We can then
use that result as the input to the f function, so g(3) is replaced by the equivalent value 2
and we get f(2). Then using the table that defines the function f, we find that f (2) =8.

f(g3)=f(2)=8.
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To evaluate g( f(4)), we first evaluate the inside expression f (4)using the first table:
f(4)=1. Then using the table for g we can evaluate:

9(f(4) =90 =3

2. Using the tables from the example above, evaluate f(g(1)) and g(f(3)) .

xample 4
Using the graphs below, evaluate f(g(1)).

9() L
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-5 .
To evaluate f(g(1)), we again start with the inside evaluation. We evaluate g(1) using
the graph of the g(x) function, finding the input of 1 on the horizontal axis and finding
the output value of the graph at that input. Here, g(1) =3. Using this value as the input
to the f function, f(g(l))= f(3). We can then evaluate this by looking to the graph of

the f(x) function, finding the input of 3 on the horizontal axis, and reading the output
value of the graph at this input. Here, f(3)=6,s0 f(g(l))=6.

3. Using the graphs from the previous example, evaluate g( f(2)).

Composition using Formulas

When evaluating a composition of functions where we have either created or been given
formulas, the concept of working from the inside out remains the same. First we evaluate
the inside function using the input value provided, then use the resulting output as the
input to the outside function.
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Example5 . ..
Given f(t)=t>—t and h(x) =3x+2, evaluate f(h(1)).

Since the inside evaluation is h(1) we start by evaluating the h(X) function at 1:
h(1) =3(1)+2 =5

Then f(h(1)) = f(5), so we evaluate the f(t) function at an input of 5:
f(h(1)=f(5)=5"-5=20

4. Using the functions from the example above, evaluate h( f(-2)).

While we can compose the functions as above for each individual input value, sometimes
it would be really helpful to find a single formula which will calculate the result of a
composition f(g(x)). To do this, we will extend our idea of function evaluation. Recall

that when we evaluate a function like f (t) =t*> —t, we put whatever value is inside the
parentheses after the function name into the formula wherever we see the input variable.

Example6 |
Given f (t) =t*> —t, evaluate f(3) and f(-2).

f3)=3>-3

f(=2)=(-2)"-(-2)
We could simplify the results above if we wanted to
f(3)=3"-3=9-3=6
f(-2)=(2)-(2)=4+2=6

We are not limited, however, to using a numerical value as the input to the function. We
can put anything into the function: a value, a different variable, or even an algebraic
expression, provided we use the input expression everywhere we see the input variable.

Example7 . . . |

Using the function from the previous example, evaluate f(a)

This means that the input value for t is some unknown quantity a. As before, we
evaluate by replacing the input variable t with the input quantity, in this case a.
f(ay=a*-a
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The same idea can then be applied to expressions more complicated than a single letter.

Example8 . |

Using the same f(t) function from above, evaluate f(X+2).

Everywhere in the formula for f where there was a t, we would replace it with the input
(X+2). Since in the original formula the input t was squared in the first term, the entire

input X+ 2 needs to be squared when we substitute, so we need to use grouping

parentheses. To avoid problems, it is advisable to always use parentheses around
inputs.

f(X+2)=(x+2)> —(X+2)

We could simplify this expression further to f(X+2) = x> +3x+2 if we wanted to:

f(X4+2)=(X+2)(X+2)—(x+2) Use the “FOIL” technique (first, outside, inside, last)
f(X+2)= X +2X+2X+4—( X+2) distribute the negative sign
f(X+2)=X +2X+2X+4— %2 combine like terms

f(X+2)=X +3x+2

Using the same function, evaluate f(t%).

Note that in this example, the same variable is used in the input expression and as the
input variable of the function. This doesn’t matter — we still replace the original input t

in the formula with the new input expression, t*.

F(3) = (%) - ()=t -t}

5. Given g(X) =3X—+/X, evaluate g(t—2).

This now allows us to find an expression for a composition of functions. If we want to
find a formula for f(g(x)), we can start by writing out the formula for g(X). We can then
evaluate the function f(X) at that expression, as in the examples above.
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Example10 |
Let f(x)= x> and g(X) =~ — 2x, find f(g(x)) and g(f(x)).
X

To find f(g(X)), we start by evaluating the inside, writing out the formula for g(x)
900 =+ ~2x
X

We then use the expression (l - ZXJ as input for the function f.
X

f(g(0) = f(l - 2x]
X
We then evaluate the function f(X) using the formula for g(x) as the input.

2
Since f(X)= X’ then f(l - 2X] = (l - 2Xj
X X

2
This gives us the formula for the composition: f(g(X)) = (1 - ZXJ
X

Likewise, to find g(f(x)), we evaluate the inside, writing out the formula for f(X)

g(f(x) = g(x*)

Now we evaluate the function g(x) using X* as the input.

g(F ()= -2
X

6. Let f(x)=x’ +3x and g(X) =/, find f(g(x)) and g(f(x)).

xample 11
A city manager determines that the tax revenue, R, in millions of dollars collected on a
population of p thousand people is given by the formula R(p) =0.03p+ \/B , and that
the city’s population, in thousands, is predicted to follow the formula

p(t) = 60 + 2t + 0.3t>, where t is measured in years after 2010. Find a formula for the
tax revenue as a function of the year.

Since we want tax revenue as a function of the year, we want year to be our initial input,
and revenue to be our final output. To find revenue, we will first have to predict the
city population, and then use that result as the input to the tax function. So we need to
find R(p(t)) Evaluating this,
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R(p(t)) = R(60 + 2t +0.3t> )= 0.03(60 + 2t + 0.3t )+ /60 + 2t + 0.3t

This composition gives us a single formula which can be used to predict the tax revenue
during a given year, without needing to find the intermediary population value.

For example, to predict the tax revenue in 2017, when t = 7 (because t is measured in
years after 2010)

R(P(7)) = 0.03(60 +2(7) + 0.3(7)> )+ /60 + 2(7) + 0.3(7)? ~12.079 million dollars

In some cases, it is desirable to decompose a function — to write it as a composition of
two simpler functions.

Write f(X)=3++/5-x%" as the composition of two functions.

We are looking for two functions, g and h, so f(x)=g(h(x)). To do this, we look for a
function inside a function in the formula for f(X). As one possibility, we might notice
that 5— X’ is the inside of the square root. We could then decompose the function as:
h(x)=5-x

g(x=3++x

We can check our answer by recomposing the functions:

g(h(x) = g5-x*)=3+5-x

Note that this is not the only solution to the problem. Another non-trivial
decomposition would be h(x) = x> and g(X) =3++/5-X

| mportant Topics of this Section

Definition of Composition of Functions
Compositions using:

Words

Tables

Graphs

Equations
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Try it Now Answers

1. The final cost, C, depends on the clearance price, p, which is based on the original
discount, d. (Or the original discount d, determines the clearance price and the final
cost is half of the clearance price.)

2. fg)=1£f@3)=3 and  g(f(3))=003)=2

3. 9(f(2)=9(5=3

4. h(f(-2))=h(6)=20 did you remember to insert your input values using parentheses?
5. g(t-2)=3(t-2)—/(t-2)

6. t(g)=(vx)=(Vx) +3(vV¥

9(f(9)=g(X+3)=[( X+3)
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Section 4.4 Exercises

Given each pair of functions, calculate f (g (0)) and g( f (O)) .

1. f(x)=4x+8, g(x)=7-X% 2. f(X)=5x+7, g(x)=4-2%
3. f(X)=vx+4, g(x)=12-X 4. f(x):ﬁ, g(x)=4x+3
+
Use the table of values to evaluate each expression x| f(x) 9(x)
5. f(9(8) o 5
6. f(g(5)) 1| 6 5
7. 9(f(5) 2] S 6
3 8 2

8. 9(f(3)) a4 A
9. f(f(4)) 5 0 8
10. f(f(1 6 2 7

(10) sl 2
11. 9(g(2) g J
12. g(9(6)) 9] 3 0
Use the graphs to evaluate the expressions below.
13. f(g3)) 6+ 6+
14. f(g(1)) s {1 5.
15. g(f(1) 41 4+
16. g( f(0)) 34 31
17. £(£(5)) 24 2.
18, 1(1(4) | i
19. 9(9(2)) - I — |
20. g(9(0)) T4l i Tl

For each pair of functions, find f (g ( X)) and g( f (X)) . Simplify your answers.

1 7 1 2
21 f(X):E, g(X):;+6 22 f(X):m, g(X):;+4

23. f(x)=x+1, g(x)=+x+2 24. f(x)=Vx+2, g(x)= % +3
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25.

27.

28.

29.

30.

31.

32.

F(x)=|. g(x)=5x+1 26. (x)=¥x . g(x)zx;l
If f(x)=x+6,9(X)=x-6and h(X)=vx, find f(g(h(x))

If f(x)=x+1, g(x):i and h(x)=x+3 , find f(g(h(x))

Given functions p(x)= 1 and m( X) = X —4, state the domains of the following

Jx

functions using interval notation.
P(x)

m( %)

b. Domain of p(m( X))
c. Domain of m( p( X)

a. Domain of

Given functions q(X)= 1 and h(x)=x —9, state the domains of the following

Jx

functions using interval notation.
a(x)
h(x)

b. Domain of q(h( X))

c. Domain of h(q(X))

a. Domain of

The function D(p) gives the number of items that will be demanded when the price
is p. The production cost, C(X) is the cost of producing X items. To determine the

cost of production when the price is $6, you would do which of the following:
a. Evaluate D(C(6)) b. Evaluate C(D(6))

¢. Solve D(C(X))=6 d. Solve C(D(p))=6

The function A(d) gives the pain level on a scale of 0-10 experienced by a patient

with d milligrams of a pain reduction drug in their system. The milligrams of drug in
the patient’s system after t minutes is modeled by m(t). To determine when the

patient will be at a pain level of 4, you would need to:
a. Evaluate A( m(4)) b. Evaluate m( A(4))

c. Solve A( m( t))=4 d. Solve m( A( d))=4
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33. The radius r, in inches, of a spherical balloon is related to the volume, V, by
rvV)=3 il . Air is pumped into the balloon, so the volume after t seconds is given
Vs

by V(t)=10+20t.
a. Find the composite function r (V (t))

b. Find the time when the radius reaches 10 inches.

34. The number of bacteria in a refrigerated food product is given by
N (T) =23T*-56T+1, 3<T <33, where T is the temperature of the food. When

the food is removed from the refrigerator, the temperature is given by T(t) =5t+1.5,
where t is the time in hours.
a. Find the composite function N (T(t))

b. Find the time when the bacteria count reaches 6752

Find functions f(X) and g(X) so the given function can be expressed as
h(x)= f(g(X)-
35. h(x)=(x+2)’ 36. h(x)=(x-5)
3 4
37. h(x)=—— 38. h(x)=
(%= (=

39. h(x):3+m 40. h(x):4+%/7<

41. Let f(x) be a linear function, with form f (x)= ax+b for constants aand b. [UW]
Show that f ( f (X)) is a linear function
b. Find a function g(X) such that g ( o] X)) =6Xx-8

42. Let f(x)=%x+3 [UW]

a. Sketch the graphs of f (X), f ( f (X)), f( f( f(X))) on the interval -2 <x < 10.

b. Your graphs should all intersect at the point (6, 6). The value x = 6 is called a
fixed point of the function f(X)since f(6)=6; thatis, 6 is fixed - it doesn’t move
when f is applied to it. Give an explanation for why 6 is a fixed point for any
function f(f(f(..f(x)...))).

c. Linear functions (with the exception of f(X) = X) can have at most one fixed
point. Quadratic functions can have at most two. Find the fixed points of the
function ¢ ( X) =X -2.

d. Give a quadratic function whose fixed points are X=—2 and X = 3.



220 Chapter 4

43. A car leaves Seattle heading east. The speed of the car in mph after m minutes is

70Ny

given by the function C( m) = . [UW]

a.

10+m’
Find a function m= f(9) that converts seconds S into minutes m. Write out the

formula for the new function C( f(9)) ; what does this function calculate?

Find a function m= g( h) that converts hours h into minutes m. Write out the
formula for the new function C(g(h)) ; what does this function calculate?

Find a function z= 9 that converts mph Sinto ft/sec z Write out the formula

for the new function v(C(m); what does this function calculate?
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Section 4.5 Transformation of Functions

Often when given a problem, we try to model the scenario using mathematics in the form
of words, tables, graphs and equations in order to explain or solve it. When building
models, it is often helpful to build off of existing formulas or models. Knowing the basic
graphs of your tool-kit functions can help you solve problems by being able to model
new behavior by adapting something you already know. Unfortunately, the models and
existing formulas we know are not always exactly the same as the ones presented in the
problems we face.

Fortunately, there are systematic ways to shift, stretch, compress, flip and combine
functions to help them become better models for the problems we are trying to solve. We
can transform what we already know into what we need, hence the name,
“Transformation of functions.” When we have a story problem, formula, graph, or table,
we can then transform that function in a variety of ways to form new functions.

Shifts

xample 1

To regulate temperature in our green building, air flow vents near the roof open and
close throughout the day to allow warm air to escape. The graph below shows the open
vents V (in square feet) throughout the day, t in hours after midnight. During the
summer, the facilities staff decides to try to better regulate temperature by increasing
the amount of open vents by 20 square feet throughout the day. Sketch a graph of this
new function.

oo+
250+
2001
1501
1001

30+

We can sketch a graph of this new function by adding 20 to each of the output values of
the original function. This will have the effect of shifting the graph up.
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Notice that in the second graph, for each [

input value, the output value has 2504

increased by twenty, so if we call the

new function S(t) we could write 2001

S(H=V(H+20. 150l

Note that this notation tells us that for 1001t

any value of t, S(t) can be found by

evaluating the V function at the same 307

input, then adding twenty to the result. . . . . I .
This defines Sas a transformation of the 4 8 2 16 20 4
function V, in this case a vertical shift

up 20 units.

Notice that with a vertical shift the input values stay the same and only the output
values change.

Vertical Shift

Given a function f(X), if we define a new function g(X) as

g(x) = f(X)+ k, where Kis a constant

then g(x)is a vertical shift of the function f(x), where all the output values have been
increased by k.

If k is positive, then the graph will shift up

If k is negative, then the graph will shift down

A function f(X) is given as a table below. Create a table for the function g(x)= f(X)—3

x |2 4 6
f(x) |1 3 7 11

The formula g(x)= f(X)—3 tells us that we can find the output values of the g function

by subtracting 3 from the output values of the f function. For example,
f(2)=1 is found from the given table

g(x)= f(x-3 is our given transformation
g2)=f(2)-3=1-3=-2

Subtracting 3 from each f(x) value, we can complete a table of values for g(x)

X 2 4 6 8
ag(x) | -2 0 4 8
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As with the earlier vertical shift, notice the input values stay the same and only the output
values change.

1. The function h(t) =—4.9t> + 30t gives the height h of a ball (in meters) thrown
upwards from the ground after t seconds. Suppose the ball was instead thrown from the
top of a 10 meter building. Relate this new height function b(t) to h(t), then find a
formula for b(t).

The vertical shift is a change to the output, or outside, of the function. We will now look
at how changes to input, on the inside of the function, change its graph and meaning.

xample 3

Returning to our building air flow example from the beginning of the section, suppose
that in Fall, the facilities staff decides that the original venting plan starts too late, and
they want to move the entire venting program to start two hours earlier. Sketch a graph
of the new function.

V(t) = the original venting plan F(t) = starting 2 hrs sooner
U0+

00+
2501

2501

S00l 2001

1501 1507

100 100

50 50+
4 s 12 16 20 M 4 § 2 15 20 M

In the new graph, which we can call F(t), at each time, the air flow is the same as the
original function V(t) was two hours later. For example, in the original function V, the
air flow starts to change at 8am, while for the function F(t) the air flow starts to change
at 6am. The comparable function values are V(8) = F(6).

Notice also that the vents first opened to 220 sq. ft. at 10 a.m. under the original plan,
while under the new plan the vents reach 220 sq. ft. at 8 a.m., so V(10) = F(8).

In both cases we see that since F(t) starts 2 hours sooner, the same output values are
reached when, F(t) =V (t+2)

Note that V(t+2) had the affect of shifting the graph to the left.
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Horizontal changes or “inside changes” affect the domain of a function (the input) instead
of the range and often seem counterintuitive. The new function F(t) uses the same
outputs as V(t), but matches those outputs to inputs two hours earlier than those of V(t).
Said another way, we must add 2 hours to the input of V to find the corresponding output
forF: F(t)=V(t+2).

Given a function f(x), if we define a new function g(Xx) as
g(x)= f(x+ K, where K is a constant

then g(x)is a horizontal shift of the function f(x)

If k is positive, then the graph will shift left

If k is negative, then the graph will shift right

A function f(X) is given as a table below. Create a table for the function g(Xx)= f(x-3)

X 4 6
f(x) |1 3 7 11

The formula g(x)= f(x—23) tells us that the output values of g are the same as the
output value of f with an input value three smaller. For example, we know that f (2)=1.

To get the same output from the g function, we will need an input value that is 3 larger:
We input a value that is three larger for g(X) because the function takes three away
before evaluating the function f.

g(5)= f(5-3)= f(2)=1

' E 7 9 11
g(x) | 1 3 7 11

The result is that the function g(X) has been shifted to the right by 3. Notice the output
values for g(X) remain the same as the output values for f(X) in the chart, but the
corresponding input values, X, have shifted to the right by 3: 2 shifted to 5, 4 shifted to
7, 6 shifted to 9 and 8 shifted to 11.
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The graph shown is a transformation of the toolkit
function f(X)= X*. Relate this new function g(x)
to f(x), and then find a formula for g(x).

Notice that the graph looks almost identical in
shape to the f(X)= X function, but the X values 3
are shifted to the right two units. The vertex used 51
to be at (0, 0) but now the vertex is at (2, 0) . The
graph is the basic quadratic function shifted two to It
the right, so : N
g(x)= f(X—2) -1 1 2 3 4 3

A

Notice how we must input the value X =2, to get the output value y = 0; the X values
must be two units larger, because of the shift to the right by 2 units.

We can then use the definition of the f(X) function to write a formula for g(x) by
evaluating f(X-2):

Since f(X)=X and g(X)= f(x-2)

9(¥) = f(x=2)=(x-2)’

If you find yourself having trouble determining whether the shift is +2 or -2, it might
help to consider a single point on the graph. For a quadratic, looking at the bottom-
most point is convenient. In the original function, f(0)=0. In our shifted function,

g(2)=0. To obtain the output value of 0 from the f function, we need to decide
whether a +2 or -2 will work to satisfy g(2)= f(2?2)= f(0)=0. For this to work, we
will need to subtract 2 from our input values.

When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical
shifts are affecting the output values of the function, while horizontal shifts are affecting
the input values of the function.

Example6 . ____ _ |

The function G(m)gives the number of gallons of gas required to drive mmiles.
Interpret G(m)+10 and G(m+10)

G(m) +10 is adding 10 to the output, gallons. So this is 10 gallons of gas more than is

required to drive mmiles. So this is the gas required to drive mmiles, plus another 10
gallons of gas.

G(m+10) is adding 10 to the input, miles. So this is the number of gallons of gas
required to drive 10 miles more than mmiles.
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2. Given the function f(X) = Jx graph the original function f(X)and the
transformation g(x) = f(X+2).

a. Is this a horizontal or a vertical change?
b. Which way is the graph shifted and by how many units?
c. Graph f(x) and g(x) on the same axes.

Now that we have two transformations, we can combine them together.

Remember:
Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the
transformed function up or down.

Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting
the transformed function left or right.

xample 7
Given f(Xx)= |)<1 , sketch a graph of h(x) = f(x+1)-3.

The function f is our toolkit absolute value function. We know that this graph has a V
shape, with the point at the origin. The graph of h has transformed f in two ways:
f (x+1) is a change on the inside of the function, giving a horizontal shift left by 1,

then the subtraction by 3 in f(X+1)—3 is a change to the outside of the function,
giving a vertical ihift down by 3. Transforming the graph gives

44

-'/'2‘3'45

We could also find a formula for this transformation by evaluating the expression for
h(x):
h(x)= f(x+1)-3

h(x) =|x+1]-3
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[Example 8
Write a formula for the graph shown, a 5t
transformation of the toolkit square root function.

The graph of the toolkit function starts at the
origin, so this graph has been shifted 1 to the right,
and up 2. In function notation, we could write that
as h(xX)= f(x—1)+2. Using the formula for the

square root function we can write 11

h(X) =+ x—1+2

Note that this transformation has changed the
domain and range of the function. This new graph
has domain [1,0) and range [2,).

Reflections
Another transformation that can be applied to a function is a reflection over the horizontal
or vertical axis.

[Example 9
Reflect the graph of S(t) = Jt both vertically and horizontally.

Reflecting the graph vertically, each output value will be reflected over the horizontal t
axis:

S T
t t t

S T
t t t t t

L T T
L T T

Since each output value is the opposite of the original output value, we can write

V() =-(1

V(t) =t

Notice this is an outside change or vertical change that affects the output S(t) values so
the negative sign belongs outside of the function.
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Reflecting horizontally, each input value will be reflected over the vertical axis:
54

44
It
24
1

5 4 3 2 1 2 3 4 5

wal

-5
Since each input

H (1) = s(-1)

H(t) =t

Notice this is an inside change or horizontal change that affects the input values so the
negative sign is on the inside of the function.

value is the opposite of the original input value, we can write

Note that these transformations can affect the domain and range of the functions. While
the original square root function has domain [0,o) and range [0,), the vertical

reflection gives the V(t) function the range (—,0], and the horizontal reflection gives
the H(t) function the domain (—,0].

Given a function f(X), if we define a new function g(X) as

9 =—f(X,

then g(X) is a vertical reflection of the function f(x), sometimes called a reflection
about the X-axis

If we define a new function g(Xx) as

9(¥) = (=X,

then g(x) is a horizontal reflection of the function f(X), sometimes called a reflection
about the y-axis

A function f(X) is given as a table below. Create a table for the function g(X) =— f(X)
and h(x)= f(-X)

X 2 4 6
f(x) |1 3 7 11
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For g(x), this is a vertical reflection, so the X values stay the same and each output value
will be the opposite of the original output value:

X

For h(x), this is a horizontal reflection, and each input value will be the opposite of the
original input value and the h(X) values stay the same as the f(x) values:

x |2 |4 [-6 |8
h(x) | 1 3 7 11

A common model for learning has an equation similar to
k(t)=—-2"+1, where k is the percentage of mastery that
can be achieved after t practice sessions. This is a

transformation of the function f (t)=2' shown here. //

LS

Sketch a graph of k(t). 53 5 5 0 I B

This equation combines three transformations into one equation.
A horizontal reflection: f(-t)=2" combined with
A vertical reflection: —f(-t)=-2" combined with
A vertical shift up I: —f(-t)+1=-2"+1

We can sketch a graph by applying these transformations one at a time to the original
function:

The original graph Horizontally reflected Then vertically reflected
3+ 3+ 54
41 41 4]
3+ 3+ 34
24 24 24
1

S5 o4 -3 -2 - 1 2 3 4 5 5 4 3 -2 4 1

LU N T ST
LU N T ST

Then, after shifting up 1, we get the final graph:
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_‘) 4

44

34

21

4
5 4 3 2 - I 2 3 4 3

A

24

34

44

5+ kK(t)y=—f(-t)+1=-2"+1.
Note: As a model for learning, this function would be limited to a domain of t >0,
with corresponding range [0,1).

3. Given the toolkit function f(x)= X, graph g(x) = -f(x) and h(x) = f(-x).
Do you notice anything surprising? Discuss your findings with a friend.

Some functions exhibit symmetry, in which reflections result in the original graph. For
example, reflecting the toolkit functions f(X)= X or f(X)= |x| will result in the original

graph. We call these types of graphs symmetric about the y-axis.

Likewise, if the graphs of f(x)= X or f(X)= 1 were reflected over both axes, the
X

result would be the original graph:

f(x)=x f(—=x) —f(=x)
4 4 4
2 _2 2
1 1 1
54 3 -2 - 1 2 3 4 5

12 3 4 5 5 4 3 -2 - J 2 3 4 5 5 4 -3 -2 -

—

L T

We call these graphs symmetric about the origin.
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Symmetry: Even and Odd Functions

A graph is symmetric about the vertical axisif
f)=f(=x)

A function with this symmetry is called an even function

A graph is symmetric about the originif
f(X)=—f(—X%
A function with this symmetry is called an odd function

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For
example, the f(x)=2" function is neither even nor odd.

Is the function f(X)= X +2 X even, odd, or neither?

Without looking at a graph, we can determine this by finding formulas for the
reflections, and seeing if they return us to the original function:

f(=X)=(—X’ +2(-x=-X-2X
This does not return us to the original function, so this function is not even. We can
now try also applying a horizontal reflection:

—f(—x):—(—>c"—2x):x3+2x

Since —f (=x) = f(X), this is an odd function

Stretches and Compressions
With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a
function. We now explore the effects of multiplying the inputs or outputs.

Remember, we can transform the inside (input values) of a function or we can transform
the outside (output values) of a function. Each change has a specific effect that can be
seen graphically.
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A function P(t) models the growth of a population of fruit flies. The growth is shown
below.

L L

A scientist is comparing this to another population, Q, that grows the same way, but
starts twice as large. Sketch a graph of this population.

Since the population is always twice as large, the new population’s output values are
always twice the original function output values. Graphically, this would look like

[ =

Symbolically,
Q(t) = 2P(1)

This means that for any input t, the value of the Q function is twice the value of the P
function. Notice the effect on the graph is a vertical stretching of the graph, where
every point doubles its distance from the horizontal axis. The input values, t, stay the
same while the output values are twice as large as before.

Vertical Stretch/Compression
Given a function f(X), if we define a new function g(X) as
g(X) = kf (X), where K is a constant

then g(x)is a vertical stretch or compressionof the function f(x).

If k> 1, then the graph will be stretched
If 0< k < 1, then the graph will be compressed

If k <0, then there will be combination of a vertical stretch or compression with a
vertical reflection
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Exampleld |

A function f(X) is given as a table below. Create a table for the function g(Xx) = % f(X)

X 4 |6 |8
i) |1 |3 |7 |11

The formula g(x) = % f (x) tells us that the output values of g are half of the output

values of f with the same inputs. For example, we know that f (4) =3. Then

1 1 3
9(4)—5 f(4)—5(3)—5

X 2 4 6 8
g(x) | 12 3/2 7/2 112

The result is that the function g(x) has been compressed vertically by Y. Each output
value has been cut in half, so the graph would now be half the original height.

[Example 15
The graph to the right is a transformation of the

toolkit function f(X)=Xx’. Relate this new function
g(x) to f(x), then find a formula for g(X).

T T

When trying to determine a vertical stretch or shift, it
is helpful to look for a point on the graph that is
relatively clear. In this graph, it appears that

g(2) = 2. With the basic cubic function at the same

input, f(2)=2’ =8. Based on that, it appears that
the outputs of g are %4 the outputs of the function f,

R R S I N B

L T

since g(2) = i f(2). From this we can fairly safely

conclude that:

900 = F (0

We can write a formula for g by using the definition of the function f

1 1,
Q(X)—Zf(x)—zx

Now we consider changes to the inside of a function.



234 Chapter 4

Returning to the fruit fly population we looked at earlier, suppose the scientist is now
comparing it to a population that progresses through its lifespan twice as fast as the
original population. In other words, this new population, R, will progress in 1 hour the
same amount the original population did in 2 hours, and in 2 hours, will progress as
much as the original population did in 4 hours. Sketch a graph of this population.

Symbolically, we could write

R(1) = P(2)

R(2) = P(4), and in general,

R(t) = P(2t)
Graphing this,
O}riginal population, P(t) , Transformed, R(t)
6 &4

5t 5+

41 41

I+ 31

21 24

14 14

i 5 6 7

Note the effect on the graph is a horizontal compression, where all input values are half
their original distance from the vertical axis.

Horizontal Stretch/Compression

Given a function f(X), if we define a new function g(X) as
g(x) = f(kx), where K is a constant

then g(X) is a horizontal stretch or compressionof the function f(x).
If k> 1, then the graph will be compressed by %
If 0< k < 1, then the graph will be stretched by %

If k <0, then there will be combination of a horizontal stretch or compression with a
horizontal reflection.
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Examplel7 . |

A function f(X) is given as a table below. Create a table for the function g(x) = f (é X)

X 4 6
f(x) | 1 3 7 11

The formula g(x) = f (% X) tells us that the output values for g are the same as the
output values for the function f at an input half the size. Notice that we don’t have

enough information to determine g(2) since g(2) = f (% . 2} = f (1), and we do not

have a value for f (1) in our table. Our input values to g will need to be twice as large
to get inputs for f that we can evaluate. For example, we can determine g(4) since

g(4):f(%-4]:f(2):1.

X 4 8 12 16
g(x) | 1 3 7 11

Since each input value has been doubled, the result is that the function g(x) has been
stretched horizontally by 2.

xample 18

Two graphs are shown below. Relate the function g(x) to f(x)

f0) )

I 2 3 4 5 6 7 I 2 3 4 5 6 7

The graph of g(X) looks like the graph of f(X) horizontally compressed. Since f(X) ends at
(6,4) and g(Xx) ends at (2,4) we can see that the X values have been compressed by 1/3,
because 6(1/3) = 2. We might also notice that g(2) = f(6), and g(1) = f(3). Either
way, we can describe this relationship as g(x) = f (3 X). This is a horizontal
compression by 1/3.
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Notice that the coefficient needed for a horizontal stretch or compression is the
reciprocalof the stretch or compression. So to stretch the graph horizontally by 4, we

need a coefficient of 1/4 in our function: f (% Xj . This means the input values must be

four times larger to produce the same result, requiring the input to be larger, causing the
horizontal stretching.

4. Write a formula for the toolkit square root function horizontally stretched by three.

It is useful to note that for most toolkit functions, a horizontal stretch or vertical stretch
can be represented in other ways. For example, a horizontal compression of the function

f (x)= X by % would result in a new function g(x)=(2 X)2 , but this can also be written

as g(x)=4x, a vertical stretch of f(x) by 4. When writing a formula for a transformed

toolkit, we only need to find one transformation that would produce the graph.

Combining Transformations

When combining transformations, it is very important to consider the order of the
transformations. For example, vertically shifting by 3 and then vertically stretching by 2
does not create the same graph as vertically stretching by 2 and then vertically shifting by
3.

When we see an expression like 2 f (X) + 3, which transformation should we start with?
The answer here follows nicely from order of operations, for outside transformations.
Given the output value of f(X), we first multiply by 2, causing the vertical stretch, then
add 3, causing the vertical shift. (Multiplication before Addition)

Combining Vertical Transformations
When combining vertical transformations written in the form af (x) + k,

first vertically stretch by a, then vertically shift by k.

Horizontal transformations are a little trickier to think about. When we write
g(x) = f(2x+ 3) for example, we have to think about how the inputs to the g function

relate to the inputs to the f function. Suppose we know f(7) =12. What input to g

would produce that output? In other words, what value of X will allow
g(x)= f(2x+3)= f(12)? We would need 2Xx+3 =12. To solve for X, we would first

subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal
compression.
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Combining Horizontal Transformations

‘ When combining horizontal transformations written in the form f (bx+ p),

first horizontally shift by p, then horizontally stretch by 1/b.
This format ends up being very difficult to work with, since it is usually much easier to
horizontally stretch a graph before shifting. We can work around this by factoring inside
the function.

f(bx+ p)= f(b(x+§D

Factoring in this way allows us to horizontally stretch first, then shift horizontally.

Combining Horizontal Transformations (Factored Form)

When combining horizontal transformations written in the form f(b(x+ h)),
first horizontally stretch by 1/b, then horizontally shift by h.

Independence of Horizontal and Vertical Transformations
Horizontal and vertical tr ansformations are independent It does not matter
whether horizontal or vertical transformations are done first.

Given the table of values for the function f(X) below, create a table of values for the
function g(x)=2f(3x)+1

X |6 12 [18 [24
fx) |10 |14 [15 |17

There are 3 steps to this transformation and we will work from the inside out. Starting
with the horizontal transformations, f(3X) is a horizontal compression by 1/3, which

means we multiply each X value by 1/3.

X 2 |4 Je6 |3
fGx) [10 |14 |15 |17

Looking now to the vertical transformations, we start with the vertical stretch, which
will multiply the output values by 2. We apply this to the previous transformation.

X 2 4 6 8
21(3%) [20 |28 [30 |34

Finally, we can apply the vertical shift, which will add 1 to all the output values.

X 2 [4 6 [8
g(x)=2f(3x)+1 | 21 |29 |31 |35
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xample 20
Using the graph of f(x) below, sketch a graph of k(x) = f (% X+ lj -3
54
41

ath

5 o4 -3 2 1 2 3 435
4
24

31

41
S5+

To make things simpler, we’ll start by factoring out the inside of the function
f lx+1 -3=f l(x+2))—3
2 2

By factoring the inside, we can first horizontally stretch by 2, as indicated by the 2 on
the inside of the function. Remember twice the size of 0 is still 0, so the point (0,2)
remains at (0,2) while the point (2,0) will stretch to (4,0).

Next, we horizontally shift left by 2 units, as indicated by the x+2.

Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the
outside of the function.

Horizontal stretch by 2 Horizontal shift left by 2 Vertical shift down 3
3+ 54
A 5

FT

4
3

TN, s

5 o4 3 2 I 2 3 4 5 L 5 T 5 3 7 6 5 4 3 2 1 1 2 3

44
3
21
14

[

[ A S
[ N
LU
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Write an equation for the transformed graph of 4t
the quadratic function shown.
24
Since this is a quadratic function, first consider A
what the basic quadratic tool kit function looks /\
like and how this has changed. Observing the -
graph, we notice several transformations:
The original tool kit function has been flipped A7
over the X axis, some kind of stretch or
compression has occurred, and we can see a shift
to the right 3 units and a shift up 1 unit. 31

24

In total there are four operations: 4

Vertical reflection, requiring a negative sign outside the function

Vertical Stretch or Horizontal Compression*

Horizontal Shift Right 3 units, which tells us to put X-3 on the inside of the function
Vertical Shift up 1 unit, telling us to add 1 on the outside of the function

"It is unclear from the graph whether it is showing a vertical stretch or a horizontal
compression. For the quadratic, it turns out we could represent it either way, so we’ll
use a vertical stretch. You may be able to determine the vertical stretch by observation.

By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points
at (1, 1) and (-1, 1). These points are one unit up and one unit over from the vertex.
The new points on the transformed graph are one unit away horizontally but 2 units
away vertically. They have been stretched vertically by two.

Not everyone can see this by simply looking at the graph. If you can, great, but if not,
we can solve for it. First, we will write the equation for this graph, with an unknown
vertical stretch.

f(x)= x> The original function
- f(x)=-x’ Vertically reflected
—af(x) = —ax’ Vertically stretched
—af(x—3) = —a(x—3) Shifted right 3

—af (x=3)+1=-a(x-3)" +1 Shifted up 1

We now know our graph is going to have an equation of the form g(x) = —a(x—3)* +1.

To find the vertical stretch, we can identify any point on the graph (other than the
highest point), such as the point (2,-1), which tells us g(2) =—1. Using our general

formula, and substituting 2 for X, and -1 for g(X)
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-1=-a(2-3)" +1
-1=-a+1
-2=-a

2=a

This tells us that to produce the graph we need a vertical stretch by two.
The function that produces this graph is therefore g(x) = -2(x—3)* +1.

5. Consider the linear function g(X) =-2X+1. Describe its transformation in words
using the identity tool kit function f(X) = X as a reference.

xample 22

On what interval(s) is the function g(X) =

—+3 increasing and decreasing?

This is a transformation of the toolkit reciprocal squared function, f(X)= 1 :

X2
-2f(x)= _—22 A vertical flip and vertical stretch by 2
X
—2f(x=1)= _22 A shift right by 1
(x-1)
—2f(x-1)+3= =243 A shift up by 3

(x=1)

5
The basic reciprocal squared function is increasing on 4
(—0,0) and decreasing on (0,00). Because of the vertical ﬁz\
flip, the g(X) function will be decreasing on the left and i r
increasing on the right. The horizontal shift right by 1 will

also shift these intervals to the right one. From this, we can
determine g(x) will be increasing on (1,0) and decreasing on

S 4320 ||1p 345

Py
I

(—oo,1). We also could graph the transformation to help us
determine these intervals.

[V
P

Try it Now
‘ 6. On what interval(s) is the function h(t) = (t —3)° + 2 concave up and down?
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mportant Topics of This Section
Transformations

Vertical Shift (up & down)

Horizontal Shifts (left & right)

Reflections over the vertical & horizontal axis
Even & Odd functions

Vertical Stretches & Compressions
Horizontal Stretches & Compressions
Combinations of Transformation

Try it Now Answers
1. b(t)=h(t)+10=-4.9t +30t+10 A
2. a. Horizontal shift
b. The function is shifted to the LEFT by 2 units.
c. Shown to the right

3. Shown to the right
Notice: g(x) = f(-x) looks the same as f(X)

4. g(x)=f (% Xj so using the square root function we get

5. The identity tool kit function f(x) = X has been
transformed in 3 steps

a. Vertically stretched by 2.

b. Vertically reflected over the X axis.

c. Vertically shifted up by 1 unit.

6. h(t) is concave down on (—20,3) and concave up on (3,)
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Section 4.5 Exercises

Describe how each function is a transformation of the original function f(X)

1. f(x—49) 2. f(x+43)
3. f(x+3) 4, f(x-4)
5. F(x)+5 6. f(x)+8
7. f(x)-2 8. f(x)-7
9. f(x=2)+3 10. f(x+4)-1

11. Write a formula for f(X)= Jx shifted up 1 unit and left 2 units.
12. Write a formula for f(X)= |x1 shifted down 3 units and right 1 unit.

13. Write a formula for f(X)= 1 shifted down 4 units and right 3 units.
X

14. Write a formula for f(X)= Lz shifted up 2 units and left 4 units.
X

15. Tables of values for f(X), g(X), and h(X) are given below. Write g(X) and h(X)

as transformations of f (X).

X [-2]-1]0 [1]2 X [-1]0 |1 |2]3 X |[-2]-1]0 |1
fxX)|-2]-1]-3[1]2 gx) | -2 |-1|-3]1]2 h(x) |-1]0 |-2]2
16. Tables of values for f(X), g(X), and h(x) are given below. Write g(X) and h(X)
as transformations of f(X).
X [-2]-1]0]1 X [-3[-2|-1]0 X |[-2][-1]0]1
fx)|-1]-3[4]2]1 gx) | -1]-3]4 |2 h(x) |-2]-4[3]1
The graph of f (X) =2% is shown. Sketch a graph of each transformation of f (X)
4.
17. g(x)=2"+1 3
2.
18. h(x)=2"-3
_ Ax-1 v—v/..lj/ : : : ;
19. w(x)=2 4320 | 12 3 4

20. g(x)=2*"

Aode L
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Sketch a graph of each function as a transformation of a toolkit function.

21 f(t)=(t+1)*-
22. h(x)=|x- 1|+4
23. k(x)=(x- )
24. m(t)=3+

Write an equation for each function graphed below.

¥ 4
4 34
i 5]
2
j_
SN A T _;\ RSNy
2 )
_3 27
4 3
25. 31 26. -4
44 5
3 y:
£x
2-1//f N
./—f’"/-{: !
A ;/2 _;_3_ 1 2 3 4 54 52 -3_3_ I 2 343
2]
2 N
-3 4
27. -4 28. -5

Find a formula for each of the transformations of the square root whose graphs are given
below.

[
P A B

B Q  EEEENRERER
2] 2]
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The graph of f (X) =2% is shown. Sketch a graph of each

transformation of f (X) 2

31. g(x)=—2"+1 ,/},

G320 12 3 4

32. h(x)=2"

Aol L

33. Starting with the graph of f (X) =6" write the equation of the graph that results from

a. reflecting f(X) about the x-axis and the y-axis
b. reflecting f(X) about the x-axis, shifting left 2 units, and down 3 units

34. Starting with the graph of f (X) =4" write the equation of the graph that results from

a. reflecting f(X) about the x-axis
b. reflecting f(X) about the y-axis, shifting right 4 units, and up 2 units

Write an equation for each function graphed below.

>'au
T I T

Y520 [V 25 4 Y520 | 132 3 4

-1 -1
-2+ -2+
-3 3
35. 41 36. 41
44 44
G G
\ N
| /]
Y52 12 3 4 T3 [ 12 3 4
-1 -1
-2+ -2+
-3 3
37. 41 38. 41
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39. For each equation below, determine if the function is Odd, Even, or Neither.
a. f(x)=3x

b. g(x)zxﬁ(
c. h(x):§+3x

40. For each equation below, determine if the function is Odd, Even, or Neither.

a. f(x):(x—z)2

b. g(x)=2x%

c. h(x)=2x-X
Describe how each function is a transformation of the original function f(X).
41. —f(X) 42. f(—X)
43. 41 (X) 44. 6 (X)
45. T(5x) 46. f(2X)
47. f(lx] 48. f(lxj

3 5

49. 3f (-x) 50. —f(3x)

Write a formula for the function that results when the given toolkit function is
transformed as described.

51. f(x)= |><I reflected over the y axis and horizontally compressed by a factor of % .

52. f(x)= JX reflected over the X axis and horizontally stretched by a factor of 2.

53. f(x)= Lz vertically compressed by a factor of %, then shifted to the left 2 units and
X

down 3 units.

54. f(x)= 1 vertically stretched by a factor of 8, then shifted to the right 4 units and up
X

2 units.
55. f(x)= X horizontally compressed by a factor of % , then shifted to the right 5 units
and up 1 unit.

56. f(x)= X horizontally stretched by a factor of 3, then shifted to the left 4 units and
down 3 units.
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Describe how each formula is a transformation of a toolkit function. Then sketch a graph

of the transformation.
57. f(x)=4(x+1)" =5

59. h(x)=-2|x—4/+3

61. m(x)=—x

1
2

1
63. — -3
P(x (3 J

65. a(X) =+—x+4

58. g(x) =5(x+3)" -2
60. k(X)=-3x-1

62. n( X :l X—2
3

64. q(x)=(% xf +1
66. b(x)=4-x-6

Determine the interval(s) on which the function is increasing and decreasing.

67. f(x)=4(x+1)" -5

69. a( X)=v—x+4

68. g(x) =5(x+3) -2

70. k(x)=-3/x-1

Determine the interval(s) on which the function is concave up and concave down.

71. m(x) = —2(x+3)* +1

73. p(x):(% sz -3

72. b(X)=-x-6

74. k(x)=-3Jx-1
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The function f(X) is graphed here. Write an equation for each 5]
graph below as a transformation of f(X).

24
4 4 4
3 3 3
2 2 2
! = !
4 -3 -2 -l /2 3 4 4 -3 -2 -l } 2 3 4 4 -3 ] I 2 3 4
-1 -ﬁ-\\ -If
-2 -2 iR
-3 -3 3
75. -4 76. e 77. -4
4 4 2
i 3
2 2 I+
g /\
5 T 2 -l I 2 3 4 3 4?2;\7?4 2 i \,r 2
I -1
2 -2 |
-3 -3
78. -4 79. -4 80. 24
44 4 2
kR i I
21 2 ’
4 -3 2 - 1 2 3 4
I+ 1 -1
R N 1 2 3 54 -3 2 - I 2543 \/
1+ -I -7
21 - ‘4
34 -3 -5
81. 4+ 82. -4 83. -6
4+ >t ?
It 2
27 I
;-_ 1 1 1 1
| | 3 2 i 2 3 4
3 2 3 4 5 i
IH ;
24 27
31 4 3 2 I 37
84. 44 85. 4 86. 41
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Write an equation for each transformed toolkit function graphed below.

LU SS TP

T y45 6

90. 4

88.

91.

A4

&9.

92.

96.

e b s e gy O
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99. Suppose you have a function y= f(X) such that the domain of f(X) is 1 <x<6 and
the range of f(X) is -3 <y<5. [UW]
a. What is the domain of f (2(x—3))?

What is the range of f(2(x—3)) ?

What is the domain of 2 f(x)—3 ?

What is the range of 2 f(X)—3 ?

Can you find constants B and C so that the domain of f(B(x— C)) is 8 <x<9?

Can you find constants A and D so that the range of Af (X)+ D is0<y<1?

o

I
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Section 4.6 Inverse Functions

A fashion designer is travelling to Milan for a fashion show. He asks his assistant, Betty,
what 75 degrees Fahrenheit is in Celsius, and after a quick search on Google, she finds

the formula C = g(F —32). Using this formula, she calculates 3(75 —32) = 24 degrees

Celsius. The next day, the designer sends his assistant the week’s weather forecast for
Milan, and asks her to convert the temperatures to Fahrenheit.
Man Tue Wed

B = P ¥
"R

26°C | 19°C 29°C | 19°C 30°C | 20°C 2B6°C |18°C

At first, Betty might consider using the formula she has already found to do the
conversions. After all, she knows her algebra, and can easily solve the equation for F
after substituting a value for C. For example, to convert 26 degrees Celsius, she could
write:

5
26=>(F -32
9( )
262 —F -3
5
9

F :26-§+32z79

After considering this option for a moment, she realizes that solving the equation for each
of the temperatures would get awfully tedious, and realizes that since evaluation is easier
than solving, it would be much more convenient to have a different formula, one which
takes the Celsius temperature and outputs the Fahrenheit temperature. This is the idea of
an inverse function, where the input becomes the output and the output becomes the
input.

Inverse Function

If f(a)=Db, then a function g(x)is an inverseoff if g(b)=a.
The inverse of f(X) is typically notated f ~'(X), which is read “f inverse of X”, so
equivalently, if f(a)=b then f '(b)=a.

Important: The raised -1 used in the notation for inverse functions is simply a notation,
and does not designate an exponent or power of -1.
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Examplel . |

If for a particular function, f (2) = 4, what do we know about the inverse?

The inverse function reverses which quantity is input and which quantity is output, so if
f(2)=4,then f'(4)=2.

Alternatively, if you want to re-name the inverse function g(x), then g(4) =2

Try it Now
‘ 1. Given that h™'(6) = 2, what do we know about the original function h(x)?

Notice that original function and the inverse function undoeach other. If f(a)=Db, then

f ~'(b) = a, returning us to the original input. More simply put, if you compose these
functions together you get the original input as your answer.

f7(f@)=a and f(f'(b))=b

Domain of f Range of f
f(x)

f7(x

Since the outputs of the function f are the inputs to f ™', the range of f is also the domain
of f~'. Likewise, since the inputs to f are the outputs of f ', the domain of f is the

range of .

Basically, like how the input and output values switch, the domain & ranges switch as
well. But be careful, because sometimes a function doesn’t even have an inverse
function, or only has an inverse on a limited domain. For example, the inverse of

f(x)= Ix is f “(x) = X, since a square “undoes” a square root, but it is only the
inverse of f(X) on the domain [0,%), since that is the range of f(X)= Jx.

Example2 |

The function f(X)=2" has domain (—o0,0) and range (0,%), what would we expect

the domain and range of f ' to be?

We would expect f ™' to swap the domain and range of f, so f ' would have
domain (0,) and range (—0,©).
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Example3 . _____ |

A function f(t) is given as a table below, showing distance in miles that a car has
traveled in t minutes. Find and interpret f ' (70)

t (minutes) |30 [50 |70 |90
f(t) (miles) |20 |40 |60 |70

The inverse function takes an output of f and returns an input for f. So in the
expression f ~'(70), the 70 is an output value of the original function, representing 70
miles. The inverse will return the corresponding input of the original function f, 90
minutes, so f ~'(70) =90 . Interpreting this, it means that to drive 70 miles, it took 90
minutes.

Alternatively, recall the definition of the inverse was that if f(a)=b then f'(b)=a.
By this definition, if you are given f ' (70) = a then you are looking for a value a so
that f (a) =70 . In this case, we are looking for a t so that f (t) =70, which is when t =
90.

2. Using the table below

t (minutes) |30 |50 |60 70 90
f(t) (miles) |20 |40 |50 |60 |70

Find and interpret the following
a. f(60)

b. f(60)

Exgmpled . |

A function g(X)is given as a graph below. Find g(3) and g~'(3)
4 1

To evaluate g(3) , we find 3 on the horizontal axis and find the corresponding output
value on the vertical axis. The point (3, 1) tells us that g(3) =1
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To evaluate g~'(3), recall that by definition g~'(3) means g(x) = 3. By looking for the
output value 3 on the vertical axis we find the point (5, 3) on the graph, which means
g(5) = 3, so by definitiong ™" (3) = 5.

3. Using the graph in Example 4 above
a. find g~' (1)
b. estimate g~' (4)

Returning to our designer’s assistant, find a formula for the inverse function that gives
Fahrenheit temperature given a Celsius temperature.

A quick Google search would find the inverse function, but alternatively, Betty might
look back at how she solved for the Fahrenheit temperature for a specific Celsius value,
and repeat the process in general

5
C=—(F-32
5! )
C~2=F—32
5
F:2C+32
5

By solving in general, we have uncovered the inverse function. If
C=h(F)= g(F -32)

Then

F=h"(C) :§C+32

In this case, we introduced a function h to represent the conversion since the input and
output variables are descriptive, and writing C™' could get confusing.

It is important to note that not all functions will have an inverse function. Since the
inverse f '(X) takes an output of f and returns an input of f, in order for f ' to itself be

a function, then each output of f (input to f ') must correspond to exactly one input of

(output of f ") in order for f ' to be a function. You might recall that this is the
definition of a one-to-one function.
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Properties of Inverses

| In order for a function to have an inverseit must be a one-to-one function.

In some cases, it is desirable to have an inverse for a function even though the function is
not one-to-one. In those cases, we can often limit the domain of the original function to
an interval on which the function iS one-to-one, then find an inverse only on that interval.

If you have not already done so, go back to the toolkit functions that were not one-to-one
and limit or restrict the domain of the original function so that it is one-to-one. If you are

not sure how to do this, proceed to Example 6.

xample 6

function is one-to-one, and find the inverse on that domain.

We can limit the domain to [0, %0) to restrict the

graph to a portion that is one-to-one, and find an
inverse on this limited domain.

You may have already guessed that since we undo a
square with a square root, the inverse of h(x) = x°

The quadratic function h(X) = x* is not one-to-one. Find a domain on which this

on this domain is h™ (X) = Jx.

find the inverse we solve for the input variable

functions using calculators or computers.

Note that the domain and range of the square root function
do correspond with the range and domain of the quadratic
function on the limited domain. In fact, if we graph h(X) on

the restricted domain and h™' (X) on the same axes, we can
notice symmetry: the graph of h™'(X) is the graph of h(x)
reflected over the line y = X.

44

14

You can also solve for the inverse function algebraically. If h(x) = X*, we can

To solve for X we take the square root of each side. ﬁ = /X’ and get \/§ = |X

Rewriting the inverse using the variable X is often required for graphing inverse

, SO

it is common to see the inverse function rewritten with the variable x: h™(x) = Jx.

introduce the variable y to represent the output values, allowing us to write y = X>. To

X= i\N . We have restricted X to being non-negative, so we’ll use the positive square

root, X=4/y or h™'(y) = \/; In cases like this where the variables are not descriptive,
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[Example 7
Given the graph of f(x) shown, sketch a graph of f ' (X).

(S SE R TR N
1 1 1
T T T

This is a one-to-one function, so we will be able to sketch an

inverse. Note that the graph shown has an apparent domain BB 1 /
of (0,0) and range of (-o0,0), so the inverse will have a 43 0 T2 3 4
domain of (-00,00) and range of (0,0). I

Reflecting this graph of the line y = X, the point (1, 0) reflects
to (0, 1), and the point (4, 2) reflects to (2, 4). Sketching the
inverse on the same axes as the original graph:

Kbl o
| I I I |

-1
o 00
/ .
2 3 4
ra _2_
. _3_
A 44

Important Topics of this Section
Definition of an inverse function
Composition of inverse functions yield the original input value
Not every function has an inverse function
To have an inverse a function must be one-to-one
Restricting the domain of functions that are not one-to-one.

Try it Now Answers

1. g(2)=6
2.a. (60)=50. In 60 minutes, 50 miles are traveled.

b. f7'(60)=70. To travel 60 miles, it will take 70 minutes.
3.a.97'()=3

b. g7'(4) =5.5 (this is an approximation — answers may vary slightly)
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Section 4.6 Exercises

Assume that the function f is a one-to-one function.
1.If f(6)=7,find f‘1(7) 2.If f(3)=2,find f‘1(2)
3.If £ (—4) =-8, find f(-8) 4.1f £ (—2) =-1, find f(-1)

5.1f £(5)=2, find (f(5))" 6.1f f(1)=4, find (f (1))

-1

7. Using the graph of f(X) shown
a. Find f (0)
b. Solve f(X)=0
c. Find £(0)
d. Solve f7(x)=0

8. Using the graph shown

a. Find g(l) 1 o)
b. Solve g(x) =1 1
Flnd g—l (1) -j? -:f 1:’ 2: .%' *1:‘

d. Solve g_l(x)

1 /
a1
3+

9. Use the table below to find the indicated quantities.

X 0 1 2 3 4 5 6 7 8
fx) |8 0 7 4 2 6 5 3 9
a. Find f(1)
b. Solve f(x)=3
c. Find f7'(0)

d. Solve f™'(x)=7
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10. Use the table below to fill in the missing values.
t 0 1 2 3 4 5 6
h(t) 6 0 1 7 2 3 5 4 9

~
e o]

a. Find h(6)

b. Solve h(t)=0
c. Find h"l(S)

d. Solve h™' (t) =1

For each table below, create a table for ' (X)

11. | x 316|913 14 12. | x
fxX)|1]4]7]12]16 fX)|2]6[9]11]16

For each function below, find f~'(x)

13. f(x)=x+3 14. f(X)=x+5
15. f(x)=2-x 16. f(x)=3-x
17. f(X)=11x+7 18. f(x)=9+10x

For each function, find a domain on which f is one-to-one and non-decreasing, then find
the inverse of f restricted to that domain.

19. f(x)=(x+7)’ 20. f(x)=(x-6)"
21. f(X)=x -5 22. f(x)=x+1

23.1If f(x)=x -5 and g(x) =</ x+5, find
a. f(g(x)

b g(f(x)
c. What does this tell us about the relationship between f(X) and g(Xx)?

24.1f f(x) = and g(x) ==X find
2+ X 1-Xx
a.  f(g(x)
b.  g(f(x)

c. What does this tell us about the relationship between f(X) and g(Xx)?
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Chapter 5: Linear Functions

Chapter one was a window that gave us a jp@ekthe entire course. Our goal was to
understand the basic structure of functiand function notation, ¢htoolkit functions,
domain and range, how to recognize and wstdad composition and transformations of
functions and how to understand and méilinverse functions. With these basic
components in hand we will further researah $pecific details and intricacies of each
type of function in our toolkit andse them to model the world around us.

Mathematical Modeling

As we approach day to day life we oftezed to quantify the things around us, giving
structure and numeric value to various situaiorhis ability to add structure enables us
to make choices based on patterns we seathateighted and systematic. With this
structure in place we can model and eveniptdxhavior to make decisions. Adding a
numerical structure to a reabrld situation is calletMathematical Modeling.

When modeling real world scenarios, thare some common growth patterns that are
regularly observed. We will devote this chapter and the rest of the book to the study of
the functions used to model these growth patterns.

Section 5.1 Linear FUNCLIONS ........oooiiiiiiiiiiiiit ittt 259
Section 5.2 Graphs of Linear FUNCLIONS ...........oooiiiiiiiiiiiiiee e 271
Section 5.3 Modeling with Linear FUNCHIONS.........cccooeiiiiiiiiiiccceee e e 286
Section 5.4 Fitting Linear Models to Data.............coeuuuiiiiiiiiiiieieeeeeeeeecceeevi 298
Section 5.5 Absolute Value FUNCHONS..........cccuuiiiiiiiiiiieiee e 306

Section 5.1 Linear Functions

As you hop into a taxicab in Las Vegas, thaanaill immediately read $3.30; this is the
“drop” charge made when the taximeter is activated. After that initial fee, the taximeter
will add $2.40 for each mile the taxi drivedn this scenario, the total taxi fare depends
upon the number of miles ridden in the tad we can ask whether it is possible to
model this type of scenarimith a function. Using desgiive variables, we choose for
miles andC for Cost in dollars as a function of mil&3(m)

We know for certain tha€ (0) = 330, since the $3.30 drop charigeassessed regardless
of how many miles are drén. Since $2.40 is added for each mile driven, then

C@® =330+ 240= 570

If we then drove a second mile, anet $2.40 would be added to the cost:

C(2) = 330+ 240+ 240= 330+ 240(2) = 810

! http://taxi.state.nv.us/FaresFees.htatrieved July 28, 2010. There is also a waiting fee assessed when
the taxi is waiting at red lights, but we’ll ignore that in this discussion.

This chapter is part dfrecalculus: An Investigation of Functio@sLippman & Rasmussen 2011.

This material is licensed under a Creative Commons CC-BY-SA license.
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If we drove a third mile, another $2.40 would be add ¢/t
to the cost: 501
C(3) = 330+ 240+ 240+ 240= 330+ 240@3) = 1050 ;|

301

From this we might observe the pattern, and concluc 27
that if m miles are driverC(m) = 330+ 240m 101

because we start with$#3.30 drop fee and then for  +
each mile increase we add $2.40.

2 4 6 8 1012 14 16 18 20

It is good to verify that the units make sems this equation. The $3.30 drop charge is
measured in dollars; the $2.40 chargmesasured in dollars per mile. So

C(m) = 330dollars + [ 2.4Odollarsj(m miles)

mile

When dollars per mile are multiplied by a number of miles, the result is a number of
dollars, matching the uniten the 3.30, and matchingetldesired units for th€ function.

Notice this equatior€(m) = 330+ 240m consisted of two quantities. The first is the

fixed $3.30 charge which does not change based on the value of the input. The second is
the $2.40 dollars per mile value, which isage of change In the equation this rate of

change is multiplied by the input value.

Looking at this same problem in table formag can also see the cost changes by $2.40
for every 1 mile increase.

m 0 1 2 3
C(m) |3.30 5.70| 8.10 10.50

It is important here to note that in this equation,rtte of change is constantover any
interval, the rate of change is the same.

Graphing this equatiorC(m) = 330+ 240m we see the shape is a line, which is how
these functions get their nantieear functions

When the number of miles &=ro the cost is $3.30, gng the point (0, 3.30) on the
graph. This is the vertical @(m)intercept. The graph isgreasing in a straight line
from left to right because for each miletbost goes up by $2.40; this rate remains
consistent.

In this example you have seen the taxicab ouxleled in words, an equation, a table and
in graphical form. Whenever possible, endhiat you can link thesfour representations
together to continually build your skills. i important to note that you will not always

be able to find all 4 representations for algfem and so being able to work with all 4
forms is very important.
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Linear Function

A linear function is a function whose graph produ@ebne. Linear functions can
always be written in the form

f(X) =b+mx or f(X) = mx+b; they're equivalent

where

bis the initial or starting vakiof the function (when input,= 0), and

mis the constant rate change of the function

Many people like to write lingdunctions in the formf (x) = b+ mx because it

corresponds to the way we tendsfzeak: “The output startslatind increases at a rate
of m.”

For this reason alone we will use thg) = b+ mx form for many of the examples, but
remember they are equivalent and t& written correctly both ways.

Slope and Increasing/Decreasing

mis the constant rate of alge of the function (also callestope. The slope
determines if the function is an imasing function or a decreasing function.
f (X) = b+ mx isanincreasingfunction if m> 0

f (X) = b+ mx isadecreasingfunction if m<0
If m=0, the rate of changeero, and the functiod x(2b+ >3 bis just a horizontal
line passing through the point (), neither increasing nor decreasing.

xample 1

Marcus currently owns 20@sgs in his iTunes collectiorEvery month, he adds 15
new songs. Write a formula for the number of sohg#) his iTunes collection as a
function of the number of months, How many songs will he own in a year?

The initial value for this function is 200, since he currently owns 200 songs, so
N (0) = 200. The number of songs increases by 15 songs per month, so the rate of

change is 15 songs per month. With thisrmation, we can write the formula:
N(m) = 200+ 15m.

N(m)is an increasing linear function.

With this formula we can predict how margngs he will have in 1 year (12 months):
N (12) = 200+ 15(12) = 200+180= 380. Marcus will have 380 songs in 12 months.
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Try it Now
1. If you earn $30,000 per year and yourgb$29,000 per year write an equation for
the amount of money you save afggrears, if you stamith nothing.
“The most important thingspend less than you eath!

Calculating Rate of Change

Given two values for the inpw, andx,, and two corresponding values for the output,
y, andy,, or a set of pointgx,;, y,) and(x,, y,), if we wish to find a linear function
that contains both points we cealculate the rate of change,
Mz changen output _ Ay _y,— Y

changeninput Ax X, —-X

Rate of change of a lineunction is also called th&opeof the line.

Note in function notatiory, = f(x,) andy, = f(x,), so we could equivalently write
_ (%)= f(x%)
X=X

The population of a city increased fr&8,400 to 27,800 between 2002 and 2006. Find
the rate of change of thpulation during this time span.

The rate of change will relate the chamg@opulation to the change in time. The
population increased bg7800- 23400= 4400people over the 4 year time interval. To
find the rate of change, the number obple per year the paopation changed by:

4400people_, ;,,PEOPIE _ 114 people per year
4years year

Notice that we knew the populah was increasing, so weould expect our value fan
to be positive. This is a quick wayatbeck to see if youralue is reasonable.

The pressure?, in pounds per square inch (P8I a diver depends upon their depth
below the water surfacd, in feet, following the equatioR(d) =14.696+ 0.434d .

Interpret the components of this function.

2 http://www.thesimpledollar.com/2009/06/19/rule-1-spend-less-than-you-earn/
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output pressure PSI
input  depth  ft
tells us the pressure on the diver increases by 0.434 PSI for each foot their depth
increases.

The rate of change, or slope, 0.434 would have . This

The initial value, 14.696, will have the same uagshe output, so this tells us that at a
depth of O feet, the pressuwe the diver will be 14.696 PSI.

xample 4

If f(X) is a linear function,f (3) =— 2and f (8) = 1 find the rate of change.

f (3) = -2 tells us that the input 3 cosgonds with the output -2, anid@8) = tdlls us

that the input 8 correspds with the output 1. To find the rate of change, we divide the
change in output by the change in input:

m= change.n c.)utput: 1-(=2) _ § If desired we coul also write this as = 0.6
changen input 8-3 5

Note that it is not important which pair ofluas comes first in the subtractions so long
as the first output value used copesds with the firsinput value used.

2. Given the two points (2, 3) and (0, 4hdithe rate of change. Is this function
increasing or decreasing?

We can now find the rate of change give input-output pairs, and can write an
equation for a linear function onee have the rate of changed initial value. If we
have two input-output pairs atitey do not include the initial value of the function, then
we will have to solve for it.

xample 5

Write an equation for the linear function
graphed to the right.

¥y

O SR T LU -
—

Looking at the graph, we might notice that it
passes through the points (0, 7) and (4, 4).
From the first value, we know the initial value
of the function i% = 7, so in this case we will
only need to calculate the rate of change:

b
—
<
|

-
b
e
A
Ly

=
-l
=)
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This allows us to write the equation:
3
f(X)=7-—=x
() 2

xample 6

If f(x)is a linear function,f (3) =-2, and f (8) =1, find an equation for the function.

In example 3, we computed the rate of change tmbeg. In this case, we do not
know the initial valud (0 ) so we will have to solve for it. Using the rate of change,
we know the equation will have the forfnix) = b+§x. Since we know the value of

the function wherx = 3, we can evaluate the function at 3.

f3= b+:—53(3) Since we know thatt (3) = — 2we can substitute on the left side

-2= b+g(3) This leaves us with an equation we can solve for the initial value
be_p 2_~19
5 5

Combining this with the value for the rate of change, we can now write a formula for
this function:

-19 3
f(X)=—+=x
() =—"+¢

Working as an insurance salesperson, éigens a base salary and a commission on each
new policy, so llya’s weekly incomé, depends on the number of new policied)e

sells during the week. Lastwk he sold 3 new policies, and earned $760 for the week.
The week before, he sold 5 new policiasd earned $920. Find an equationl oy,

and interpret the meaning oftlkcomponents of the equation.

The given information gives us two input-outpairs: (3,760) and (5,920). We start
by finding the rate of change.
920-760 160
5-3 2
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Keeping track of units can help us intexpthis quantity. Income increased by $160
when the number of policies increased by 2hsarate of change is $80 per policy; llya
earns a commission of $80 for egudlicy sold during the week.

We can then solve for the initial value

[(n) =b+80n thenwhenn = 3, | (3)= 76Q giving
760=b+ 80(3) this allows us to solve fdr
b=760-80(3) =520

This value is the starting value for then€tion. This is Ilya’s income when= 0,
which means no new policies are sold. Weiogrpret this as llya’s base salary for
the week, which does not depend ugimenumber of policies sold.

Writing the final equation:

[(n) =520+80n

Our final interpretation is: llya’s baselagy is $520 per week and he earns an
additional $80 commission for each policy sold each week.

Looking at Example 7:

Determine the independesuhd dependent variables.
What is a reasonable domain and range?

Is this function one-to-one?

3. The balance in your college payment accabnis a function of the number of
guartersg, you attend. Intg@ret the functiorC(a) = 20000 — 400§ in words. How
many quarters of college can you gaguntil this account is empty?

Given the table below write a linear etjoa that represents the table values

w, number of | O 2 4 6
weeks

P(w), number | 1000 1080 1160 1240
of rats

We can see from the table thhé initial value ofats is 1000 so in the linear format
P(w) = b+ mw b =1000

Rather than solving fan, we can notice from the table that the population goes up by
80 for every 2 weeks that pass. This rate isistarg® from week 0, to week 2, 4, and 6.
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The rate of change is 80 rats per 2 weekss ¢an be simplified to 40 rats per week and
we can write
P(w) = b+ mwas P(w) =1000+ 40w

If you didn’t notice this from the table yowuld still solve for the slope using any two
points from the table. For exameplsing (2, 1080) and (6, 1240),

m= 124? ;O8O: 160 40rats per week

Important Topics of this Section

Definition of Modeling

Definition of a linear function
Structure of a linear function
Increasing & Decreasing functions
Finding the vertical intercept (0)
Finding the slope/rate of change,
Interpreting linear functions

Try it Now Answers

1. S(y) = 30,000y — 29000y =1000y $1000 is saved each year.

omead=3_1__1 : Decreasing because< 0

0-2 -2 2
3. Your College account starts with $200 in it and you withdraw $4,000 each quarter
(or your account contains $20,000 and dases by $4000 each quarter.) You can pay

for 5 quarters before theaney in this account is gone.

lashback Answers

n (number of policies sold) the independent variable
I(n) (weekly income as a function of paés sold) is the geendent variable.

A reasonable domain is (0, 15)

A reasonable range is ($540, $1740)

"answers may vary given reasoning is statédis an arbitrary upper limit based on
selling 3 policies per day in a 5 day warkek and $1740 corresponds with the domain.

Yes this function is one-to-one
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Section 5.1 Exercises

1. Atown's population has been growingdarly. In 2003, the population was 45,000,
and the population has been growing by 1700 people each year. Write an

equationP(t), for the population years after 2003.

2. Atown's population has been growingdarly. In 2005, the population was 69,000,
and the population has been growing by 2500 people each year. Write an

equationP(t), for the population years after 2005.

3. Sonya is currently 10 miles from home, asavalking further away at 2 miles per
hour. Write an equation for her distance from homeurs from now.

4. A boat is 100 miles away from the marina, sailing directly towards it at 10 miles per
hour. Write an equation for the distarafghe boat from the marina aftehours.

5. Timmy goes to the fair with $40. Each ridests $2. How much money will he have
left after ridingn rides?

6. At noon, a barista notices she has $20 irtipgar. If she makes an average of $0.50
from each customer, how much will sh@ve in her tip jar if she servasnore
customers during her shift?

Determine if each function is increasing or decreasing

7. f(x)=4x+3 8 g(x)=5x+6
9. a(x)=5-2x 10. b(x) =8—3x
11. h(x)=-2x+4 12. k(x)=-4x+1
. 1 1
13. =—X-3 14. ==-x-5
()= x p(x)= X
1 3
15. n(x)=-= x-2 16. m(X)=—= x+3
3 8
Find the slope of the line thatgses through the two given points
17. (2, 4) and (4, 10) 18. (1, 5) and (4, 11)
19. (-1,4) and (5, 2) 20. (-2, 8) and (4, 6)

21. (6,11) and (-4,3) 22.(9,10) and (-6,-12)
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Find the slope of the lines graphed
5__

4_

31

2]

1> & IV I I B B T o
g+ i

[ ~

24, 2l

23

25.Sonya is walking home from a friend’s house. After 2 minutes she is 1.4 miles from
home. Twelve minutes after leaving, sh@.8 miles from home. What is her rate?

26.A gym membership with taspersonal training sessioogsts $125, while gym
membership with 5 personal training sessicosts $260. What is the rate for
personal training sessions?

27.A city's population in the year 19&@as 287,500. In 1989 the population was
275,900. Compute the slope of the population growth (or decline) and make a
statement about the population rateehange in people per year.

28. A city's population in the year 19%&s 2,113,000. In 1991 the population was
2,099,800. Compute the slope of the popolagrowth (or decline) and make a
statement about the population ratehange in people per year.

29. A phone company charges for service according to the forrduta:= ( ¥ 24, 0.1
wheren is the number of minutes talked, a@dn) is the monthly charge, in dollars.
Find and interpret the rate of change and initial value.

30. A phone company charges for service according to the forr@¢lg:= 26+ 0.04n,
wheren is the number of minutes talked, aBdn (s)Xhe monthly charge, in dollars.
Find and interpret the rate of change and initial value.

31.Terry is skiing down a stedpll. Terry's elevationE t()in feet aftet seconds is
given by E ¢ )= 3006- 70. Write a complete sentence describing Terry’s starting
elevation and how it is changing over time.
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32.Maria is climbing a mountain. Maria's elevatida,t , () feet aftet minutes is given
by E(t)=1200+ 4QG. Write a complete sente@ describing Maria’s starting

elevation and how it is changing over time.

Given each set of information, find a lineguation satisfying the conditions, if possible

33. f(-5)=—4,and f(5)=2 34. f(-1)=4, and f (5)=1
35. Passes through (2, 4) and (4, 10) 36. Passes through (1, 5) and (4, 11)
37. Passes through (-1,4) and (5, 2) 38. Passes through (-2, 8) and (4, 6)

39.x intercept at (-2, 0) anglintercept at (0, -3)
40.x intercept at (-5, 0) anglintercept at (0, 4)

Find an equation for the function graphed
54

_.;-
34
2_

S TRERE S
e 1

41. 2+ 42.

N \i j
43. -2 44,

45. A clothing business finds theiga linear relationship between the number of shirts,
n, it can sell and the pricp, it can charge per shirt. In particular, historical data
shows thatl000 shirts can be sold at a price $80, while 3000 shirts can be sold at
a price of$22. Find a linear equation in the form= mn+ b that gives the pricp

they can charge for shirts.
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46.A farmer finds there is a linear relatginp between the number of bean statkshe
plants and the yield;, each plant produces. Wheregflants 30 stalks, each plant
yields 30 oz of beans. When she plantstadks, each plant produces 28 oz of beans.
Find a linear relationships in the forgn= mn+ b that gives the yield whemstalks
are planted.

47.Which of the following tables could represaninear function? For each that could
be linear, find a linear equation models the data.

X a(x) X h(x) X f(x) X k(x)
0 5 0 5 0 -5 5 13
5 -10 5 30 5 20 10 | 28
10 | -25 10 | 105 10 | 45 20 | 58
15 | -40 15 | 230 15 | 70 25 | 73

48.Which of the following tables could represaninear function? For each that could
be linear, find a linear equation models the data.

X a(x) X h(x) X f(X) X k(x)
0 6 2 13 2 -4 0 6

2 -19 4 23 4 16 2 31
4 -44 8 43 6 36 6 106
6 -69 10 | 53 8 56 8 231

49.While speaking on the phone to a frienddslo, Norway, you learmkthat the current
temperature there was -23 Celsius {€3 After the phone conversation, you wanted

to convert this temperature to Fahrenheit degf&edut you could not find a

reference with the correct formulas. Yinen remembered that the relationship

betweerPF and°C is linear. [UW]

a. Using this and the knowledge tha’B2= 0°C and 212F = 100°C, find an
equation that computes Celsius tempgeatn terms of Fahrenheit; i.e. an
equation of the form C = “an expression involving only the variable F.”

b. Likewise, find an equation that computeshrenheit temperature in terms of
Celsius temperature; i.e. an equatdrthe form F = “an expression involving
only the variable C.”

c. How cold was it in Oslo ifiF?
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Section 5.2 Graphs of Linear Functions

When we are working with a new function, ituseful to know as much as we can about
the function: its graph, whethe function izero, and any other special behaviors of the
function. We will begin this exploratiaof linear functions with a look at graphs.

When graphing a linear function, tleeaire three basic ways to graph it:
1) By plotting points (at least 2nhd drawing a line through the points
2) Using the initial value (output whet= 0) and rate of change (slope)
3) Using transformations dhe identity functionf (x) = x

xample 1

Graph f (x) = 5—§x by plotting points

In general, we evaluate therfction at two or more inpute find at least two points on
the graph. Usually it is be&i pick input values that willwork nicely” in the equation.

In this equation, multiples of 3 will work nicely due to t%ein the equation, and of
course using = 0 to get the vertical intercept. Evaluatif) atx = 0, 3 and 6:
f(0) = 5—%(0) =5

2
f@=5-@=3

2
f(6)=5-20)=1

These evaluations tell us that the points)(0(%3), and (6,1) lie on the graph of the
line. Plotting these points and dragia line through them gives us the graph

o T T N
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When using the initial value and rate obadge to graph, we need to consider the
graphical interpretation of these values. Rener the initial value of the function is the
output when the input gero, so in the equatioh(x) = b+ mx, the graph includes the
point (0,b). On the graph, this is the vertical intercept — the point where the graph
crosses the vertical axis.

For the rate of change, it is helpfulrexall that we calcutad this value as
_ changeof output

- changeof input

From a graph of a line, this tells us that if dreide the vertical difference, or rise, of the
function outputs by the horizontal differenceyn, of the inputs, we will obtain the rate
of change, also called slope of the line.

me changeof output  rise
changeof input  run

Notice that this ratio is the same regardless of which two points we use

54 rise 2,run 4
m=2/4=1%
4 R T T T | .
: S+ run2,rise 1
- 1 =T m:1/2
2-- .
_:4_ run 2, rise 1
/'“ m=%
2 - I 2 3 4 5 6 7
al
24

Graphical Interpretatioof a Linear Equation
Graphically, in the equatioh(x) = b+ mx
b is thevertical intercept of the graph and tells us wan start our graph at (),
m s theslope of the lineand tells us how far to ris& run to get to the next point

Once we have at least 2 points, we can extieadraph of the line to the left and right.

Graph f (x) = 5—§x using the vertical intercept and slope.

The vertical intercept of the function is (0, B)ving us a point on the graph of the line.
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The slope is—%. This tells us that for every 3 usithe graph “runs” in the horizontal,

the vertical “rise” decreases by 2 units.ghaphing, we can use this by first plotting our
vertical intercept on the gol, then using the slopefiod a second point. From the
initial value (0, 5) the slope tells us thatwé move to the right 3, we will move down 2,
moving us to the point (3, 3). We can contitiis again to find a trd point at (6, 1).
Finally, extend the line to the ledind right, containing these points.

?.
\

[ S T

Try it Now

1. Consider that the slope/32could also be written as% Using%, find another

point on the graph that has a negakwalue.

Another option for graphing is to usarisformations of the identity functidr{x) = x.
In the equatiorf (x) = mx, the mis acting as the vertical stod of the identity function.

Whenm s negative, there is also a vertiogflection of the graph. Looking at some
examples:

f(x)=3x f(X)=2x f(x)=x
SN A

/
o 1
31 A/f(x):zx
71 1
A
f(X)==x
(X) 3
5 4 3 5 =7 > 3 4 3
21 F(X)=—<x
2
34
=
54 A = f(x)=—x

f(X)=-2x



274 Chapter 5

In f (X) = mx+ b, theb acts as the vertical shiffjoving the graph up and down without
affecting the slope of the line. Some examples:

Using Vertical Stretches @ompressions along with Vertic8hifts is another way to
look at identifying differentypes of linear functions. Ifkough this may not be the
easiest way for you to graph this type wfction, make sure you practice each method.

xample 3

Graph f (x) = -3+ % X using transformations.

The equation is the graph of the identity function vertically compressed by %2 and
vertically shifted down 3.

Vertical compression combined with Vertical shift
54

3
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Notice how this nicely compares to the othresthod where the vertical intercept is found
at (0, -3) and to get tanather point we rise (go up really) by 1 unit and run (go
horizontally) by 2 units to get tihe next point (2,-2), and tmext one (4, -1). In these
three points (0,-3), (2, -2), and (4, -fH)e output values eimge by +1, and thevalues
change by +2, corresponding with the slope 1/2.

Match each equation with onetbie lines in the graph below

f(x)=2x+3
g(x)=2x-3
h(x) = -2x+3
: 1
==x+3
J(x) 2x+

Only one graph has a vertigatercept of -3, so we can immediately match that graph
with g(x). For the three graphs with a vertigatercept at 3, onlpne has a negative
slope, so we can match that line wihifx). Of the other twathe steeper line would
have a larger slope, so we can match that graph with eqéi@joand the flatter line
with the equation(x).

h(x) =-2x+3
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In addition to understanding the basic babaof a linear funtion (increasing or
decreasing, recognizing the slope and vertidarcept), it is often helpful to know the
horizontal intercept of the functionwhere it crosses the horizontal axis.

Finding Horizontal Intercept
Thehorizontal intercept of the function is where the gra crosses the horizontal axis.
If a function has a horizontal intept, you can always find it by solvifig) = 0.

xample 5

Find the horizontal intercept of (x) = —3+%x

Setting the function equal to zero to find whgdut will put us on the horizontal axis,

O:—3+£x
2

The graph crosses the horizontal axis at (6,0)

There are two special cases of lines: a horizontal line and
vertical line. In a horizontdine like the one graphed to the
right, notice that beteen any two pointshe change in the i
outputs is 0. In the slope equation, the numerator will be C
resulting in a slope of OUsing a slope of 0 in the

f (X) = b+ mx, the equation simplifies td (x) =b.

Notice a horizontal line hasvertical intercept, but no
horizontal intercept (unless it’s the lif(&) = 0).

5 4 -3 -2 - 12 3 4 35

ok b b L

In the case of a vertical ki notice thabetween any two
points, the change in the inputs is zero. In the slope
equation, the denominator will be zero, and you may reca
that we cannot divide by the zetbe slope of a vertical line
is undefined. You might also not that a vertial lineisnot 55 5 7 T T + & « 3
a function. To write the equan of vertical lire, we simply
write input=value, likex=b.

Notice a vertical line has a horizontal intercept, but no
vertical intercept (unless it's the lixe= 0).

CoE S '

bk b on
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Horizontal and/ertical Lines

Horizontal lines have equations of the forri(x) = b
Vertical lines have equations of the fom= a

Example 6
Write an equation for the horizontal line graphed above.

This line would have equatioh x (=) 2

Write an equation for the vertical line graphed above.

This line would have equation= 2

2. Describe the functiori (X) = 6—3x in terms of transformations of the identity
function and find its horiantal intercept.

Parallel and Perpendicular Lines

When two lines are graphed together, the lines wipdrallel if they are increasing at
the same rate — if the rates of change are the same. In this case, the graphs will never
cross (unless they’re the same line).

Parallel Lines
Two lines argoarallel if the slopes are equal (orkbbth lines are vertal). In other
words, given two linear equationyx) = b+ m,x and g(x) = b+ m,x
The lines will be parallel iim, =m,

xample 8
Find a line parallel tof (x) = 6+ 3x that passes through the point (3, 0)

We know the line we're looking for will havie same slope as the given limes 3.
Using this and the given point, we can sofor the new line’s vertical intercept:
g(x) =b+3x then at (3, 0),

0=b+3()

b=-9

The line we're looking for ig9(x) = -9+ 3x
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If two lines are not parallel, one other irgsting possibility is that the lines are
perpendicular, which means the lines famght angle (90 dege angle — a square
corner) where they meet. In this case, thped when multiplied together will equal -1.
Solving for one slope leads us to the definition:

Perpendicular Lines
Given two linear equation$ (x) = b+ mx and g(x) = b+ m,x

The lines will beperpendicular if mm, =-1, and som, = —

We often say the slope of arpendicular line is the “negjae reciprocal’ of the other
line’s slope.

xample 9

Find the slope of a line pegpdicular to a line with:

a) a slope of 2. b) a slope of -4. c)a slop% of

If the original line had slope 2,atperpendicular liris slope would ben, = _71

_1

If the original line had slope -4,atperpendicular line’s slope would bg =

-1

If the original line had sIop% , the perpendicular line’s slope would bg = -1 = -3

% 2

xample 10

Find the equation of a line perpendicularftfx) = 6+ 3x and passing through the point
(3. 0)

The original line has slopa = 3. The perpenditar line will have slopem= e
Using this and the given point, wan find the equation for the line.
g(x) = b—%x then at (3, 0),
1
0=b-=(3
3( )
b=1

The line we’re looking for igg(x) =1— % X
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Try it Now
3. Given the lineh(t) = -4+ 2t find an equation for the line passing through (0, 0) that
is: a) parallel tdn(t). b) perpendiculato h(t).

xample 12
A line passes through the points (-2, 6) andj4,Find the equation of a perpendicular
line that passes through the point (4, 5).

From the two given points on the reference lime,can calculate the slope of that line:
5-6 -1

M2 6

The perpendicular line will have slope

m2=_—1:6

BC

We can then solve for the vertical interct#mat makes the linpass through the desired
point:

g(x) =b+6x then at (4, 5),

5=Db+6(4)

b=-19

Giving the lineg(x) = =19+ 6x

Intersections of Lines

The graphs of two lines will intersect if they are not parallel. They will intersect at the
point that satisfies both equations. To fthi point when the equations are given as
functions, we can solve for an input value so thét) = g(x . In other words, we can

set the formulas for the linegjual, and solve for the input that satisfies the equation.

xample 13
Find the intersection of the lindgt) =3t — ahd j(t) =5-t

Settingh(t) = j(t),
t-4=5-t
4 =9

9

t==
4

This tells us the lines farsect when the input I%
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We can then find the output value of theensection point by evaating either function
at this input

(8)-s-2-1
4 4 4

These lines intersect at the poEn%,lzlj. Looking at the graph, this result seems

reasonable.
j‘s

5 /é IR NS
g+

Two parallel lines can also intersect if they hapfiebe the same line. In that case, they
intersect at every point on the lines.

4. Look at the graph in example 13 abawel answer the following for the functig(t):
a. Vertical intercept coordinates

b. Horizontal intercepts coordinates

c. Slope

d. Isj(t) parallel or perpendicular t(t) (or neither)

e. Isj(t) an Increasing or Decrang function (or neither)

f. Write a transformation descripti from the identity toolkit functiof(x) = x

Finding the intersection allows us to answéreotquestions as weliuch as discovering
when one function is tger than another.

xample 14
Using the functions from the previous example, for what valuessdi(t) > j(t)

To answer this question, it is helpful fitetknow where the functions are equal, since
that is the point where(t) could switch from being greater to smaller th@nor vice-

versa. From the previous example, we know the functions are equal%\t
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By examining the graph, we can see ti@), the function with positive slope, is going
to be larger than the other function to the right of the intersectiorh(tps j(t when

t>g
4

Important Topics of this Section

Methods for graphing linear functions
Another name foslope = rise/run
Horizontal intercepts (a,0)

Horizontal lines

Vertical lines

Parallel lines

Perpendicular lines

Intersecting lines

Try it Now Answers

1. (-3,7) found by starting at the vertigadercept, going up 2 units and 3 in the
negative horizontal direction.ot could have also answeréd, 9) or (-9, 11) etc...
2. Vertically stretched bg factor of 3, Vertiddy flipped (flipped over the axis),
Vertically shifted up by 6 units. 6x30 whenx=2

3. Parallelf (t) =2t ; Perpendiculag(t) :—%t

4. Givenij(t) = 54

a. (0,5)

b. (5,0)

c. Slope -1

d. Neither parallel nor perpendicular

e. Decreasing function

f. Given the identity functiorperform a verticaflip (over thet axis) and shift up 5
units.




282 Chapter 5

Section 5.2 Exercises

Match each linear equation with its graph

f(x)=-x-1 A B
2 f(x):—21x—1 c
3. f =——x-1
(=2
4. f(x)=2
5. f(x)=2+x
6. f(x)=3x+2

Sketch a line with the given features
7. An x-intercept of (-4, 0) ang-intercept of (0, -2)

8. An x-intercept of (-2, 0) ang-intercept of (0, 4)

9. A vertical interceptf (0, 7) and slopeg

10. A vertical intercepbf (0, 3) and slop%

11.Passing through the points (-6,-2) and (6,-6)
12.Passing through the points (-3,-4) and (3,0)

Sketch the graph of each equation

13. f (x)=-2x-1 14.g(x)=-3x+2

15. h(x):l X+ 2 16.k(x):Z x—3
3 3

17. k(t)=3+2t 18. p(t)=—2+3

19. x=3 . x=-2

21.r(x)=4 2. q(x)=3
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23.1f g(X) is the transformation of x(3 x after a vertical compression I3y 4, a shift
left by 2, and a shift down by 4
a. Write an equation fog ( x)

b. What is the slope of this line?
c. Find the vertical intercept of this line.

24. 1f g(x) is the transformation of (x) = x after a vertical compression ly 3, a shift
right by 1, and a shift up by 3
a. Write an equation fog ( x)

b. What is the slope of this line?
c. Find the vertical intercept of this line.

Write the eqtjation of the line shown

‘1!‘
—f 34
21 5.
j.
-l,f.k.fz.}j T2 3 4 4320 | 12 3 4
-2 -2
-3 -3
25. 41 26. 41
4 4
37 37
2 2
I I
S 2 a 12 5 4 252011 5 4
I I
22 -2
-3 -3
27. 4 28. 4

Find the horizontal and verticadtercepts of each equation
29. f (x)=—x+2 0. g(x)=2x+4

31. h(x)=3x-5 R. k(x)=-5x+1
33. -2x+5y=20 A Tx+2y=5
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Given below are descriptions o¥o lines. Find the slopes ofe 1 and Line 2. Is each
pair of lines parallel, ppendicular or neither?
35.Line 1: Passes through (0,6) and—<3, 24)

Line 2: Passes through ( 1,18nhd (8- 71)

36.Line 1: Passes throughk (-8, 5&hd (10,89)
Line 2: Passes through €9, 44hd (4- 14)

37.Line 1: Passes through (2,3) and—{4, 1)
Line 2: Passes through (6,3) and (8,5)

38.Line 1: Passes through (1,7) and (5,5)
Line 2: Passes through (-1, 8hd (1,1)

39.Line 1: Passes through (0,5) and (3,3)
Line 2: Passes through €1, &jhd (3- 2)

40.Line 1: Passes through (2,5) and—(5, 1)
Line 2: Passes through ( 3,@hd (3- 5)

41.Write an equation for a line parallel o x) = -5x— 3 and passing through the point
(2,-12)

42.\Write an equation for a line parallel g xX) = 3x—1 and passing through the point
(4.9)

43.Write an equation for a line perpendiculartid) = —2t+ 4 and passing through the
point (-4,-1)

44.Write an equation for a line perpendicularpgd = X +3 add passing through the
point (3,1)

45.Find the point at which the liné x(=)- x2 ifitersects the ling (3 -Xx

46.Find the point at which the liné x(=) x2 iBbtersectsthelingg x(9— B 5
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47.Use algebra to find the point at which the Iih(ax) :—g X+ZE74 intersects the line
h(x) L
4 10
48.Use algebra to find the point at which the Iihéx) =— X+—— Intersects the line
4 3
X)=— X+—
g( ) 3 5

49. A car rental company offers two plans for renting a car.
Plan A: 30 dollars per day and 18 cents per mile
Plan B: 50 dollars per day with free unlimited mileage
How many miles would you need to dgitor plan B to save you money?

50. A cell phone company offers two data options for its prepaid phones
Pay per use: $0.002 per Kilobyte (KB) used

Data Package: $5 for 5 Megabyt8420 Kilobytes) + $0.002 per addition KB
Assuming you will use less than 5 Megabytexjer what circumstances will the data
package save you money?

51. Sketch an accurate pictuséthe line having equatiorf (x) = 2—% X. Letcbe an

unknown constant. [UW]
a. Find the point of intersection betwete line you have graphed and the

line g(x)=1+ cx; your answer will be a point in they plane whose
coordinates involve the unknowven

b. Findc so that the intersection point in (a) kasoordinate 10.
c. Findc so that the intersection point in (a) lies on the x-axis.
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Section 5.3 Modeling with Linear Functions

When modeling scenarios with a lindanction and solving problems involving
guantities changing linearly, we typically foNadhe same problem solving strategies that
we would use for any type of function:

[Problem solving strategy

1) Identify changing quantities, and thenefaily and clearly define descriptive
variables to represent thogeantities. When appropriatketch a picture or define
a coordinate system.

2) Carefully read the problem to identify important information. Look for information

and initial value.

interpret.

4) Identify a solution pathway from the provialeaformation to what we are trying to
find. Often this will involve checkingral tracking units, building a table or even
finding a formula for the function beg used to model the problem.

5) When needed, find a formula for the function.

6) Solve or evaluate using the forraytou found for the desired quantities.

7) Reflect on whether your answer is reasoadbl the given situation and whether it
makes sense mathematically.

8) Clearly convey your result using appropeianits, and answer in full sentences
when appropriate.

Emily saved up $3500 for her summer visiSeattle. She anticipates spending $400
each week on rent, food, and fun. Fardl interpret the horintal intercept and
determine a reasonable domamd range for this function.

In the problem, there are dichanging quantities: time and money. The amount of
money she has remaining while on vacatiepends on how long she stays. We can
define our variabkg, including units.

Output:M, money remaining, in dollars

Input:t, time, in weeks

Reading the problem, we identify two importamatues. The first, $3500, is the initial
value forM. The other value appears to be a cdtehange — the units of dollars per
week match the units of our output variabieided by our input variable. She is
spending money each week, so you should recognize that the amount of money
remaining is decreasing each weekl the slope is negative.

giving values for the variables, or values for parts of the functional model, like slope

3) Carefully read the problem to identify what we are trying to find, identify, solve, or
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To answer the first question, looking for tharizontal intercept, it would be helpful to
have an equation modeling this scenariointyshe intercept anslope provided in the
problem, we can write the equatia:(t) = 3500- 400 .

To find the horizontal intercépwe set the output to zero, and solve for the input:
0=3500-40C

1= 3°00_g75
400

The horizontal interceps$ 8.75 weeks. Since this regents the input value where the
output will be zero, interpretg this, we could say: Emily will have no money left after
8.75 weeks.

When modeling any real life scenario witinttions, there is typically a limited domain
over which that model will be valid — almost no trend continues indefinitely. In this
case, it certainly doesn’t make sense to tatkud input values less thaero. It is also
likely that this model is not valid after the horizontal intercept (unless Emily’s going to
start using a credit camhd go into debt).

The domain represents the sétnput values and so the reasonable domain for this
function is0<t < 875.

However, in a real world scenario, the remadiht be weekly or nightly. She may not
be able to stay a paal week and so all djpns should be considered. Emily could stay
in Seattle for O to 8 full week(and a couple of days), bubuid have to go into debt to
stay 9 full weeks, so restricted to wholeeis, a reasonable domaithout going in to
debt would beD <t <8, or 0<t <9if she went into debt thnish out the last week.

The range represents the set of output vadnelsshe starts with $3500 and ends with $0
after 8.75 weeks so tledrresponding range < M (t) < 3500.

If we limit the rental to wole weeks however, if she left after 8 weeks because she
didn’t have enough to stay forfal 9 weeks, she would hawd(8) = 3500 -400(8) =
$300 dollars left after 8 @eks, giving a range &00< M (t) < 3500. If she wanted to

stay the full 9 weeks she would $200 in debt giving a range efL00< M (t) < 3500.

Most importantly remember that domain aadge are tied together, and what ever you
decide is most appropriate for the domi@ire independent vaile) will dictate the
requirements for the range (the dependent variable).
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xample 2

Jamal is choosing between two moving companies. The first, U-Haul, charges an up-
front fee of $20, then 59 cents a mile. Beeond, Budget, charges an up-front fee of
$16, then 63 cents a mileWhen will U-Haul be the better choice for Jamal?

The two important quantities in this probleme the cost, and the number of miles that
are driven. Since we have two companies to consider, we will define two functions:

Input: m, miles driven

Outputs:

Y(m): cost, in dollars, for renting from U-Haul
B(m} cost, in dollars, for renting from Budget

Reading the problem carefully, it appears thatweee given an initlacost and a rate of
change for each company. Since our outptesmeasured in dollars but the costs per
mile given in the problem are in cents, widl weed to convert these quantities to match
our desired units: $0.59 a mile fdrHaul, and $0.63 a mile for Budget.

Looking to what we’re trying téind, we want to know wheb-Haul will be the better
choice. Since all we have to make thatisien from is the costs, we are looking for
when U-Haul will cost less, or wher(m) < B(m . )The solution pathway will lead us
to find the equations for the two functions\dithe intersection, &m look to see where
theY(m)function is smaller. Using the ratesabfange and initial charges, we can write
the equations:
Y(m) = 20+ 059m

B(m) =16+ 063m 1601

-

1201

These graphs are sketched to the right, W(tin)
drawn dashed. 604

To find the intersection, we set the equations 40+
equal and solve:

Y(m) = B(m) 2037

20+ 059m =16+ 063m V00 ]
4= 004m ' 20 40 60 80 100 120 140 160 18
m=100

This tells us that the cost from the taompanies will be the same if 100 miles are
driven. Either by looking @he graph, or noting that(m)is growing at a slower rate,

we can conclude that U-Haul will be the cheaper price when more than 100 miles are
driven.

% Rates retrieved Aug 2, 2010 frduttp://www.budgettruck.corandhttp://www.uhaul.com/
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xample 3

A town’s population has been growing lingarln 2004 the population was 6,200. By
2009 the population had grown to 8,100this trend continues,

a. Predict the population in 2013

b. When will the population reach 150007

The two changing quantities afres population and time. Whkilwe could use the actual
year value as the input quantity, doing sudieto lead to verygly equations, since the
vertical intercept would agoespond to the year 0, maitean 2000 years ago!

To make things a little niceand to make our lives easteo, we will define our input
as years since 2004

Input: t, years since 2004

Output: P(t), the town’s population

The problem gives us two input-output paif3onverting them to match our defined
variables, the yed&004 would correspond to= 0, giving the point (0, 6200). Notice
that through our clever choicd variable definition, wéave “given” ourselves the
vertical intercept of the functionThe year 2009 would correspond te 5, giving the
point (5, 8100).

To predict the population in 2018 9), we would need aguation for the population.
Likewise, to find when the population woulglach 15000, we would need to solve for
the input that would provide ayutput of 15000. Either way, we need an equation. To
find it, we start by calculating the rate of change:

me 8100-6200 1900

5-0

= 380people per year

Since we already know the vertical intercepthe line, we can immediately write the
equation:
P(t) = 6200+ 38Q

To predict the population in 2013, we evaluate our functidm&
P(9) = 6200+ 380(9) = 9620
If the trend continues, our modeleglicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we carP$gt= 15000 and solve fdr
15000= 6200+ 38(

8800= 381
t ~ 23158

Our model predicts the population will reachQ) in a little more than 23 years after
2004, or somewhere around the year 2027.
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xample 4

Anna and Emanuel start at the same inteéie@c Anna walks east at 4 miles per hour
while Emanuel walks south at 3 miles pewur. They are comuamicating with a two-
way radio with a range of 2 miles. Hownly after they start walking will they fall out
of radio contact?

In essence, we can partially answer tjusstion by saying they will fall out of radio
contact when they are 2 miles apart, wihieads us to ask a new question: how long
will it take them to be 2 miles apart?

In this problem, our changing quantitiege #ime and the two peoples’ positions, but
ultimately we need to know how long will it take for them to be 2 miles apart. We can
see that time will be our input variable, so we’ll define

Input: t, time in hours.

Since it is not obvious how to define aautput variables, we’ll start by drawing a
picture.

Anna walking east, 4 miles/hour
I\

-
-
-
-
-
-
-

_.-~"Distance between them

-
-
-
-
-
-
-

%’/Emanuel walking south, 3 miles/hour

Because of the complexity of this questiit may be helpful to introduce some
intermediary variables. These are quantiiied we aren’t directly interested in, but
seem important to the problem. For thisblem, Anna’s and Emanuel’s distances
from the starting point seem important. A@ate these, we are going to define a
coordinate system, putting the “startingmtbiat the intersection where they both
started, then we’re going to introduce a variaBl|gp represent Anna’s position, and
define it to be a measurement from thetsigrpoint, in the eastward direction.

Likewise, we’ll introduce a variabl&, to represent Emanuel’s position, measured from
the starting point in the sduwvard direction. Note than defining the coordinate

system we specified both the origin, or starpoint, of the measurement, as well as the
direction of measure.

While we’re at it, we’ll define a third variabl®, to be the measurement of the distance
between Anna and Emanuel. Showing theaides on the picture is often helpful:
Looking at the variables on the picture, we remember we need to know how long it
takes for D, the distance between them, to equal 2 miles.
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A
D
X NG
Seeing this picture we remembeatim order to find the distance b
between the two, we can use the Pythagorean Theorem, a al+b’=c?

property of right triangles.

From here, we can now look back at the peobfor relevant information. Anna is
walking 4 miles per hour, and Emanuel idkirag 3 miles per hour, which are rates of
change. Using those, we can write fafas for the distance each has walked.

They both start at the same intersection and so whdh the distance travelled by each
person should also be 0, so given the rate&ah, and the initial value for each, we get:

At) = 4t
E(t) = 3t

Using the Pythagorean theorem we get:

D(t)? = A(t)*+ E(t)? substitutén the functionformulas
D(t)* = (4t)° + (2)°=16°+ 9°= 25° solvefor D(t) using the square root

D(t) = +V25t° = 51|

Since in this scenario we are only considering positive valueanaf our distancB(t)
will always be positive, we casimplify this answer tdD t(3 t5

Interestingly, the distance between themso @l linear function. Using it, we can now
answer the question of when the diseabetween them will reach 2 miles:
D(t)=2

St=2

t=2-04
5

They will fall out of radio contact in 0.4 hours, or 24 minutes.
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There is currently a straight road lerglifrom the town of Westborough to a town 30
miles east and 10 miles north. Partway dows ithad, it junctions with a second road,
perpendicular to the firskpading to the town of E#borough. If the town of
Eastborough is located 20 miles directly eddhe town of Westborough, how far is the
road junction from Westborough?

It might help here to draw a picture of

the situation. It would then be helpful to Other town
introduce a coordinate system. While we (30, 10)
could place the origianywhere, placing

it at Westborough seems convenient. (0, 0) (20, 0)

This puts the other town at coordinates ~ Westborough 20 miles  Eastborough
(30, 10), and Eastborough at (20, 0).

Using this point along with the origimie can find the slope of the line from

Westborough to the other towrm:% =% . This gives the equation of the road
1

from Westborough to the other town to\W&x) = §X'

From this, we can determine the perpendicular road to Eastborough will have slope
m=-3. Since the town of Eastborough is & goint (20, 0), we can find the equation:
E(x)=-3x+b plug in the point (20, 0)

0=-3(20)+b

b=60

E(Xx) =—-3x+60

We can now find the coordinates of the jlimig of the roads by fiding the intersection
of these lines. Setting them equal,

1 x=-3x+60

3

E)x:60
3

10x=180

x=18 Substitutinghis backinto W(x)
1

y=W(@g =§(18)=6

The roads intersect at the point (18, Bing the distance formula, we can now find
the distance from Westborough to the junction:

dist=/ (L8—0) + (6—0) ~ 18934 miles.
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Important Topics of this Section

1)

2)

3)
4)
5)
6)
7)

8)

The problem solving process

Identify changing quantities, and thearefully and clearly define descriptive
variables to represent those quantities. Wdgpropriate, sketch a picture or define
a coordinate system.

Carefully read the problem to identify impant information. Look for information
giving values for the variables, or values for parts of the functional model, like slope
and initial value.

Carefully read the problem to identify what we are trying to find, identify, solve, or
interpret.

Identify a solution pathway from the provaieaformation to what we are trying to
find. Often this will involve checkingral tracking units, building a table or even
finding a formula for the function being used to model the problem.

When needed, find a formula for the function.

Solve or evaluate using the formyiau found for the desired quantities.

Reflect on whether your answer is reasdadtr the given situation and whether it
makes sense mathematically.

Clearly convey your result using appraté units, and answer in full sentences
when appropriate.
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Section 5.3 Exercises

1.

2.

In 2004, a school population was 1001. By 2008 the population had grown to 1697.
Assume the population is changing linearly.
a. How much did the population grawetween the year 2004 and 2008?
b. How long did it take the populatido grow from 1001 students to 1697
students?
What is the average poptitan growth per year?
What was the population in the year 2000?
Find an equation for the populatid®,of the schoot years after 2000.
Using your equation, predict thegdation of the school in 2011.

~® Qo

In 2003, a town’s population was 1431. By 2007 the population had grown to 2134.
Assume the population is changing linearly.

a. How much did the population grobetween the year 2003 and 20077

b. How long did it take the populatido grow from 1431 people to 21347

c. What is the average poptitan growth per year?

d. What was the population in the year 2000?

e. Find an equation for the populatid?, of the townt years after 2000.

f. Using your equation, predict the population of the town in 2014.

A phone company has a monthly cellular plarere a customer pays a flat monthly
fee and then a certain amowftmoney per minute used on the phone. If a customer
uses 410 minutes, the monthly cost will be $71.50. If the customer uses 720 minutes,
the monthly cost will be $118.

a. Find a linear equation for the monthlyst@f the cell plan as a function xf

the number of monthly minutes used.
b. Interpret the slope and vertical intercept of the equation.
c. Use your equation to find the totabmthly cost if 687 minutes are used.

A phone company has a monthly cellular daltan where a customer pays a flat
monthly fee and then a certain amount of money per megabyte (MB) of data used on
the phone. If a customer uses 20 MB, theathly cost will be $11.20. If the customer
uses 130 MB, the monthly cost will be $17.80.

a. Find a linear equation for the monthly co$the data plan as a function)of

the number of MB used.
b. Interpret the slope and vertical intercept of the equation.
c. Use your equation to find the totabnthly cost if 250 MB are used.
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5. In 1991, the moose population in a park was measured to be 4360. By 1999, the
population was measured again to be 588e population continues to change
linearly,

a. Find a formula for the moose populatiéh,
b. What does your model predict the moose population to be in 20037

6. In 2003, the owl population in a panas measured to be 340. By 2007, the
population was measured again to be.28the population continues to change
linearly,

a. Find a formula for the owl populatioR,
b. What does your model predict tbwl population to be in 2012?

7. The Federal Helium Reserve held about 1kobilcubic feet of hieum in 2010, and is
being depleted by about 2.1 Wt cubic feet each year.
a. Give a linear equation for the remaining federal helium reselRyé@s terms
of t, the number of years since 2010.
b. In 2015, what will the helium reserves be?
c. If the rate of depletion doesn’t changeénen will the Federal Helium Reserve
be depleted?

8. Suppose the world's current oil reservas 2820 billion barrels. If, on average, the
total reserves is decreasing by 25 billion barrels of oil each year:
a. Give a linear equation for the remaining oil reseriRén terms oft, the
number of years since now.
b. Seven years from now, whatll the oil reserves be?
c. If the rate of depletion isn’t change, when will the world’s oil reserves be
depleted?

9. You are choosing between two differeng¢paid cell phone plans. The first plan
charges a rate of 26 cents per minutee $cond plan charges a monthly fee of
$19.95plus 11 cents per minute. How many mies would you have to use in a
month in order for the secomdan to be preferable?

10.You are choosing between two differennadow washing companies. The first
charges $5 per window. The second chadybase fee of $4flus $3 per window.
How many windows would you needhave for the second company to be
preferable?

11.When hired at a new job sellingyelry, you are given two pay options:
Option A: Base salary of $17,000 a yesith a commission of 12% of your sales
Option B: Base salary of $20,000 a yemith a commission 0d5% of your sales
How much jewelry would you need to sell faption A to produce a larger income?
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12.When hired at a new job selling elextics, you are given two pay options:
Option A: Base salary of $14,000 a yeaithva commission of 10% of your sales
Option B: Base salary of $19,000 a yeaithva commission o#% of your sales
How much electronics would you needskll for option A to produce a larger
income?

13.Find the area of a triangle bounded byytaxis, the linef (x) =9—gx, and the line

perpendicular tof X }Yhat passes through the origin.

14.Find the area of a triangle bounded byxtais, the linef (x) :12—% X, and the

line perpendicular tof X jhat passes through the origin.

15.Find the area of a parallelogram bounded byythgis, the linex =3, the line
f (x) =1+ 2x, and the line parallel td x( passing through (2, 7)

16.Find the area of a parallelogram bounded bytaeis, the lineg X ¥ 2the line
f (x)=3x, and the line parallel td x( passing through (6, 1)

17.1f b>0 andm<0, then the linef (x) = b+ nmx cuts off a triangle from the first
guadrant. Express the area of that triangle in termsaofdb. [UW]

18.Find the value ofn so the linesf (x) = mx+5 and g( x) = x and they-axis form a
triangle with an area of 10. [UW]

19. The median home values in Mississippi and Hawaii (adjusted for inflation) are shown
below. If we assume that the house values are changing linearly,
Year | Mississippi | Hawaii
1950 25200 74400
2000 71400 272700
a. In which state have home valuesreased a higher rate?
b. If these trends were to continue, whatuld be the median home value in
Mississippi in 20107
c. If we assume the linear trend exdtaefore 1950 and continues after 2000,
the two states' median house values bell(or were) equal in what year? (The
answer might be absurd)
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20.The median home value ins Indiana andbdma (adjusted for inflation) are shown
below. If we assume that the house values are changing linearly,

Year | Indiana | Alabama

1950 37700 27100

2000 94300 85100
a. In which state have home valuesreased a higher rate?
b. If these trends were to continue, whaduld be the median home value in

Indiana in 20107
c. If we assume the linear trend existed before 1950 and continues after 2000,

the two states' median house values bell(or were) equal in what year? (The
answer might be absurd)

21.Pam is taking a train from the town of Rome to the town of Florence. Rome is located
30 miles due West of the town of Paf#orence is 25 miles East, and 45 miles North
of Rome. On her trip, how close does Pam get to Paris? [UW]

22.You're flying from Joint Base Lewis-MZhord (JBLM) to an undisclosed location
226 km south and 230 km east. Mt. Raimsdiocated approximately 56 km east and
40 km south of JBLM. If you are flying atconstant speed of 800 km/hr, how long
after you depart JBLM will you be the closest to Mt. Rainier?
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Section 5.4 Fitting Linear Models to Data

In the real world, rarely do things followetnds perfectly. When we expect the trend to
behave linearly, or when inspection suggests the trend is behaving linearly, it is often
desirable to find an equation to approximiie data. Finding amgeation to approximate
the data helps us understand the behavior of the data and allows us to use the linear
model to make predictions about the datside and outside of the data range.

The table below shows the number atket chirps in 15 seconds, and the air
temperature, in degrees FahrertheRlot this data, and determine whether the data
appears to be linearly related.

chirps | 44 35 204 33 31 35 185 37 24
Temp | 80.5] 70.5 57 66 68 72 52 735 543

Plotting this data, it appesathere may be a trend, afiht the trend appears roughly
linear, though certainly not perfectly so.

90

™
2 80 4 'S
o
o L 2
g 70 .
v IS
=] -
g % *
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2 50 - *
(]
'_
40 , , .
10 20 30 40 50

Cricket Chirps in 15 seconds

The simplest way to find an equation to apjpmate this data is to try to “eyeball” a line
that seems to fit the data pretty well, tiigxd an equation for that line based on the slope
and intercept.

You can see from the trend in the data thatnumber of chirps increases as the
temperature increases. As you considemation for this data you should know that you
are looking at an increasing functionabfunction with a positive slope.

* Selected data frommttp:/classic.globe.gov/fsl/scientistsblog/2007/Rétrieved Aug 3, 2010
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Flashback
1. a. What descriptive variables would ychoose to represent Temperature & Chirps?
b. Which variable is the independeatiable and which ithe dependent variable?
c. Based on this data and the f;aphat is a reasonable domain & range?
d. Based on the data alonethis function one-to-one, explain?

xample 2
Using the table of values from the previous example, find a linear function that fits the
data by “eyeballing” a line that seems to fit.

On a graph, we could try sketching in a line.

The scale on the axes has been adjusted to 90
including the vertical axis in the graph. 80 2
Using the starting and ending points of our 701 A
“hand drawn” line, point¢0, 30) and (50, 90), |
L)

this graph has a slope ah= %) =1.2 and a 50 ¢
vertical intercept at 30, giving an equation of 4o |

30 T
T(¢)=30+1.% 0 10 20 30 ) 50

wherec is the number of ¢tps in 15 seconds,
andT(c) is the temperature in degrees
Fahrenheit.

This linear equation can then be used to approximate the solution to various questions we
might ask about the trend. While the dates not perfectly fall on the linear equation,

the equation is our best guess as to how the relationship will behave outside of the values
we have data for. There is a differentmugh, between makirgredictions inside the

domain and range of values we have dataand outside that domain and range.

Interpolation and Extrapolation
Interpolation: When we predict a value inside the domain and range of the data
Extrapolation: When we predict a value outside the domain and range of the data

For the Temperature as a function oifph in our hand drawn model above:

Interpolation would occur if we used our model to predict temperature when the values
for chirps are between 18.5 and 44.

Extrapolation would occur if we used oupdel to predict temperature when the values
for chirps are less than 18.5 or greater than 44.



300 Chapter 5

a) Would predicting the temperature wheitkets are chirping 30 times in 15 seconds
be interpolation or extrapolation? Make thrediction, and discuss if it is reasonable.

b) Would predicting the nunelo of chirps crickets will make at 40 degrees be
interpolation or extrapolation? Make the prediction, and discuss if it is reasonable.

With our cricket data, our numbef chirps in the data provided varied from 18.5 to 44.
A prediction at 30 chirps per 15 secondsmsde the domain of our data, so would be
interpolation. Using our model:

T(30)= 30+ 1.2(303> 6@egrees.

Based on the data we have, this value seems reasonable.

The temperature values varied from 52 to 80Fyedicting the number of chirps at 40
degrees is extrapolation since 40 is owtdltk range of our data. Using our model:
40=30+ 1.2

10=1.%

c~8.33

Our model predicts the crickets would ch#83 times in 15 seconds. While this might
be possible, we have no reason to belmwemodel is valid outside the domain and
range. In fact, generally crickets sidmgrping altogether below around 50 degrees.

When our model no longer applies after some point, it is sometimes cedltizl
breakdown.

What temperature would you predict dy counted 20 chirps in 15 seconds?

Fitting Lines with Technology

While eyeballing a line works reasonably wéllere are statistical techniques for fitting a
line to data that minimize the differees between the line and data valu€ghis

technique is calletbast-square regressionand can be computed by many graphing
calculators, spreadsheet software like Execgboogle Docs, statistical software, and
many web-based calculatfirs

® Technically, the method minimizes the sum of the squared differences in the vertical direction between
the line and the data values.
® For examplehttp://www.shodor.org/ueem/math/lls/leastsqg.html
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xample 4

Find the least-squares regression line
using the cricket chirp data from above. 90

80 A

Using the cricket chirp data from earlier,

with technology we obtain the equation: 79 *%
T(c)=30.281+ 1.148 60 -
*
.
Notice that this line is quite similar to the %01
equation we “eyeballed”, but should fit 40
the data better. Notice also that using
this equation would change our 30 '
0 10 20 30 40 50

prediction for the temperature when

hearing 30 chirps in 15 seconds from 66
degrees to:

T(30)=30.28% 1.143(33 64.5%1 64l6grees.

Most calculators and computer swdtre will also provide you with theorrelation
coefficient, a measure of how closely the line fits the data.

Correlation Coefficient

Thecorrelation coefficientis a valuer, between -1 and 1.

r > 0 suggests a positive (increasing) relationship

r < 0 suggests a negative (decreasing) relationship

The closer the value is to 0, the more scattered the data

The closer the value is to 1 or -1, the less scattered the data is

The correlation coefficient provides an easywaget some idea of how close to a line
the data falls.

We should only compute the correlation caméfint for data that follows a linear pattern;
if the data exhibits a non-linear pattern, theelation coefficient is meaningless. To get
a sense for the relationship between the valueaofl the graph of the data, here are
some large data sets withethcorrelation coefficients:
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Examples of Correlation Coefficient Values

1.0 08 0.4 0.0

Calculate the correlation cifieient for our cricket data.

Because the data appears to follow a linettepa we can use technology to calculate
r =0.9509. Since this value is very @ds 1, it suggestssirong increasing linear
relationship.

Gasoline consumption in the US has been increasing steadily. Consumption data from
1994 to 2004 is shown beldiv.Determine if the trend is linear, and if so, find a model
for the data. Use the model to predict the consumption in 2008.

Year 94| '95| '96| '97| '98'99 | '00 | '01| '02] '03 '04
Consumption
(billions of
gallons) 113 116 2118 119 123 125 1p6 128 131 133 |136
(2]
To make things simpler, a new § 150
input variable is introduced, 3 140 -
representing years since 1994. < @
S 5 130 1
Using technology, the § S 120 -
correlation coefficient was 25 )
calculated to be 0.9965, § 1107
suggesting a very strong § 100 +—+——————1—1——1——

increasing linear trend. 0123456 7 8 91011121314

Years after 1994

’ http://en.wikipedia.org/wiki/File:Correlation_examples.png
& http://www.bts.gov/publications/national_transgtion_statistics/2005/html/table_04_10.htm




Section 5.4 Fitting Linear Models to Data 303

The least-squares regression equation is:
C(t) =113318+ 2.204 .

Using this to predictonsumption in 2008 E 14),
C(14)=113.318 2.209(14 144.244llions of gallons

The model predicts 144.244 billion gallosisgasoline will be consumed in 2008.

2. Use the model created by technology in example 6 to predict the gas consumption in
2011. Is this an interpolation or an extrapolation?

Important Topics of this Section

Fitting linear models to data by hand
Fitting linear models to data using technology
Interpolation
Extrapolation
Correlation coefficient

Flashback Answers

1. a. T = Temperature, C = Chirps (answers may vary)
b. Independent (Chirps) , Dependent (Temperature)
c. Reasonable Domain (18.5, 44) , Reasonable Range (52, 80.5) (answers may vary)
d. NO, it is not one-to-one, thereawo different output values for 35 chirps.

Try it Now Answers
1. 54 degrees Fahrenheit
2. 150.871 billion gallons, extrapolation
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Section 5.4 Exercises

1. The following is data for the first and secaqz scores for 8 students in a class. Plot
the points, then sketch a line that fits the data.

First Quiz 11 20 24 25 33 42 46 49
Second Quiz 10 16 23 28 30 39 40 49

2. Eight students were asked to estimate their score on a 10 point quiz. Their estimated
and actual scores are given. Plot the ppthen sketch a line that fits the data.

Predicted 5 7 6 8 10 9 10 T
Actual 6 6 7 8 9 9 10 6

Based on each set of data giyealculate the regressiondimising your calculator or
other technology tool, and detana the correlation coefficient.

3. | x|y 4. | x | y 5. | x y 6. | X | vy
5| 4 8| 23 3| 21.9 4144.8
7112 15| 41 41 22.22 5]43.1
10| 17 26| 53 5| 22.74 6| 38.8
12| 22 31| 72 6| 22.26 7] 39
15| 24 56| 103 7120.78 8| 38

8| 176 9| 32.7
9]16.52 10| 30.1
10| 18.54 11| 29.3
11| 15.76 12| 27
12| 13.68 13| 25.8
13| 14.1 14| 24.7
14| 14.02 15| 22
15] 11.94 16| 20.1
16| 12.76 17| 19.8
17| 11.28 18| 16.8
18 9.1
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7. Aregression was run to determine if #nés a relationship beeen hours of TV
watched per day] and number of situps a person canyo {[he results of the
regression are given below. Use thiptedict the number of situps a person who
watches 11 hours of TV can do.

y=ax+b

a=-1.341
b=32. 234
r2=0. 803
r=-0.896

8.

A regression was run to determine if thera relationship between the diameter of a

tree §, in inches) and the tree’s age ify years). The results of the regression are
given below. Use this to predict tage of a tree with diameter 10 inches.

y=ax+b
a=6. 301
b=-1.044
r2=0. 940
r=-0.970

Match each scatterplot shown below wathe of the four specified correlations.
10r =-0.89

9.r=0.95

11r =0.26

12r =

-0.39

A

B

D

13.The US census tracks the percentage of persons 25 years or older who are college
graduates. That data for several years is given below. Determine if the trend appears
linear. If so and the trend continueswhat year will the percentage exceed 35%7?

Year 1990| 1992 | 1994| 1996 1998 2000 2002 2002006| 2008
Percent |21.3| 21.4| 22.2| 236 244 256 26,7 2717 28 29.4
Graduatesg

14.The US import of wine (in hectoliters) feeveral years is given below. Determine if
the trend appears linear. If so and tleadr continues, in what year will imports
exceed 12,000 hectoliters?

Year

1992

1994

1996

199§

200

D 200

2 2004 20

0B008

2009

Imports

2665

2688

356

5 417

9 45

84 56

55 61

»49 7

050 §

487

D462
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Section 5.5 Absolute Value Functions

So far in this chapter we have beerdging the behavior of iear functions. The
Absolute Value Function is a piecewise-defined function made up of two linear
functions. The name, Absolute Value Function, should be familiar to you from

Section 1.2. In its basic for(x) :|xl it is one of our toolkit functions.

Absolute Value Function
The absolute value function can be defined as
if x>0

f(X)ZMZ{—Xx if

x<0

The absolute value function is commonlgdgo determine the distance between
two numbers on the number line. Given two vaklasdb, then|a— b| will give

the distance, a positive quantity, betwéegse values, regardless of which value is
larger.

xample 1

Describe all values, within a distance of 4 from the number 5.

We want the distance betweeand 5 to be less than or ebte4. The distance can be
represented using the absolute value, giving the expression

x-5<4

xample 2

A 2010 poll reported 78% of Americans believe that people who are gay should be able
to serve in the US military, with a reported margin of error of.3%he margin of error

tells us how far off the actual value could be from the survey Yal@press the set of
possible values using absolute values.

Since we want the size of the difference between the actual percentage the
reported percentage to be less than 3%,

Ip-79<3

® http://www.pollingrert.com/civil.htm retrieved August 4, 2010
9 Technically, margin of error usually means that shirveyors are 95% confident that actual value falls
within this range.
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Try it Now
1. Students who score within 20ipts of 80 will pass the test. Write this as a distance
from 80 using the absolute value notation.

Important Features

The most significant feature of the absolute value graph is the corner point where the
graph changes direction. When findihg equation for a transformed absolute

value function, this point is very helpful for determining the horizontal and vertical
shifts.

xample 3
Write an equation for the function graphed below.
y

N/
N/

The basic absolute value function changes direction at the origin, so this graph has been
shifted to the right 3 and down 2 from thesigatoolkit function. We might also notice

that the graph appears stretched, since tleatiportions have slopef 2 and -2. From

this information we can write the equation:

f(x)=2x-3 -2, treating the stretch as a vertical stretch

do ot L

.

f (x) =|2(x—3)| -2, treating the stretch ashorizontal compression

Note that these equations are algebraicajlyivalent — the stretch for an absolute value
function can be written interchangeably asedical or horizontal stretch/compression.

If you had not been able ttetermine the stretch basexl the slopes of the lines, you
can solve for the stretch factor by fug in a known pair of values farandf(x)

f(x)=ax-3-2 Now substituting in the point (1, 2)
2=al-3-2

4=2a

a=2
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Try it Now
2. Given the description of the transformed absolute value function write the equation.
The absolute value function is horizontally sdf left 2 units, is vertically flipped, and
vertically shifted up 3 units,

The graph of an absolute value function will have a vertical intercept when the input
is zero. The graph may or may not h&eeizontal interceptsdepending on how the
graph has been shifted and reflected. It is possible for the absolute value function to
have zero, one, or two horizontal intercepts.

Zerohorizontalintercepts One Two
gl
34 1 -
44 44
3 I
24 2
i ] /
R NREREE B -}; B REEEEE: -}_‘,__ 12 5 4
2 -2 2
3 -3 i
4 4 4
5 -5 4 §

To find the horizontal intercepts, we wileed to solve an equation involving an
absolute value.

Notice that the absolute value functiom@t one-to-one, so typically inverses of
absolute value functions are not discussed.

Solving Absolute Value Equations

To solve an equation lik8 = |2x—6| , we can notice that the absolute value will be

equal to eight if the quantiipsidethe absolute value were 8 or -8. This leads to
two different equations we can solve independently:

2x—-6=8 or 2X—-6=-8

2x=14 2x=-2

X=7 x=-1

Solutions to Absolute Value Equations
An equation of the formid| = B, with B >0, will have solutions when

A=B or A=-B
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xample 4

Find the horizontal intercepts of the graphfd) = |4x+1 -7

The horizontal intercepts will occur whefi(x) = 0. Solving,

0= |4x+]j -7 Isolate the absolute value on one side of the equation
7=|ax+1 Now we can break this into two separate equations:
7=4x+1 -7=4x+1
6 =4x or —-8=4x
(6.3 e85

4 2 4

The graph has two horizontal interceptsxa;t% andx = -2

Solvel=4x—2+2

Isolating the absolute value on one side the equation,
1=4x-2/+2

1= 42

=2

At this point, we notice that this equation has no solutions — the absolute value always
returns a positive value, so it is impossitiethe absolute value to equal a negative
value.

3. Find the horizontal & vetal intercepts for the functioh(x) = —{x+ 2|+ 3

Solving Absolute Value Inequalities

When absolute value inequalities are writterescribe a set of values, like the
inequality|x—5| <4 we wrote earlier, it is sometira@lesirable to express this set of

values without the absolute value, either using inequalities, or using interval
notation.
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We will explore two approaches tolgog absolute value inequalities:
1) Using the graph
2) Using test values

Solve|x—5| <4

With both approaches, we will need to know first where the correspoeduraityis

true. In this case we first will find whete—5 =4. We do this because the absolute
value is a nice friendly function with no breaks, so the only way the function values can
switch from being less than 4 to being greater than 4 is by passing through where the

values equal 4. Solve—5 =4,

x-5=4 X—=5=-4
or

X=9 Xx=1

To use a graph, we can sketch the functigr) = |x—5| . To help us see where the
outputs are 4, the ling(x) = dould also be sketched.

2| 1234567891

On the graph, we can see that indeed the oufdues of the absolute value are equal to
4 atx =1 andx = 9. Based on the shape of the graph, we can determine the absolute
value is less than or equal to 4 between these two points, Wwheg 9. In interval
notation, this would be the interval [1,9].

As an alternative to graphing, after determinihat the absolute value is equal to # at
=1 andx = 9, we know the graph ranly change from being less than 4 to greater than
4 at these values. This divides the number line up into three intexedls1<x<9, and

x>9. To determine when the function is less than 4, we could pick a value in each
interval and see if the output is less than or greater than 4.
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Interval Tesk f(x) <4 or >47
x<1 0 0-5=5 greater
1<x<9 6 6-5=1  less

x>9 11 11-5=6  greater

Sincel< x <9 is the only interval in which the output at the test value is less than 4,
we can conclude the solution fto-5 < 4 is1< x<9.

Given the functionf (x) = —%|4x— 5+ 3, determine for what values the function

values are negative.

We are trying to determine whel(®) < 0, which is when—%|4x—q +3<0. We begin
by isolating the absolute value:

—%|4x—5| <-3 when we multiply both sides by -2, it reverses the inequality

[4x—-5>6

Next we solve for the equalitgx—5 =6

4x-5=6 4x—-5=-6
4x=11 or 4x=-1
11 -1
X=— X=—
4 4

We can now either pick test values oeth a graph of the function to determine on
which intervals the original function value aregative. Notice that it is not even really
important exactly what the graph looks likes,long as we know that it crosses the

horizontal axis aix = _71 and x = 121 , and that the graph has beefiected vertically.
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o g ds

41

From the graph of the function, we can see the function values are negative to the left of

, . . -1 . : .
the first horizontal intercept at= R and negative to the right of the second intercept

at x= 121 This gives us the solution to the inequality:

-1 11
X<— or X>—
4 4

In interval notation, this would e—oo,_?l}u(ljl,ooj

4. Solve-2k -4 < -6

Important Topics of this Section
The properties of the absolute value function
Solving absolute value equations
Finding intercepts
Solving absolute value inequalities

Try it Now Answers

1. Using the variablp, for passing,|p—80 < 20
2. f(x)=—|x+2+3

3.f(0) = 1, so the vertical intercept is at (0,4(x)= 0 whenx = -5 andx = 1 so the
horizontal intercepts are at (-5,0) & (1,0)
4. k <1or k > 7; in interval notation this would bg- 1)U (7,0)
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Write an equation for each transformationfqfx) =| x|

L
P S S

12 3 43

I T T

de b e

dn &

i bl 3 U -EE i 2 343
] 2]
1 -3
4.

Sketch a graph of each function

5. f(X)=—|x-1]-1

7. f(x)=2/x+3+1

9. f(x)=[2x-4-3

Solve each the equation

11. |- 24
13. 2|4-x

11
7

15. 3]x+1-4=-2

6. f(X)=—|x+3+4
8 f(x)=3]x-2-3

10. f(x)=[3x+9+2

12. |4x+ 2|=15
14. 3|5-xkEb5
16. 5|x—4-7=2
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Find the horizontal and verticadtercepts of each function

17. f(x)=2|x+1}-10

19. f (x)=-3[x-2-1

Solve each inequality
21. x+ 5% 6

23. x- 2% 3

25. |X+ 94 4

18. f (x)=4|x-3+ 4

20. f (x)=-2|x+1+6

22.|x-3 7
4. |x+42
2. [2x-9<8
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Section 6.1 Power Functions & Polynomial Functions

A square is cut out of cardboard, with each side having length L. If we wanted to write a
function for the area of the square, with L as the input and the area as output, you may
recall that the area of a rectangle can be found by multiplying the length times the width.
Since our shape is a square, the length & the width are the same, giving the formula:

AL)=L-L=L2

Likewise, if we wanted a function for the volume of a cube with each side having some
length L, you may recall volume of a rectangular box can be found by multiplying length
by width by height, which are all equal for a cube, giving the formula:

V(L)=L-L-L=L’

These two functions are examples of power functions, functions that are some power of
the variable.

Power Function
A power function is a function that can be represented in the form

f(x)=x"
Where the base is a variable and the exponent, p, is a number.

Which of our toolkit functions are power functions?

The constant and identity functions are power functions, since they can be written as
f(x)=x" and f(x)=x' respectively.

The quadratic and cubic functions are both power functions with whole number powers:
f(x)=x>and f(x)=x".

This chapter is part of Precalculus: An Investigation of Functio@sLippman & Rasmussen 2013, and
contains content remixed from College Algebra® Stitz & Zeager 2013.
This material is licensed under a Creative Commons CC-BY-NC-SA license.
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The reciprocal and reciprocal squared functions are both power functions with negative
whole number powers since they can be written as f(X)=x"and f(x)=x".

The square and cube root functions are both power functions with fractional powers
since they can be written as f(x) = x"?or f(x)=x"*.

1. What point(s) do the toolkit power functions have in common?

f=x  fx=X
Characteristics of Power Functions ¥ 4 ¥

Shown to the right are the graphs of

f(x)=x>, f(x)=x*, and f(x)=x°,all
even whole number powers. Notice that all
these graphs have a fairly similar shape, very
similar to the quadratic toolkit, but as the
power increases the graphs flatten somewhat 7 5 ] i 5 3
near the origin, and become steeper away
from the origin.

To describe the behavior as numbers become larger and larger, we use the idea of
infinity. The symbol for positive infinity is o, and —c for negative infinity. When we
say that “X approaches infinity”, which can be symbolically written as X — o, we are
describing a behavior — we are saying that X is getting large in the positive direction.

With the even power function, as the input becomes large in either the positive or
negative direction, the output values become very large positive numbers. Equivalently,
we could describe this by saying that as X approaches positive or negative infinity, the f(X)
values approach positive infinity. In symbolic form, we could write: as X — Fo0,

f(X) > 0. f(x)=x
f(xX)=x g
Shown here are the graphs of i
f(x)=x, f(X)=x’,and f(x)=x’, all odd whole 51 '\f (X) =%
number powers. Notice all these graphs look
similar to the cubic toolkit, but again as the power It

increases the graphs flatten near the origin and
become steeper away from the origin.

For these odd power functions, as X approaches
negative infinity, f(X) approaches negative infinity.
As X approaches positive infinity, f(X) approaches
positive infinity. In symbolic form we write: as
X— -0, f(X) > —w andas x> o, f(X) > x.
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Long Run Behavior
The behavior of the graph of a function as the input takes on large negative values
(X — —o0) and large positive values (X — o0 ) as is referred to as the long run behavior
of the function.

xample 2
Describe the long run behavior of the graph of f(x)=Xx".

Since f(X)=x’ has a whole, even power, we would expect this function to behave
somewhat like the quadratic function. As the input gets large positive or negative, we
would expect the output to grow without bound in the positive direction. In symbolic
form, as X — too, f(X) > .

xample 3
Describe the long run behavior of the graph of f(X)=—-x’

Since this function has a whole odd power, we would expect it to behave somewhat like

the cubic function. The negative in front of the X’ will cause a vertical reflection, so as

the inputs grow large positive, the outputs will grow large in the negative direction, and

as the inputs grow large negative, the outputs will grow large in the positive direction.

In symbolic form, for the long run behavior we would write: as X — oo,
f(X) > —wand as X > —o0, f(X) > .

You may use words or symbols to describe the long run behavior of these functions.

Try it Now

‘ 2. Describe in words and symbols the long run behavior of f(x) = —x*

Treatment of the rational and radical forms of power functions will be saved for later.

Polynomials

An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular
shape. The slick is currently 24 miles in radius, but that radius is increasing by 8 miles
each week. If we wanted to write a formula for the area covered by the oil slick, we
could do so by composing two functions together. The first is a formula for the radius, r,
of the spill, which depends on the number of weeks, w, that have passed. Hopefully you
recognized that this relationship is linear: r(w) =24+ 8w.

We can combine this with the formula for the area, A, of a circle: A(r) =7
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Composing these functions gives a formula for the area in terms of weeks:
AW) = A(r(w)) = A24 +8W) = (24 + 8w)’

Multiplying this out gives the formula
A(W) = 5767 + 3842w+ 6472w

This formula is an example of a polynomial. A polynomial is simply the sum of terms
each consisting of a transformed power function with positive whole number power.

Terminology of Polynomial Functions

A polynomial is function that can be written as f(X) = a, + a X+ a,x* +---+a X"

Each of the & constants are called coefficientsand can be positive, negative, or zero,
and be whole numbers, decimals, or fractions.

A term of the polynomial is any one piece of the sum, that is any a x'. Each individual

term is a transformed power function.

The degreeof the polynomial is the highest power of the variable that occurs in the
polynomial.

The leading term is the term containing the highest power of the variable: the term
with the highest degree.

The leading coefficientis the coefficient of the leading term.

Because of the definition of the “leading” term we often rearrange polynomials so that

the powers are descending.
n

f(X)=a,Xx"+..+a,x +ax+a,

Identify the degree, leading term, and leading coefficient of these polynomials:
f(x)=3+2x" —4x’ g(t)=5t> —2t° + 7t h(p)=6p—p’ -2

For the function f(X), the degree is 3, the highest power on X. The leading term is the

term containing that power, —4x’. The leading coefficient is the coefficient of that
term, -4.

For g(t), the degree is 5, the leading term is 5t°, and the leading coefficient is 5.
For h(p), the degree is 3, the leading term is — p*, so the leading coefficient is -1.
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Long Run Behavior of Polynomials

For any polynomial, the long run behavior of the polynomial will match the long run
behavior of the leading term.

What can we determine about the long run behavior and degree of the equation for the
polynomial graphed here?

4
3
2
j/—\
J:.}.'z-'j }w_% & 7
-2
-3

ln ke

Since the output grows large and positive as the inputs grow large and positive, we
describe the long run behavior symbolically by writing: as X — o, f(X) > .

Similarly, as X &> -0, f(X) > —©.

In words, we could say that as X values approach infinity, the function values approach
infinity, and as X values approach negative infinity the function values approach
negative infinity.

We can tell this graph has the shape of an odd degree power function which has not
been reflected, so the degree of the polynomial creating this graph must be odd, and the
leading coefficient would be positive.

3. Given the function f (X) = 0.2(X—2)(X+ 1)(X—5) use your algebra skills to write the

function in standard polynomial form (as a sum of terms) and determine the leading
term, degree, and long run behavior of the function.

Short Run Behavior
Characteristics of the graph such as vertical and horizontal intercepts and the places the
graph changes direction are part of the short run behavior of the polynomial.

Like with all functions, the vertical intercept is where the graph crosses the vertical axis,
and occurs when the input value is zero. Since a polynomial is a function, there can only
be one vertical intercept, which occurs at the point (0,a,). The horizontal intercepts
occur at the input values that correspond with an output value of zero. It is possible to
have more than one horizontal intercept.
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Example6 . _ |

Given the polynomial function f(X)=(Xx—2)(x+1)(X—4), written in factored form for
your convenience, determine the vertical and horizontal intercepts.

The vertical intercept occurs when the input is zero.
f(0)=(0-2)(0+1)(0—-4)=8.

The graph crosses the vertical axis at the point (0, 8).

The horizontal intercepts occur when the output is zero.
0=(X=2)(Xx+1)(x—4) whenx=2, -1, or 4

The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0)

Notice that the polynomial in the previous example, which would be degree three if
multiplied out, had three horizontal intercepts and two turning points — places where the
graph changes direction. We will now make a general statement without justifying it —
the reasons will become clear later in this chapter.

Intercepts and Turning Points of Polynomials
A polynomial of degree n will have:
At most n horizontal intercepts. An odd degree polynomial will always have at least
one.
At most n-1 turning points

[Example 7
What can we conclude about the graph of the polynomial shown here?

\;5/;“

54
Based on the long run behavior, with the graph becoming large positive on both ends of

the graph, we can determine that this is the graph of an even degree polynomial. The
graph has 2 horizontal intercepts, suggesting a degree of 2 or greater, and 3 turning
points, suggesting a degree of 4 or greater. Based on this, it would be reasonable to
conclude that the degree is even and at least 4, so it is probably a fourth degree
polynomial.
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‘ 4. Given the function f (X) = 0.2(Xx—2)(X+1)(X—5) determine the short run behavior.

Important Topics of this Section

Power Functions
Polynomials
Coefficients

Leading coefficient
Term

Leading Term

Degree of a polynomial
Long run behavior
Short run behavior

Try it Now Answers

1. (0, 0) and (1, 1) are common to all power functions.
2. As X approaches positive and negative infinity, f(X) approaches negative infinity: as
X — too, f(X) > —oo because of the vertical flip.

3. The leading term is 0.2X’, so it is a degree 3 polynomial.

As X approaches infinity (or gets very large in the positive direction) f(X) approaches
infinity; as X approaches negative infinity (or gets very large in the negative direction)
f(x) approaches negative infinity. (Basically the long run behavior is the same as the
cubic function).

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and
there are 2 turns in the graph.
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Section 6.1 Exercises

Find the long run behavior of each function as X — o and X — —o0

L f(x)=x 2. f(x)=X 3. f(x)=x 4. f(x)=x
5. f(x)=-x 6. f(x)=-x 7. f(x)=-X 8. f(x)=—-¥%
Find the degree and leading coefficient of each polynomial

9. 4x’ 10. 5x°

11. 5-%° 12. 6+3x—4%

13. =2x* =3x* + x—1 14. 6xX° —2X' + X +3

15. (2x+3)(x—4)(3x+1) 16. (3x+1)( x+1)(4 x+3)

Find the long run behavior of each function as X — o0 and X — —©

17. =2x* =3x* + x-1 18. 6X° —2x' + X' +3

19. 3x* +x-2 20. 2%’ +X* = X+3

21. What is the maximum number of X-intercepts and turning points for a polynomial of
degree 5?

22. What is the maximum number of X-intercepts and turning points for a polynomial of
degree 8?

What is the least possible degree of the polynomial function shown in each graph?

2 2 2 2

1 1 1
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Find the vertical and horizontal intercepts of each function.

31 f(t)=2(t-1)(t+2)(t-3) 32. f(x)=3(x+1)(x—4)(x+5)
33. g(n)=-2(3n-1)(2n+1) 34. k(u)=-3(4-n)(4n+3)
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Section 6.2 Quadratic Functions

In this section, we will explore the family of 2™ degree polynomials, the quadratic
functions. While they share many characteristics of polynomials in general, the
calculations involved in working with quadratics is typically a little simpler, which makes
them a good place to start our exploration of short run behavior. In addition, quadratics
commonly arise from problems involving area and projectile motion, providing some
interesting applications.

A backyard farmer wants to enclose a rectangular space for a new garden. She has
purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4™ side against the
backyard fence. Find a formula for the area enclosed by the fence if the sides of fencing
perpendicular to the existing fence have length L.

In a scenario like this involving geometry, it is often Garden L
helpful to draw a picture. It might also be helpful to

introduce a temporary variable, W, to represent the side W

of fencing parallel to the 4" side or backyard fence.

Since we know we only have 80 feet of fence available, Backyard

we know that L +W + L =80, or more simply,
2L +W =80. This allows us to represent the width, W, in terms of L: W =80-2L

Now we are ready to write an equation for the area the fence encloses. We know the
area of a rectangle is length multiplied by width, so

A=LW =L(80-2L)

A(L) =80L -2L°

This formula represents the area of the fence in terms of the variable length L.

Short run Behavior: Vertex

We now explore the interesting features of the graphs of quadratics. In addition to
intercepts, quadratics have an interesting feature where they change direction, called the
vertex. You probably noticed that all quadratics are related to transformations of the

basic quadratic function f (X) = X*.
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> €:10110) (B

Write an equation for the quadratic graphed below as a transformation of f(X) = x*,

then expand the formula and simplify terms to write the equation in standard
polynomial form.

T S T
P e

e S s P [t f i 45 47

-3

-5
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a

formula in the form g(X) = a(x+2)*> —3. By plugging in a point that falls on the grid,
such as (0,-1), we can solve for the stretch factor:

~-1=a(0+2)°" -3
2=4a

1
a=—

2

Written as a transformation, the equation for this formula is g(X) = %(X+ 2)>-3. To

write this in standard polynomial form, we can expand the formula and simplify terms:

900 =5 (x+2)* =3
a(x) =%(x+ 2)(x+2)-3
g(x) :%(x2 +4x+4)-3

g(x):%x2 +2X+2-3

g(x)zéx2 +2x-1

Notice that the horizontal and vertical shifts of the basic quadratic determine the location
of the vertex of the parabola; the vertex is unaffected by stretches and compressions.
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1. A coordinate grid has been superimposed
over the quadratic path of a basketball'.
Find an equation for the path of the ball.
Does he make the basket?

Forms of Quadratic Functions
The standard form of a quadratic function is f (X) = ax* + bx+¢
The transformation form of a quadratic function is f(x) = a(x—h)* +k

The vertex of the quadratic function is located at (h, k), where h and k are the numbers
in the transformation form of the function. Because the vertex appears in the
transformation form, it is often called the vertex form.

In the previous example, we saw that it is possible to rewrite a quadratic function given in
transformation form and rewrite it in standard form by expanding the formula. It would
be useful to reverse this process, since the transformation form reveals the vertex.

Expanding out the general transformation form of a quadratic gives:
f(X)=a(x—h)> +k=a(x-h)(x=h)+k

f(x) = a(x> —2xh+h*) + k = ax* —2ahx+ah’ + k

This should be equal to the standard form of the quadratic:
ax’ —2ahx+ah’ + k =ax’ +bx+c

The second degree terms are already equal. For the linear terms to be equal, the
coefficients must be equal:

—2ah=Db, so h=—£
2a

This provides us a method to determine the horizontal shift of the quadratic from the
standard form. We could likewise set the constant terms equal to find:

2 2 2
ah’ +k=c, so k=c—ah2:c—a(—2—baj :c—ab _o 2

In practice, though, it is usually easier to remember that K is the output value of the
function when the input is h, so k= f(h).

' From http:/blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY
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Finding the Vertex of a Quadratic

For a quadratic given in standard form, the vertex (h, K) is located at:

h=-2 k= f(h= f(_—bj
2a 2a

Find the vertex of the quadratic f(X) =2x> —6x+ 7. Rewrite the quadratic into
transformation form (vertex form).

The horizontal coordinate of the vertex will be at h = —3 = —_—6 = g = i
2a 22) 4 2

. . . 3 3V (3 5

The vertical coordinate of the vertex will be at f E =2 5 -6 5 +7= E

Rewriting into transformation form, the stretch factor will be the same as the a in the
original quadratic. Using the vertex to determine the shifts,

3 5
f(x):2(x—5] +E

2. Given the equation g(X) =13+ x> —6x write the equation in standard form and then

in transformation/vertex form.

As an alternative to using a formula for finding the vertex, the equation can also be
written into vertex form by completing the square This process is most easily
explained through example. In most cases, using the formula for finding the vertex will
be quicker and easier than completing the square, but completing the square is a useful
technique when faced with some other algebraic problems.

Exampled |

Rewrite f(X)=2x> —12x+14 into vertex form by completing the square.

We start by factoring the leading coefficient from the quadratic and linear terms.
2(x2 — 6x)+14

Next, we are going to add something inside the parentheses so that the quadratic inside
the parentheses becomes a perfect square. In other words, we are looking for values p

and q so that (x2 —6X+ p):(x— ).
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Notice that if multiplied out on the right, the middle term would be -2q, so g must be
half of the middle term on the left; q = -3.

In that case, p must be (-3)* =9. (x2 —6X+ 9): (x—=3)*

Now, we can’t just add 9 into the expression — that would change the value of the
expression. In fact, adding 9 inside the parentheses actually adds 18 to the expression,
since the 2 outside the parentheses will distribute. To keep the expression balanced, we
can subtract 18.

2(x2 —6x+9)+14-18

Simplifying, we are left with vertex form.
2(x-3)° -4

In addition to enabling us to more easily graph a quadratic written in standard form,
finding the vertex serves another important purpose — it allows us to determine the
maximum or minimum value of the function, depending on which way the graph opens.

Exampled .

Returning to our backyard farmer from the beginning of the section, what dimensions
should she make her garden to maximize the enclosed area?

Earlier we determined the area she could enclose with 80 feet of fencing on three sides
was given by the equation A(L)=80L —2L°. Notice that quadratic has been vertically

reflected, since the coefficient on the squared term is negative, so the graph will open
downwards, and the vertex will be a maximum value for the area.

In finding the vertex, we take care since the equation is not written in standard
polynomial form with decreasing powers. But we know that a is the coefficient on the
squared term, so a=-2, b= 80, and c=0.

Finding the vertex:
h= —% =20, k= A(20)=80(20)-2(20)* =800

The maximum value of the function is an area of 800 square feet, which occurs when L
= 20 feet. When the shorter sides are 20 feet, that leaves 40 feet of fencing for the
longer side. To maximize the area, she should enclose the garden so the two shorter
sides have length 20 feet, and the longer side parallel to the existing fence has length 40
feet.
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A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.
Market research has suggested that if they raised the price to $32, they would lose 5,000
subscribers. Assuming that subscriptions are linearly related to the price, what price
should the newspaper charge for a quarterly subscription to maximize their revenue?

Revenue is the amount of money a company brings in. In this case, the revenue can be

found by multiplying the charge per subscription times the number of subscribers. We

can introduce variables, C for charge per subscription and S for the number subscribers,
giving us the equation

Revenue = CS

Since the number of subscribers changes with the price, we need to find a relationship
between the variables. We know that currently S= 84,000 and C = 30, and that if they
raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values,
C=32and S=79,000. From this we can find a linear equation relating the two
quantities. Treating C as the input and Sas the output, the equation will have form
S=mC+b. The slope will be
~79,000-84,000 —5,000

32-30 2

=-2,500

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.
We can then solve for the vertical intercept

S=-2500C+b Plug in the point S= 85,000 and C = 30
84,000 =-2500(30)+b Solve for b
b=159,000

This gives us the linear equation S=-2,500C +159,000 relating cost and subscribers.
We now return to our revenue equation.

Revenue =CS Substituting the equation for Sfrom above
Revenue = C(-2,500C +159,000) Expanding

Revenue = —2,500C* +159,000C

We now have a quadratic equation for revenue as a function of the subscription charge.
To find the price that will maximize revenue for the newspaper, we can find the vertex:

159,000

T 2(=2,500)

The model tells us that the maximum revenue will occur if the newspaper charges
$31.80 for a subscription. To find what the maximum revenue is, we can evaluate the
revenue equation:

Maximum Revenue = —2,500(31.8)* +159,000(31.8) = $2,528,100
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Short run Behavior: Intercepts

As with any function, we can find the vertical intercepts of a quadratic by evaluating the
function at an input of zero, and we can find the horizontal intercepts by solving for when
the output will be zero. Notice that depending upon the location of the graph, we might
have zero, one, or two horizontal intercepts.

A
21
i
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2+ 24 2%
zero horizontal intercepts one horizontal intercept two horizontal intercepts

xample 6
Find the vertical and horizontal intercepts of the quadratic f(X)=3x> +5x—2

We can find the vertical intercept by evaluating the function at an input of zero:
f(0)=3(0)* +5(0)-2=-2 Vertical intercept at (0,-2)

For the horizontal intercepts, we solve for when the output will be zero
0=3%x"+5x-2

In this case, the quadratic can be factored easily, providing the simplest method for
solution

0=03Bx-1)(x+2)

0=3x-1
0=x+2 ) . 1
1 or Horizontal intercepts at | —,0 | and (-2,0)
X= E X=-2 3

Notice that in the standard form of a quadratic, the constant term C reveals the vertical
intercept of the graph.

Example?7 . |
Find the horizontal intercepts of the quadratic f(X) =2x* +4x—4

Again we will solve for when the output will be zero
0=2x"+4x—4

Since the quadratic is not easily factorable in this case, we solve for the intercepts by
first rewriting the quadratic into transformation form.
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b 4 , -
h:—z—a:—ﬁ:—l k=f(-1)=2(-1)> +4(-1)-4=—6

f(X)=2(x+1)> -6

Now we can solve for when the output will be zero

0=2(x+1)>-6
6=2(x+1)’
3=(Xx+1)°

X+1=+3

X=-1%+/3

The graph has horizontal intercepts at (—1—+/3,0)and (—1++/3,0)

3. In Try it Now problem 2 we found the standard & transformation form for the
function g(x) =13+ x> —6x. Now find the Vertical & Horizontal intercepts (if any).

This process is done commonly enough that sometimes people find it easier to solve the
problem once in general and remember the formula for the result, rather than repeating
the process each time. Based on our previous work we showed that any quadratic in
standard form can be written into transformation form as:

2 2
f(x)= a(x+£j +C—b—
2a 4a

Solving for the horizontal intercepts using this general equation gives:

2 2
0= a(x + 2—) +C—— start to solve for X by moving the constants to the other side

a 4a

b? b\’
——C=al X+— divide both sides by a
4a 2a

b ¢ b\’ . . .
—5 = X+t— find a common denominator to combine fractions
4a° a 2a

2 2

4b > :af = (X + ;j combine the fractions on the left side of the equation

a a a

2 2
b - 4ac = (X + Ej take the square root of both sides
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2
+ b iac =X+ b subtract b/2a from both sides
4a 2a
2

_b + Vb —dac =X combining the fractions

2a 2a

_h++/b? =
X= b+ 2b 4ac Notice that this can yield two different answers for X
a

Quadratic Formula
For a quadratic function given in standard form f(x) = ax’ + bx+ ¢, the quadratic
formula gives the horizontal intercepts of the graph of this function.

(o —bt+/b* -4ac

2a

A ball is thrown upwards from the top of a 40 foot high building at a speed of 80 feet
per second. The ball’s height above ground can be modeled by the equation

H(t)=—16t> +80t+40.

What is the maximum height of the ball?
When does the ball hit the ground?

To find the maximum height of the ball, we would need to know the vertex of the
quadratic.

2
he- S0 89 5 e n[2] =16/ 2] +80[ 2 |+40=140
2 2 2 2

The ball reaches a maximum height of 140 feet after 2.5 seconds.

To find when the ball hits the ground, we need to determine when the height is zero —
when H(t) = 0. While we could do this using the transformation form of the quadratic,
we can also use the quadratic formula:

80+ /80% —4(-16)(40)  —80++/8960
- 2(-16) Y

Since the square root does not simplify nicely, we can use a calculator to approximate

the values of the solutions:
—80—+/8960 ~ —80++/8960
32 —-32

~ 5458 or t ~—0.458

The second answer is outside the reasonable domain of our model, so we conclude the
ball will hit the ground after about 5.458 seconds.
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4. For these two equations determine if the vertex will be a maximum value or a
minimum value.

a. g(X)=-8x+x+7
b. g(X)=-33-x)>+2

Important Topics of this Section

Quadratic functions

Standard form

Transformation form/Vertex form

Vertex as a maximum / Vertex as a minimum
Short run behavior

Vertex / Horizontal & Vertical intercepts
Quadratic formula

Try it Now Answers

1. The path passes through the origin with vertex at (-4, 7).
h(x) = —%( X+4)> +7. To make the shot, h(-7.5) would

need to be about 4. h(—7.5) ~1.64; he doesn’t make it.

2. g(X) = x> —6x+13 in Standard form; g(X) = (X—3)" +4in Transformation form

3. Vertical intercept at (0, 13), NO horizontal intercepts.

4. a. Vertex is a minimum value
b. Vertex is a maximum value
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Section 6.2 Exercises

Write an equation for the quadratic function graphed.
54
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For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and
c¢) the horizontal intercepts.

7. y(X)=2% +10 x+12 . z(p)=3X+6x9
9. f(x)=2x-10x+4 10. g(x)_—2>8—14x+12
11. h(t)=—-4t" +6t—1 ck(t)=2X +4x-15

Rewrite the quadratic function into vertex form.
13. f(Xx)=xX-12x+32 14. g(x)= X +2x-3

15. h(x)=2x +8x-10 16. k(x)=3x -6 %9
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17.
18.

Find the values of band cso f (X) =—-8x + bx+c has vertex (2,—7)
Find the values of band cso f (x)=6X + bx+ ¢ has vertex (7,-9)

Write an equation for a quadratic with the given features

19.
20.
21.
22.
23.
24.
25.
26.

27.

28.

29.

30.

x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2)
x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3)
x-intercepts (2, 0) and (5, 0), and y intercept (0, 6)
x-intercepts (1, 0) and (3, 0), and y intercept (0, 4)
Vertex at (4, 0), and y intercept (0, -4)

Vertex at (5, 6), and y intercept (0, -1)

Vertex at (-3, 2), and passing through (3, -2)
Vertex at (1, -3), and passing through (-2, 3)

A rocket is launched in the air. Its height, in meters above sea level, as a function of
time, in seconds, is given by h(t) =—4.9t" +229t+234.

a. From what height was the rocket launched?

b. How high above sea level does the rocket reach its peak?

c. Assuming the rocket will splash down in the ocean, at what time does
splashdown occur?

A ball is thrown in the air from the top of a building. Its height, in meters above
ground, as a function of time, in seconds, is given by h(t)=—4.9t* +24t+8.

a. From what height was the ball thrown?
b. How high above ground does the ball reach its peak?
c. When does the ball hit the ground?

The height of a ball thrown in the air is given by h(x)= —é X +6 X+ 3, where X is

the horizontal distance in feet from the point at which the ball is thrown.
a. How high is the ball when it was thrown?
b. What is the maximum height of the ball?
c. How far from the thrower does the ball strike the ground?

A javelin is thrown in the air. Its height is given by h(x)= —% X +8 X+ 6, where X

is the horizontal distance in feet from the point at which the javelin is thrown.
a. How high is the javelin when it was thrown?
b. What is the maximum height of the javelin?
c. How far from the thrower does the javelin strike the ground?



31.

32.

33.

34.

35.

36.

37.

38.
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A box with a square base and no top is to be made from a square piece of cardboard
by cutting 6 in. squares out of each corner and folding up the sides. The box needs to
hold 1000 in’. How big a piece of cardboard is needed?

A box with a square base and no top is to be made from a square piece of cardboard
by cutting 4 in. squares out of each corner and folding up the sides. The box needs to
hold 2700 in’. How big a piece of cardboard is needed?

A farmer wishes to enclose two pens with fencing, as shown.
If the farmer has 500 feet of fencing to work with, what
dimensions will maximize the area enclosed?

A farmer wishes to enclose three pens with fencing, as shown.
If the farmer has 700 feet of fencing to work with, what
dimensions will maximize the area enclosed?

You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will
be bent into the shape of a square. The other piece will be bent into the shape of a
circle. Let A represent the total area enclosed by the square and the circle. What is the
circumference of the circle when A is a minimum?

You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will
be bent into the shape of a right triangle with legs of equal length. The other piece
will be bent into the shape of a circle. Let A represent the total area enclosed by the
triangle and the circle. What is the circumference of the circle when A is a minimum?

A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average
attendance has been 26,000. When the price dropped to $9, the average attendance
rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket
price would maximize revenue?

A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of
fruit. She estimates that for each additional tree planted per acre, the yield of each tree
will decrease by 3 bushels. How many trees should she plant per acre to maximize her
harvest?
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39.

40.

A hot air balloon takes off from the
edge of a mountain lake. Impose a
coordinate system as pictured and
assume that the path of the balloon
follows the graph of

f (X) = —L X* +45x. The land rises
2500

at a constant incline from the lake at the
rate of 2 vertical feet for each 20
horizontal feet. [UW]

J height above lake (ft)

=— balloon

200 I = —!-- - _ = balloon path

a. What is the maximum height of the balloon above water level?
b. What is the maximum height of the balloon above ground level?
c. Where does the balloon land on the ground?

d. Where is the balloon 50 feet above the ground?

A hot air balloon takes off from
the edge of a plateau. Impose a
coordinate system as pictured
below and assume that the path
the balloon follows is the graph
of the quadratic function

takeoft

f(x):—%x2 +§x. The

land drops at a constant incline
from the plateau at the rate of 1

lake 500 1000 (M
height above plateau (feet)
@ balloon
/ \
\‘\ horizontal distance
\ = from launch (feet)

- ground incline

vertical foot for each 5
horizontal feet. [UW]

a. What is the maximum height of the balloon above plateau level?
b. What is the maximum height of the balloon above ground level?
c. Where does the balloon land on the ground?

d. Where is the balloon 50 feet above the ground?



6.3 Graphs of Polynomial Functions 337

Section 6.3 Graphs of Polynomial Functions

In the previous section we explored the short run behavior of quadratics, a special case of
polynomials. In this section we will explore the short run behavior of polynomials in
general.

Short run Behavior: Intercepts

As with any function, the vertical intercept can be found by evaluating the function at an
input of zero. Since this is evaluation, it is relatively easy to do it for a polynomial of any
degree.

To find horizontal intercepts, we need to solve for when the output will be zero. For
general polynomials, this can be a challenging prospect. While quadratics can be solved
using the relatively simple quadratic formula, the corresponding formulas for cubic and
4 degree polynomials are not simple enough to remember, and formulas do not exist for
general higher-degree polynomials. In this section, we will limit ourselves to three cases:

1) The polynomial can be factored using known methods: greatest common

factor and trinomial factoring.
2) The polynomial is given in factored form.
3) Technology is used to determine the intercepts.

Other techniques for finding the intercepts of general polynomials will be explored in the
next section.

Find the horizontal intercepts of f(X)=x®—3x* +2x>.

We can attempt to factor this polynomial to find solutions for f(x) = 0.

X* =3x*+2x* =0 Factoring out the greatest common factor
X’ (X4 —-3x7 + 2) =0 Factoring the inside as a quadratic in X*
X’ (X2 -~ IXX2 - 2) =0 Then break apart to find solutions
(x*-1)=0 (x*—2)=0
2 — 0
or x> =1 or x> =2
X =

This gives us 5 horizontal intercepts.

Find the vertical and horizontal intercepts of g(t) = (t —2)*(2t +3)

The vertical intercept can be found by evaluating g(0).
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g(0) =(0-2)*(2(0)+3) =12

The horizontal intercepts can be found by solving g(t) =0

(t-2)*(2t+3)=0 Since this is already factored, we can break it apart:
(t-2)*=0 (2t+3)=0

t-2=0 or (o -3

t=2 2

We can always check our answers are reasonable by graphing the polynomial.

Find the horizontal intercepts of
ht)=t* +4t> +t -6 27

Since this polynomial is not in factored form, has
no common factors, and does not appear to be
factorable using techniques we know, we can turn
to technology to find the intercepts.

Graphing this function, it appears there are
horizontal intercepts at t =-3, -2, and 1.

We could check these are correct by plugging in 71
these values for t and verifying that h(-3) = h(-2) = h1)=0.

Try it Now
‘ 1. Find the vertical and horizontal intercepts of the function f (t) =t* —4t>.

Graphical Behavior at Intercepts

If we graph the function

f(X) = (x+3)(X—2)*(x+1)°, notice that the
behavior at each of the horizontal intercepts is
different.

At the horizontal intercept X = -3, coming from -0+
the (x+3) factor of the polynomial, the graph

passes directly through the horizontal intercept.
The factor is linear (has a power of 1), so the 0l
behavior near the intercept is like that of a line - it
passes directly through the intercept. We call this 404+
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a single zero, since the zero corresponds to a single factor of the function.
At the horizontal intercept X = 2, coming from the (X—2) factor of the polynomial, the

graph touches the axis at the intercept and changes direction. The factor is quadratic
(degree 2), so the behavior near the intercept is like that of a quadratic — it bounces off of

the horizontal axis at the intercept. Since (X—2)*> = (X—2)(X—2), the factor is repeated
twice, so we call this a double zero.

At the horizontal intercept X = -1, coming from the (Xx+1)* factor of the polynomial, the

graph passes through the axis at the intercept, but flattens out a bit first. This factor is
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same

“S” type shape near the intercept that the toolkit X’ has. We call this a triple zero.

By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial
function without needing technology.

Graphical Behavior of Polynomials at Horizontal Intercepts
If a polynomial contains a factor of the form (x— h)P”, the behavior near the horizontal

intercept h is determined by the power on the factor.
p=1 p=2 p=3

/ /

Single zero Double zero Triple zero

For higher even powers 4,6,8 etc.... the graph will still bounce off of the horizontal axis
but the graph will appear flatter with each increasing even power as it approaches and
leaves the axis.

For higher odd powers, 5,7,9 etc... the graph will still pass through the horizontal axis
but the graph will appear flatter with each increasing odd power as it approaches and
leaves the axis.

xample 4
Sketch a graph of f(X) =-2(x+3)*(x-5).

This graph has two horizontal intercepts. At X = -3, the factor is squared, indicating the
graph will bounce at this horizontal intercept. At X =15, the factor is not squared,
indicating the graph will pass through the axis at this intercept.
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Additionally, we can see the leading term, if this polynomial were multiplied out, would

be —2x°, so the long-run behavior is that of a vertically reflected cubic, with the
outputs decreasing as the inputs get large positive, and the inputs increasing as the
inputs get large negative.

To sketch this we consider the following:
As X — —o the function f(X) — o so we know the graph starts in the 2™ quadrant

and is decreasing toward the horizontal axis.

At (-3, 0) the graph bounces off of the horizontal axis and so the function must start
increasing.

At (0, 90) the graph crosses the vertical axis at the vertical intercept.

Somewhere after this point, the graph must turn back down or start decreasing toward
the horizontal axis since the graph passes through the next intercept at (5,0).

. 1604
As x — oo the function f (X) - —© so a0l

we know the graph continues to decrease 12041
and we can stop drawing the graph in the 1004
4™ quadrant.

Using technology we can verify that the
resulting graph will look like:

}é_’?é&\a’

Solving Polynomial Inequalities

One application of our ability to find intercepts and sketch a graph of polynomials is the
ability to solve polynomial inequalities. It is a very common question to ask when a
function will be positive and negative. We can solve polynomial inequalities by either
utilizing the graph, or by using test values.

Solve (X+3)(X+1)*(x—4)>0

As with all inequalities, we start by solving the equality (X+3)(x+1)*(x—4)=0,
which has solutions at X=-3, -1, and 4. We know the function can only change from
positive to negative at these values, so these divide the inputs into 4 intervals.
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We could choose a test value in each interval and evaluate the function
f(X) = (x+3)(x+1)*(x—4) at each test value to determine if the function is positive or
negative in that interval

Interval Test X in interval | f( test value) >() or <0?
X< -3 -4 72 >0
3<x<-1 -2 -6 <0
-1 <x<4 0 -12 <0
X>4 5 288 >0
On a number line this would look like:
positive | negative negative positive

|A »|

< '|<—’
I
T

6 5 4 3 2 4 0 I 2 3 4 5 6

From our test values, we can determine this function is positive when X < -3 or X> 4, or
in interval notation, (—o0,-3) U (4,00)

We could have also determined on which intervals the function was positive by sketching
a graph of the function. We illustrate that technique in the next example

Find the domain of the function V(t) =6 -5t —t* .

A square root is only defined when the quantity we are taking the square root of, the
quantity inside the square root, is zero or greater. Thus, the domain of this function will
be when 6-5t—t* > 0.

Again we start by solving the equality 6 —5t —t> = 0. While we could use the
quadratic formula, this equation factors nicely to (6 +1t)(1-t) =0, giving horizontal

intercepts t = 1 and t =-6. Sketching a graph of this quadratic will allow us to
determine when it is positive.

From the graph we can see this function is positive
for inputs between the intercepts. So 6 —5t—t*> >0
for —6 <t <1, and this will be the domain of the
v(t) function.
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2. Given the function g(X) = X’ — x> —6X use the methods that we have learned so far

to find the vertical & horizontal intercepts, determine where the function is negative and
positive, describe the long run behavior and sketch the graph without technology.

Writing Equations using Intercepts

Since a polynomial function written in factored form will have a horizontal intercept
where each factor is equal to zero, we can form a function that will pass through a set of
horizontal intercepts by introducing a corresponding set of factors.

actored Form of Polynomials

If a polynomial has horizontal intercepts at X = X, X,,..., X, then the polynomial can be
written in the factored form

f(X) = a(x— Xl)pl (X_ Xz)pz e (X= Xn)pn
where the powers p; on each factor can be determined by the behavior of the graph at

the corresponding intercept, and the stretch factor a can be determined given a value of
the function other than the horizontal intercept.

xample 7
Write a formula for the polynomial function graphed here.
it

This graph has three horizontal intercepts: X=-3, 2, and 5. At Xx=-3 and 5 the graph
passes through the axis, suggesting the corresponding factors of the polynomial will be
linear. At X= 2 the graph bounces at the intercept, suggesting the corresponding factor
of the polynomial will be 2™ degree (quadratic). Together, this gives us:

f(X)=a(x+3)(x-2)*(x-5)

To determine the stretch factor, we can utilize another point on the graph. Here, the
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a:
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-2=a(0+3)(0-2)*(0-5)
-2=-60a

a=—
30

The graphed polynomial appears to represent the function
f(x)= 31—0(x+ 3)(x=2)*(x=75).

Try it Now
3. Given the graph, write a formula for the function shown.

G+
4--
2+

Estimating Extrema

With quadratics, we were able to algebraically find the maximum or minimum value of
the function by finding the vertex. For general polynomials, finding these turning points
is not possible without more advanced techniques from calculus. Even then, finding
where extrema occur can still be algebraically challenging. For now, we will estimate the
locations of turning points using technology to generate a graph.

xample 8
An open-top box is to be constructed by cutting out squares from each corner of a 14cm
by 20cm sheet of plastic then folding up the sides. Find the size of squares that should

be cut out to maximize the volume enclosed by the box.

\W

We will start this problem by drawing a picture, labeling the W
width of the cut-out squares with a variable, w.
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Notice that after a square is cut out from each end, it leaves a (14-2w) cm by (20-2w)
cm rectangle for the base of the box, and the box will be w cm tall. This gives the
volume:

V(W) = (14 — 2wW)(20 — 2W)w = 280w — 68W* + 4w’

Using technology to sketch a graph allows us to estimate the maximum value for the
volume, restricted to reasonable values for w: values from 0 to 7.

50T
0T
2507
200+
1504
1004

S0

2 I 2 3 1 5 6 8 9 fo 11
_5{)}1-

From this graph, we can estimate the maximum value is around 340, and occurs when
the squares are about 2.75cm square. To improve this estimate, we could use advanced
features of our technology, if available, or simply change our window to zoom in on our
graph.

40

At
EAAY

334
RAR]
332
s 26 27 28 29
330
From this zoomed-in view, we can refine our estimate for the max volume to about 339,

when the squares are 2.7cm square.

4. Use technology to find the maximum and minimum values on the interval [-1, 4] of
the function f (X) = —0.2(x—2)’ (x+1)*(x—4).
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Important Topics of this Section

Short Run Behavior
Intercepts (Horizontal & Vertical)
Methods to find Horizontal intercepts
Factoring Methods
Factored Forms
Technology
Graphical Behavior at intercepts
Single, Double and Triple zeros (or power 1, 2, and 3 behaviors)
Solving polynomial inequalities using test values & graphing techniques
Writing equations using intercepts
Estimating extrema

Try it Now Answers
1. Vertical intercept (0, 0), Horizontal intercepts (0, 0), (-2, 0), (2, 0)
2. Vertical intercept (0, 0), Horizontal intercepts (-2, 0), (0, 0), (3, 0)
The function is negative on (-, -2) and (0, 3)
The function is positive on (-2, 0) and (3,)
The leading term is X’so as X — —o0, g(X) = —oand as X = o0, g(X) — o0

6-
/%
R | 4
2]
4
-6 1
-8
-1

3. f(x)= —%(x—2)3(x+l)2( X—4)

4. The minimum occurs at approximately the point (0, -6.5), and the maximum occurs
at approximately the point (3.5, 7).
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Section 6.3 Exercises

Find the C and t intercepts of each function.
1. C(t)=2(t—-4)(t+1)(t-6) 2. C(t)=3(t+2)(t-3)(t+5)

3. C(t)=4t(t-2)" (t+1) 4. C(t)=2t(t=3)(t+1)’

5. C(t)=2t"-8t’ +6t’ 6. C(t)=4t"+12t —40t*

Use your calculator or other graphing technology to solve graphically for the zeros of the
function.

7. f£(X)=X =7X +4x+30 8. 9(X)=%X—-6X+ x+28

Find the long run behavior of each function as t - o and t - —o©

9. h(t)=3(t-5) (t-3)’ (t-2) 10. k(t)=2(t=3) (t+1) (t+2)
11. p(t)=-2t(t-1)(3-t)’ 12. q(t) =—4t(2—t)(t+1)’

Sketch a graph of each equation.

13. f(X)=(x+3) (x-2) 14. g(X)=(x+4)( x-1)’
15. h(x)=(x-1)"(x+3)’ 16. k(x)= (x=3) (x-2)’
17. m(X)=-2 X x-1)( %+3) 18. n(X)=-3x( x+2)( x-4)

Solve each inequality.
19. (x=3)(x-2)" >0 20. (x=5)(x+1)" >0

21. (x=1)(x+2)(x-3)<0 22. (x—4)(x+3)(x+6)<0

Find the domain of each function.

23. f(x):\/—42+19x—2x2 24. g(x)=v28-17x-3%

25. h(x)=v4-5x+ X 26. k(X)=v2+7x+3X

27. n(x)= (x—3)(x+2)2 28. m(x)= (x—l)z(x+3)
1 4

t? +2t—8
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Write an equation for a polynomial the given features.
31. Degree 3. Zeros at x=-2, Xx=1, and Xx= 3. Vertical intercept at (0, -4)

32. Degree 3. Zeros at Xx=-5,X=-2, and Xx= 1. Vertical intercept at (0, 6)

33. Degree 5. Roots of multiplicity 2 at X=3 and X= 1, and a root of multiplicity 1 at
X =-3. Vertical intercept at (0, 9)

34. Degree 4. Root of multiplicity 2 at X =4, and a roots of multiplicity 1 at x=1 and
x=-2. Vertical intercept at (0, -3)

35. Degree 5. Double zero at X =1, and triple zero at X = 3. Passes through the point
(2, 15)

36. Degree 5. Single zero at X=-2 and X = 3, and triple zero at X= 1. Passes through the
point (2, 4)

Write a formula for each polynomial function graphed.
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Write a formula for each polynomial function graphed.

54
44
)
/)
ST 55 -’33 3 5 43 S5y 525 -’33 1 3 5 43
-2 -2
-1 -1
-4 -4
45. -5 46. -5
6 6
54 5
44 4
31 1
24 24
AN :
- - ! 2 1 4 5
N \\
2
-3
-4
-54
47. 48. 6

[ T A VTR

4
2]
1
il
-5
49, 41 50.

51. A rectangle is inscribed with its base on the X axis and its upper corners on the
parabola y=35-x>. What are the dimensions of such a rectangle that has the greatest

possible area?

52. A rectangle is inscribed with its base on the X axis and its upper corners on the curve
y=16-x*. What are the dimensions of such a rectangle that has the greatest

possible area?
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Section 6.4 Factor Theorem and Remainder Theorem

In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials
that factored simply, or we turned to technology. In this section, we will look at

algebraic techniques for finding the zeros of polynomials like h(t) =t° + 4t +t—6.
Long Division

In the last section we saw that we could write a polynomial as a product of factors, each
corresponding to a horizontal intercept. If we know that X =2 was an intercept of the

polynomial X’ +4x* —5x—14, we might guess that the polynomial could be factored as
X’ +4x* —5x—14 = (Xx—2)(something) . To find that "something," we can use
polynomial division.

Divide x* +4x> —5x—14 by x-2

Start by writing the problem out in long division form

X — 2>x3 +4x2—5%—14

Now we divide the leading terms: X’ + X = X". It is best to align it above the same-

powered term in the dividend. Now, multiply that x> by X —2 and write the result
below the dividend.

2

X
X — 2> X +4x°-5x—14 Now subtract that expression from the dividend.
x* —2x°
X2
X — 2> X’ +4x>—=5x—14
- (x3 —~ 2x2)
6X> —5x—14

Again, divide the leading term of the remainder by the leading term of the divisor.
6X*> + X=6X. We add this to the result, multiply 6X by X — 2, and subtract.
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X* + 6X
X — 2) X’ +4x>=5x—14 Repeat the process one last time.
—(x* —2x?)
6X> —5x—14
-~ (6x2 —12x)
7x—14
X* +6X+7
X— 2) X’ +4x*-5x 14
—(x* —2x?)
6X” —5x—14
~(6x* —12x)
7x—14
—(7x-14)
0
This tells us X* + 4x*> —5x—14 divided by x—2 is x> + 6x+ 7, with a remainder of
zero. This also means that we can factor X* + 4x> —5x—14 as (x— 2)(X2 +6X+ 7).

This gives us a way to find the intercepts of this polynomial.

Example2

Find the horizontal intercepts of h(X) =X’ + 4x*> —5x—14.

To find the horizontal intercepts, we need to solve h(x)= 0. From the previous
example, we know the function can be factored as h(x) = (x — 2)(x2 + 6X+ 7).

h(x) = (x - 2)(X2 +6X+ 7)= 0 when Xx=2 or when X* + 6x+7=0. This doesn't factor
nicely, but we could use the quadratic formula to find the remaining two zeros.

_ D667 4D _ o, 5

- 2(1)

1. Divide 2x’ = 7x+3 by x+3 using long division.
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The Factor and Remainder Theorems

When we divide a polynomial, p(X) by some divisor polynomial d(x), we will get a
quotient polynomial q(X) and possibly a remainder r(x). In other words,

p(X) = d(X)a(X) + r(x).

Because of the division, the remainder will either be zero, or a polynomial of lower
degree than d(X). Because of this, if we divide a polynomial by a term of the form x —c,
then the remainder will be zero or a constant.

If p(X)=(x—0)q(X)+r,then p(c)=(c—oqg(c)+r =0+r =r, which establishes the
Remainder Theorem.

The Remainder Theorem
If p(x) is a polynomial of degree 1 or greater and C is a real number, then when p(X) is

divided by X —c, the remainder is p(C).

If x—c is a factor of the polynomial p, then p(X)=(X— €)q(X) for some polynomial d.
Then p(c)=(c—0q(c)=0, showing Cis a zero of the polynomial. This shouldn't
surprise us - we already knew that if the polynomial factors it reveals the roots.

If p(c) =0, then the remainder theorem tells us that if p is divided by X — c, then the
remainder will be zero, which means X — C is a factor of p.

The Factor Theorem
If p(X) is a nonzero polynomial, then the real number C is a zero of p(X) if and only if

X —C is a factor of p(X).

Since dividing by X —C is a way to check if a number is a zero of the polynomial, it
would be nice to have a faster way to divide by X — C than having to use long division
every time. Happily, quick ways have been discovered.

Let's look back at the long division we did in Example 1 and try to streamline it. First,
let's change all the subtractions into additions by distributing through the negatives.
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x> +6X+7
x—2> X +4x*-5x—-14
-x’ +2x°
6x*> —5x—14
—6X> +12X

7x-14

—7x+14

0

Next, observe that the terms — 7X°, —6x>, and — 7x are the exact opposite of the terms
above them. The algorithm we use ensures this is always the case, so we can omit them
without losing any information. Also note that the terms we ‘bring down’ (namely the
—5x and —14) aren’t really necessary to recopy, so we omit them, too.

X2 +6X+7
x—2> X +4x*-5x—14
2x3

6X°
12X

TX
14

0

Now, let’s move things up a bit and, for reasons which will become clear in a moment,
copy the X’ into the last row.

X +6X+7
x—2>x3 +4x*-5x—14
2x% 12x 14

x> 6x* 7x 0

Note that by arranging things in this manner, each term in the last row is obtained by
adding the two terms above it. Notice also that the quotient polynomial can be obtained
by dividing each of the first three terms in the last row by X and adding the results. If you
take the time to work back through the original division problem, you will find that this is
exactly the way we determined the quotient polynomial. This means that we no longer
need to write the quotient polynomial down, nor the X in the divisor, to determine our
answer.
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x—2> X +4x*—5x—14
2x*12x 14

x> 6x2 7x 0

We’ve streamlined things quite a bit so far, but we can still do more. Let’s take a
moment to remind ourselves where the 2x*, 12x and 14 came from in the second row.

Each of these terms was obtained by multiplying the terms in the quotient, X*, 6x and 7,
respectively, by the —2 in X — 2, then by —1 when we changed the subtraction to addition.
Multiplying by —2 then by —1 is the same as multiplying by 2, so we replace the —2 in the
divisor by 2. Furthermore, the coefficients of the quotient polynomial match the
coefficients of the first three terms in the last row, so we now take the plunge and write
only the coefficients of the terms to get

2 1 4 5 -14
2 12 14
1 6 7 0

We have constructed a synthetic divisiontableau for this polynomial division problem.
Let’s re-work our division problem using this tableau to see how it greatly streamlines the

division process. To divide X’ +4x”> —5Xx—14 by Xx—2, we write 2 in the place of the

divisor and the coefficients of x* +4x> —5x —14in for the dividend. Then "bring down"
the first coefficient of the dividend.

21 4 5 -4 20 1 4 5 14

l
1

Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.
Write this underneath the 4, then add to get 6.

2l 1 4 5 -14 2l 1 4 -5 -14
| 2 | 2
1 1 6

Now take the 2 from the divisor times the 6 to get 12, and add it to the —5 to get 7.

2 1 4 -5 -14 2 1 4 -5 -14
| 2 12 | 2 12
1 6 1 6 7
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the —14 to get 0.

2| 1 4 -5 -14 2| 1 4 -5 -14
| 2 12 14 ] 2 12 14
1 6 7 1 6 7] 0

The first three numbers in the last row of our tableau are the coefficients of the quotient
polynomial. Remember, we started with a third degree polynomial and divided by a first
degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is
X*> + 6X+ 7. The number in the box is the remainder. Synthetic division is our tool of
choice for dividing polynomials by divisors of the form X — €. It is important to note that
it works only for these kinds of divisors. Also take note that when a polynomial (of
degree at least 1) is divided by X — C, the result will be a polynomial of exactly one less
degree. Finally, it is worth the time to trace each step in synthetic division back to its
corresponding step in long division.

Use synthetic division to divide 5x° —2x* +1 by x—3.

When setting up the synthetic division tableau, we need to enter 0 for the coefficient of
X in the dividend. Doing so gives

3] 5 2 0 1
| 15 39 117

5 13 39118

Since the dividend was a third degree polynomial, the quotient is a quadratic
polynomial with coefficients 5, 13 and 39. Our quotient is (X) = 5x> +13x+39 and
the remainder is r(x) = 118. This means

5% = 2% +1=(x=3)(5x> +13x+39) +118.

It also means that X — 3 is nota factor of 5x° —2x* +1.

Divide x* +8 by x+2

For this division, we rewrite X+ 2 as X—(—2) and proceed as before.
2] 1 0 o0 8
| -2

4 -8
1 2 4] 0
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The quotient is X* —2X + 4 and the remainder is zero. Since the remainder is zero,
X+ 2 is a factor of X +8.

x’ +8:(x+2)(x2 —2x+4)

2. Divide 4x* —8x* —5x by x—3 using synthetic division.

Using this process allows us to find the real zeros of polynomials, presuming we can
figure out at least one root. We'll explore how to do that in the next section.

The polynomial p(X)=4x"* —4x> —11x> +12x— 3 has a horizontal intercept at X =%

with multiplicity 2. Find the other intercepts of p(x).

: 1. . . T 1. .
Since x= 5 is an intercept with multiplicity 2, then X — 5 is a factor twice. Use

synthetic division to divide by X — 5 twice.

12 4 -4 -11 12 -3
| 2 -1 -6 3
4 2 -1 6| 0
12 4 2 -1 -6
| 2 0 -6
4 0 -12] 0

From the first division, we get

4 —4x® —11x* +12x-3 = (X - %)(4X3 —2x* —x-— 6). The second division tells us

4xt = 4x —11x° +12x—3=(x—%)(x—%j(4x2 -12).

To find the remaining intercepts, we set 4x> —12=0 and get X= +1/3.

Note this also means 4x* —4x® —11x* +12x-3 = (x - %)(x - %)(X - «/§Xx + \/5)
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Important Topics of this Section

Long division of polynomials
Remainder Theorem

Factor Theorem

Synthetic division of polynomials

Try it Now Answers

1.
2x* —6x+11

X+ 3) 2x° + 0X*=7x+3 The quotient is 2x* —6x+11 with remainder -30.
- (2x3 + 6x2)
—6X> —7x+3
— (- 6x* —18x)
11x+3
—(11x+33)
-30

o -8 -5 0
12 36 84 237
1228 79| 237

Be—

4x* —8x* —5x divided by x—3 is 4%’ +12x* +28x+79 with remainder 237
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Section 6.4 Exercises
Use polynomial long division to perform the indicated division.

1. (4x2+3x—1)+(x—3) 2. ( 2X —x+1);(x2+x+1)
3. (5x4—3x3+2x2—1)+(x2+4) 4. ( X +7X - ) (x3—x2+1)
5. (9% +5)+(2x-3) 6. (4x* —x—23)+(x* -1)

Use synthetic division to perform the indicated division.

7. (3x2 —2x+1)+(x—1) 8. (x2 —5)+(x—5)
9. 3-4x—2x)+ (x+1) 10. (4% = 5x+3)+ (x+3)
11. (x +8)+ (x+2) 12. (4% +2x-3)+(x=3)
13. (18x2 —15x—25)+ (x—%) 14, (4x2—1)+(x—%)
15. (2x3+x2+2x+1)+(x+%j 16. (3x3—x+4)+(x—§j
17. (2x3 —3x+1)+(x—%) 18. (4x4 —12%° +13%? —12x+9)+[x—%)
19. (x“ —6X° +9)+(X—\/§) 20. (x6 —6x* +12x° —8)+(x+ﬁ)

Below you are given a polynomial and one of its zeros. Use the techniques in this section
to find the rest of the real zeros and factor the polynomial.

21. X —6x* +11x—6, c=1 22. x> —24x* +192x—-512, c=8
23. 3%} +4x* —=x-2, c=§ 24. 2x* —=3x* —=11x+6, c=%
25. X +2x* =3x—6, c=-2 26. 2x° —x* —10x+ 5, c—%

27. 4x* —28x’ +61x* —42x+9, c=% is a zero of multiplicity 2

28. x> +2x* —12x> —38x* =37x~12, c=-1 is a zero of multiplicity 3
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Section 6.5 Real Zeros of Polynomials

In the last section, we saw how to determine if a real
number was a zero of a polynomial. In this section, we
will learn how to find good candidates to test using
synthetic division. In the days before graphing L
technology was commonplace, mathematicians ﬂ
discovered a lot of clever tricks for determining the

likely locations of zeros. Technology has provided a
much simpler approach to narrow down potential aa
candidates, but it is not always sufficient by itself. For
example, the function shown to the right does not have
any clear intercepts.

24

34

There are two results that can help us identify where the zeros of a polynomial are. The
first gives us an interval on which all the real zeros of a polynomial can be found.

Cauchy's Bound
Given a polynomial f(x)=a,x"+a, X" +---+aX+a,, let M be the largest of the
coefficients in absolute value. Then all the real zeros of f lie in the interval

H_l, Ll}
al " Ta

xample 1
Let f(X)=2x"+4x’ —x*> —6x—3. Determine an interval which contains all the real
zeros of f.

To find the M from Cauchy's Bound, we take the absolute value of the coefficients and
pick the largest, in this case |— 6| = 6. Divide this by the absolute value of the leading

coefficient, 2, to get 3. All the real zeros of f lie in the interval

{—%—1, %+1}=[—3—1, 3+1]=[-4,4].

Knowing this bound can be very helpful when using a graphing calculator, since we can
use it to set the display bounds. This helps avoid missing a zero because it is graphed
outside of the viewing window.

1. Determine an interval which contains all the real zeros of f(x)=4x> —12x*> + 6x—8
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Now that we know wherewe can find the real zeros, we still need a list of possiblercal
zeros. The Rational Roots Theorem provides us a list of potential integer and rational
Zeros.

Rational Roots Theorem

Given a polynomial f(x)=a,x" +a, X" +---+ aXx+ a, with integer coefficients, if
r is a rational zero of f, then r is of the form r = iB , where p is a factor of the constant

term @,, and ( is a factor of the leading coefficient, a,.

This gives us a list of numbers to try in our synthetic division, which is a nicer place to
start than simply guessing. If none of the numbers in the list are zeros, then either the
polynomial has no real zeros at all, or all the real zeros are irrational numbers.

Let f(X)=2x*+4x’ —x*> —6x—-3. Use the Rational Roots Theorem to list all the
possible rational zeros of f.

To generate a complete list of rational zeros, we need to take each of the factors of the
constant term, a, =—3, and divide them by each of the factors of the leading coefficient
a, =2 . The factors of =3 are =1 and 3. Since the Rational Roots Theorem tacks on a

+ anyway, for the moment, we consider only the positive factors 1 and 3. The factors of
2 are 1 and 2, so the Rational Roots Theorem gives the list

il,il,ié,ié , Or il,il,ﬂ,iE
12 1 2 2 2

Now we can use synthetic division to test these possible zeros. To narrow the list first,
we could use graphing technology to help us identify some good possibilities.

Find the horizontal intercepts of f(X)=2x" +4x’ — x> —6x-3.

From Example 1, we know that the real zeros lie in the interval [-4, 4]. Using a
raphing calculator, we could set the window accordingly and get the graph below.

W I HOOL
Aamin=—d \ l

Amax=d
Ascl=1
Ymin=-4
Ymax=d
Ve l=1
“res=10
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From Example 2, we learned that any rational zero must be on the list
{i l,i%,ili %} . From the graph, it looks like —1 is a good possibility, so we try that

using synthetic division.

1] 02 4 -1 -6 3
] 2 2 3 3

2 2 3 3 0

Success! Remembering that f was a fourth degree polynomial, we know that our
quotient is a third degree polynomial. If we can do one more successful division, we
will have knocked the quotient down to a quadratic, and, if all else fails, we can use the
quadratic formula to find the last two zeros. Since there seems to be no other rational
zeros to try, we continue with —1. Also, the shape of the crossing at x = —1 leads us to
wonder if the zero X = —1 has multiplicity 3.

d 02 2 3003
| 2 0 3

2 0 -3 0

Success again! Our quotient polynomial is now 2Xx> — 3. Setting this to zero gives
2x* =3=0, giving x= i\/g = i% . Since a fourth degree polynomial can have at

most four zeros, including multiplicities, then the intercept X = -1 must only have
multiplicity 2, which we had found through division, and not 3 as we had guessed.

It is interesting to note that we could greatly improve on the graph of y = {(x) in the
previous example given to us by the calculator. For instance, from our determination of

N

the zeros of f and their multiplicities, we know the graph crosses at X = —7: -1.22

then turns back upwards to touch the x—axis at Xx=—1. This tells us that, despite what the
calculator showed us the first time, there is a relative maximum occurring at X =—1 and
not a "flattened crossing" as we originally believed. After resizing the window, we see
not only the relative maximum but also a relative minimum just to the left of x=—1.

W IHOOL

amin=-1.5

AMAR= . 0

Ascl=1 .
Ymin=-.@1

Ymax=.Hd1

Y=cl=1

ares=101
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In this case, mathematics helped reveal something that was hidden in the initial graph.

Find the real zeros of f(X)=4x> —10x* —2x+2.

Cauchy's Bound tells us that the real zeros lie in

the interval |:— 10_ 1, 10 + l:l =[-3.5,3.5].
A

Graphing on this interval reveals no clear integer
zeros. Turning to the rational roots theorem, we
need to take each of the factors of the constant
term, @, =2, and divide them by each of the

factors of the leading coefficient a, =4. The

factors of 2 are 1 and 2. The factors of 4 are 1, 2, and 4, so the Rational Roots Theorem
gives the list

1,1 ,1.,2 2 2 1,1
e e e e ) I A/
1 27 4

: : 1 .1
The two likely candidates are + 5 Trying >

12 4 -10 2 2
| 2 -4 3

4 8 6] -1

: : . . 1
The remainder is not zero, so this is not a zero. Trying — >

12 4 <10 2 2
) 2

6
4 12 4] 0

Success! This tells us 4x® —10x> —2x+2 = (X + %)(4X2 —12x+ 4), and that the

graph has a horizontal intercept at X = —%

To find the remaining two intercepts, we can use the quadratic equation, setting
4x> —12x+4=0. First we might pull out the common factor, 4(X2 -3X+ 1): 0

x= SENE) 4D :3i‘/§z2.618, 0.382

2(1) 2
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‘ 2. Find the real zeros of f(x)=3x> —x* —6x+2

Important Topics of this Section
Cauchy’s Bound for all real zeros of a polynomial
Rational Roots Theorem
Finding real zeros of a polynomial

Try it Now Answers

1. The maximum coefficient in absolute value is 12. Cauchy’s Bound for all real zeros

. 12 12
1S | ——-1, —+1|=[-4,4]
{|4| 4 }

2. Cauchy’s Bound tells us the zeros lie in the interval {—%—1, §+ 1} =[-3,3].

The rational roots theorem tells us the possible rational zeros of the polynomial are on

the list il,il,ig,ig = il,il,i2,ig )
1 3 1 3 3 3

Looking at a graph, the only likely candidate is % .

Using synthetic division, 53

13/ 3 -1 -6 2
;1 0 =2

3 0 -6 0 e
3% —x* —6x+2= (x—%j@xz —6)= 3[x—§}(x2 ~2).

Solving x> -2 =0 gives zeros X =+/2 .

The real zeros of the polynomial are x=~/2, —+/2, %
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Section 6.5 Exercises

For each of the following polynomials, use Cauchy’s Bound to find an interval containing
all the real zeros, then use Rational Roots Theorem to make a list of possible rational
ZEros.

RN =

Find the real zeros of each polynomial.

f(x)=x —2x> =5x+6
f(x)=x"—9x* —4x+12
f(x)=x -7x* +x-7
f(X)=—17X’ +5x* +34x-10
f(x)=3x> +3x> =11x-10

f(x)=x* +2x° —12x* —40x-32
f(X)=x +4x* —11x+6
f(X)=-2x’ +19x*> —49%x+ 20

. F()=36x" —12X° —11x* +2x+1
10. f(x)=2x"+x’ —7x* =3x+3

o o W

11. f(x)=x —2x> =5x+6 12. f(x)=x*+2x’ —12x* —40x—32
13. f(x)=x"-9x* —4x+12 14. f(x)=x +4x* —11x+6

15. f(x)=x -7x* +x-7 16. f(x)=-2x’ +19x> —49x+20
17. f(x)=—-17x’ +5x* +34x-10 18. f(x)=36x"—12x’ —11x* +2x+1
19. f(x)=3x> +3x> —11x-10 20. f(x)=2x"+x —7x* =3x+3
21. f(x)=9x’ —=5x> —x 22. f(x)=6x"—5x’ —9x’

23. f(x)=x*+2x>-15 24. f(x)=x'-9x* +14

25. f(x)=3x*-14x* -5 26. f(x)=2x"-7x+6

27. f(x)=x"-3x’-10 28. f(x)=2x*-9x’ +10

29. f(x)=x —2x* —4x+8 30. f(x)=2x" +3x* —18x-27

31. f(X)=X —60x’ —80X* +960X+ 2304

32, f(x)=25%" —105x* +174x> —142%> +57Xx-9
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Section 6.6 Complex Zeros

When finding the zeros of polynomials, at some point you're faced with the problem
X* =—1. While there are clearly no real numbers that are solutions to this equation,

leaving things there has a certain feel of incompleteness. To address that, we will need
utilize the imaginary unit, i.

Imaginary Number |

The most basic complex number is i, defined to be i =+/—1, commonly called an
imaginary number. Any real multiple of i is also an imaginary number.

Examplel . .|
Simplify v-9.

We can separate /—9 as V9+v/=1. We can take the square root of 9, and write the
square root of -1 as .

V=9=10v-1=3i

A complex number is the sum of a real number and an imaginary number.

Complex Number

A complex numberis a number z= a+ bi, where a and b are real numbers
a is the real part of the complex number
b is the imaginary part of the complex number

i=v-1

Arithmetic on Complex Numbers

Before we dive into the more complicated uses of complex numbers, let’s make sure we
remember the basic arithmetic involved. To add or subtract complex numbers, we simply
add the like terms, combining the real parts and combining the imaginary parts.

Add 3—4i and 2 +5i.

Adding (3—4i)+ (2 +5i), we add the real parts and the imaginary parts
3+2—-4i+5i
5+i
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TryitNow . . . |
| 1. Subtract 2 +5i from 3 —4i .
We can also multiply and divide complex numbers.

xample 4
Multiply: 4(2+5i).

To multiply the complex number by a real number, we simply distribute as we would
when multiplying polynomials.

42 +50)
=4.2+4.5i
=8+ 20i

Example5 |
Divide 231
(4-1)

To divide two complex numbers, we have to devise a way to write this as a complex
number with a real part and an imaginary part.

We start this process by eliminating the complex number in the denominator. To do
this, we multiply the numerator and denominator by a special complex number so that
the result in the denominator is a real number. The number we need to multiply by is
called the complex conjugate in which the sign of the imaginary part is changed.
Here, 4+i is the complex conjugate of 4—i. Of course, obeying our algebraic rules, we
must multiply by 4+i on both the top and bottom.

(2+50) (4+1)

(4-1) (4+i)

To multiply two complex numbers, we expand the product as we would with
polynomials (the process commonly called FOIL — “first outer inner last™). In the
numerator:

(2+50)(4+1) Expand

=8+20i+2i +5° Since i =+/—1,i* =-1
=8+20i +2i +5(-1) Simplify

=3+22i

Following the same process to multiply the denominator
(4—i)(4+1) Expand
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(16—4i+4i —iz) Sinceizﬂ_],iz:_l
(16—-(-1)
=17
Combining this we get 3+22 =i+£
17 17 17

‘ 2. Multiply 3—4i and 2+3i.

In the last example, we used the conjugate of a complex number

Complex Conjugate
The conjugateof a complex number a+ bi is the number a— bi.

The notation commonly used for conjugation is a bar: a+ bi=a—Dbi

Complex Zeros

Complex numbers allow us a way to write solutions to quadratic equations that do not
have real solutions.

Example6 |

Find the zeros of f(X)=x> —2x+5.

Using the quadratic formula,

X_2i\/(—2)2—4(l)(5)_21«/—16_2i4i_
- 2(1) 2 2

1+£2i.

‘ 3. Find the zeros of f(x)=2x>+3x+4.

Two things are important to note. First, the zeros 1+ 2i and 1-2i are complex
conjugates. This will always be the case when we find non-real zeros to a quadratic
function with real coefficients. Second, we could write

f(x)=x* —2x+5=(x—(1+2i))(x - (1-2i)) if we really wanted to, so the Factor and

Remainder Theorems hold.
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How do we know if a general polynomial has any complex zeros? We have seen
examples of polynomials with no real zeros; can there be polynomials with no zeros at
all? The answer to that last question, which comes from the Fundamental Theorem of
Algebra, is "No."

Fundamental Theorem of Algebra

If a non-constant polynomial f with real or complex coefficients will have at least one
real or complex zero.

This theorem is an example of an "existence" theorem in mathematics. It guarantees the
existence of at least one zero, but provides no algorithm to use for finding it.

Now suppose we have a polynomial f(X) of degree n. The Fundamental Theorem of
Algebra guarantees at least one zero z,, then the Factor Theorem guarantees that f can be
factored as f(X)= (X -2 )q1 (X) , where the quotient ¢, (X) will be of degree n-1. If this

function is non-constant, than the Fundamental Theorem of Algebra applies to it, and we
can find another zero. This can be repeated n times.

Complex Factorization Theorem
If f is a polynomial f with real or complex coefficients with degree n> 1, then f has
exactly nreal or complex zeros, counting multiplicities.

If z,z,,...,z, are the distinct zero of f with multiplicities m,,m,,...,m, respectively,
then f(x)=a(x—2z)" (x—2z,)™ ---(x—z )™

xample 7
Find all the real and complex zeros of f(X)=12x> —20x* +19x’ —6Xx* —2x+1.

roots are | /A \/

31

Using the Rational Roots Theorem, the possible real rational i
7 1

il,il,il,il,il,iL il

I 2 3 4 6 12 27

o1
Testing —,
8 2

12 12 20 19 6 -2 1
| 6 1 6 0 -1
12 -14 12 0 2] 0
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Success! Because the graph bounces at this intercept, it is likely that this zero has
multiplicity 2. We can try synthetic division again to test that.

12 12 -14 12 0 =2
| 6 -4 4 2

12 -8 &8 4 0

The other real root appears to be —% or —i. Testing —% ,

13 12 -8 8 -4
| 4 4 4

12 -12 12 0

Excellent! So far, we have factored the polynomial to
2 2
f(x) = (x—%j (x+%j(12x2 —12x+12)= 12(x—%j (x+%)(x2 —x+1)

We can use the quadratic formula to find the two remaining zeros by setting
x* —X+1=0, which are likely complex zeros.

. 1£+/(=1)> = 4(1)(1) _ 1+/-3 _ 1+i/3

2(1) 2 2
The zeros of the function are X = %,—é, L |2\/§ ) ! _|2\/§ . We could write the function
2 . _
fully factored as f(X)= 12()(_%) (X+%j(x_ 1+I2\/§j[x_ 1—I2\/§J .

When factoring a polynomial like we did at the end of the last example, we say that it is
factored completely over the complex numbetsneaning it is impossible to factor the
polynomial any further using complex numbers. If we wanted to factor the function over

2
the real numbers we would have stopped at f(X) = 12(X—%j (X+%)(X2 - X+ 1). Since

the zeros of x> —X+1 are nonreal, we call x> —x+1 an irreducible quadratic meaning
it is impossible to break it down any further using real numbers.

It turns out that a polynomial with real number coefficients can be factored into a product
of linear factors corresponding to the real zeros of the function and irreducible quadratic
factors which give the nonreal zeros of the function. Consequently, any nonreal zeros
will come in conjugate pairs, so if Zis a zero of the polynomial, so is Z.
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‘ 4. Find the real and complex zeros of f(x)= x> —4x* +9x-10.

Important Topics of This Section
Complex numbers
Imaginary numbers

Try it Now Answers

1. 3-4i)—(2+51)=1-9
2. 3-4i)(2+3i)=18+i

3 o T3ENG) 4@ -3x4-23 -32iV23 -3 V23
22) 4 4 4 4

4. Cauchy’s Bound limits us to the interval [-11, 11]. The rational roots theorem gives a

list of potential zeros: {+1,4#2,4#5,#10}. A quick graph shows that the likely rational root

1ISX=2.

20
5
For

£

1
Al jg e .8 7 6 5 4 3 -2 -.'_5__//5 3P 4 5 & 7 & 9 o Il

Veritying this,
2 1 -4 9 -10
l 2

-4 10
1 2 5/ 0
So f(X)=(X=2)(x*—2x+5)

Using quadratic formula, we can find the complex roots from the irreducible quadratic.

(D)4 (=22 — B .
w2 VED)T-4DG)  244-16 _ —244i 1490
2(1) 2 2
The zeros of this polynomial are x=2, —1+2i, —1-2i
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Section 6.6 Exercises

Simplify each expression to a single complex number.

1. v-9 2. J-16 3. J=6/-24
4. J=3J=75 5. “T V=12 6. ATV20 “2_20

Simplify each expression to a single complex number.

7. (3+2i)+(5-30) 8. (—2—4i)+(1+6i)
9. (=5+3i)—(6-) 10. (2-3i)—(3+2i)
11. (2+30)(40) 12. (5-2i)@3)
13. (6-2i)(5) 14. (-2+4i)(8)
15. (2+3i)(4-1) 16. (—1+2i)(-2+3i)
17. (4-2i)(4+20) 18. (3+4i)(3—-4i)
19, 3+4 20 072
2 3
gy, H3 2, OF4
2 I
23, 273 24, 354
443 2—1

Find all of the zeros of the polynomial then completely factor it over the real numbers
and completely factor it over the complex numbers.

25. f(x)=x>—4x+13 26. f(x)=x>—2x+5

27. f(x)=3%x>+2x+10 28. f(x)=x —2x> +9x—18

29. f(X)=X +6X> +6X+5 30. f(x)=3x—13x* +43x-13

31. f(X) =X +3x* +4x+12 32, f(x)=4x’ —6x> —8x+15

33. f(X) =X +7x> +9x-2 34, f(x)=9x +2x+1

35. f(x)=4x" —4x> +13x> —12x+3 36. f(x)=2x"—7x> +14x* —15x+6

37. () =x"+x +7x* +9x—18 38. f(x)=6x"+17x —55x* +16x+12
39. f(x)=-3x"-8x’ —12x* —12x-5 40. f(x)=8x"+50x> +43x> +2x—4

41. f(x)=x*+9x* +20 42. f(x)=x"+5x> -24
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Section 6.7 Rational Functions

In the last few sections, we have built polynomials based on the positive whole number
power functions. In this section we explore functions based on power functions with
negative integer powers, called rational functions.

You plan to drive 100 miles. Find a formula for the time the trip will take as a function
of the speed you drive.

You may recall that multiplying speed by time will give you distance. If we lett
represent the drive time in hours, and V represent the velocity (speed or rate) at which
we drive, then vt = distance . Since our distance is fixed at 100 miles, vt =100.
Solving this relationship for the time gives us the function we desired:

100

t(v) = — =100v""
\"

While this type of relationship can be written using the negative exponent, it is more
common to see it written as a fraction.

This particular example is one of an inversely proportional relationship — where one

quantity is a constant divided by the other quantity, like y= &l .
X

Notice that this is a transformation of the reciprocal toolkit function, f(X)=—
X

Several natural phenomena, such as gravitational force and volume of sound, behave in a
manner inversely proportional to the squareof another quantity. For example, the

volume, V, of a sound heard at a distance d from the source would be related by V = d—kz
for some constant value k.

. . ) . . 1
These functions are transformations of the reciprocal squared toolkit function f(X)=—-.
X

We have seen the graphs of the basic reciprocal function and the squared reciprocal
function from our study of toolkit functions. These graphs have several important
features.
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f(x):%

Let’s begin by looking at the reciprocal function, f(X)= 1 . As you well know, dividing
X

by zero is not allowed and therefore zero is not in the domain, and so the function is
undefined at an input of zero.

Short run behavior:

As the input values approach zero from the left side (taking on very small, negative
values), the function values become very large in the negative direction (in other words,
they approach negative infinity).

We write: asX —> 07, f(X) > —oo.

As we approach zero from the right side (small, positive input values), the function
values become very large in the positive direction (approaching infinity).

We write: asXx — 07, f(X) > .

This behavior creates a vertical asymptote An asymptote is a line that the graph
approaches. In this case the graph is approaching the vertical line X = 0 as the input
becomes close to zero.

Long run behavior:

As the values of X approach infinity, the function values approach 0.

As the values of X approach negative infinity, the function values approach 0.
Symbolically: as X — +oo, f(X) > 0

Based on this long run behavior and the graph we can see that the function approaches 0

but never actually reaches 0, it just “levels off” as the inputs become large. This behavior

creates a horizontal asymptote In this case the graph is approaching the horizontal line
f (X) = 0 as the input becomes very large in the negative and positive directions.

Vertical and Horizontal Asymptotes

A vertical asymptoteof a graph is a vertical line X = a where the graph tends towards
positive or negative infinity as the inputs approach a. Asx — a, f(X) > .

A horizontal asymptoteof a graph is a horizontal line y = b where the graph
approaches the line as the inputs get large. As X — +oo, f(X) > b.
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Try it Now:
1. Use symbolic notation to describe the long run behavior
and short run behavior for the reciprocal squared function. 2

xample 2

Sketch a graph of the reciprocal function shifted two units to the left and up three units.
Identify the horizontal and vertical asymptotes of the graph, if any.

Transforming the graph left 2 and up 3 would result in the function

f(x)= ;2 + 3, or equivalently, by giving the terms a common denominator,
X+

3X+7
X+ 2

f(x)=

Shifting the toolkit function would give us
this graph. Notice that this equation is
undefined at X = -2, and the graph also is
showing a vertical asymptote at X = -2.
Asx—-2", f(X) > -0, and as

X—-2", f(X) > o

BEEREREE

As the inputs grow large, the graph appears 21
to be leveling off at output values of 3, 71
indicating a horizontal asymptote at y=3.

As X — o0, f(X)—>3.

Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the
function.

2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal
squared function that has been shifted right 3 units and down 4 units.

In the previous example, we shifted a toolkit function in a way that resulted in a function

of the form f(x) = 3X+7
X+2

. This is an example of a more general rational function.
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Rational Function

A rational function is a function that can be written as the ratio of two polynomials,
P(x) and Q(X).

¢ P(x) a+ax+aX+-+3gX
(X) = =
Q¥ h+bhx+bhxX+-+ p&

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of
sugar have been mixed. A tap will open pouring 10 gallons per minute of water into the
tank at the same time sugar is poured into the tank at a rate of 1 pound per minute. Find
the concentration (pounds per gallon) of sugar in the tank after t minutes.

Notice that the amount of water in the tank is changing linearly, as is the amount of
sugar in the tank. We can write an equation independently for each:

water=100 +10t

sugar=5+1t

The concentration, C, will be the ratio of pounds of sugar to gallons of water

capl
100+ 10t

Finding Asymptotes and Intercepts

Given a rational function, as part of investigating the short run behavior we are interested
in finding any vertical and horizontal asymptotes, as well as finding any vertical or
horizontal intercepts, as we have done in the past.

To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur
when the denominator of the function is undefined. With one exception, a vertical
asymptote will occur whenever the denominator is undefined.

5+42x%°

Find the vertical asymptotes of the function k(X) = 5 5
—X—X

To find the vertical asymptotes, we determine where this function will be undefined by
setting the denominator equal to zero:

2-X-x'=0
2+x)(1-x)=0
x=-2,1
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This indicates two vertical asymptotes, which a
look at a graph confirms.

76 -5 -3 AR

==
Ladbaddd H_.\,A/::

The exception to this rule can occur when both the numerator and denominator of a
rational function are zero at the same input.

xample 5
X—2

X2

Find the vertical asymptotes of the function K(X) =

To find the vertical asymptotes, we determine where this function will be undefined by
setting the denominator equal to zero:

xX*—4=0
x> =4
X=-2,2

However, the numerator of this function is also
equal to zero when X=2. Because of this, the

function will still be undefined at 2, since % 1S

undefined, but the graph will not have a vertical -“——.—~o~——.—ﬁ

asymptote at X = 2. S5 2 1 I3 3 % 5

The graph of this function will have the vertical
asymptote at X = -2, but at X = 2 the graph will
have a hole: a single point where the graph is not
defined, indicated by an open circle.

Aod o L

Vertical Asymptotes and Holes of Rational Functions
The vertical asymptotesof a rational function will occur where the denominator of the
function is equal to zero and the numerator is not zero.

A hole might occur in the graph of a rational function if an input causes both numerator
and denominator to be zero. In this case, factor the numerator and denominator and
simplify; if the simplified expression still has a zero in the denominator at the original
input the original function has a vertical asymptote at the input, otherwise it has a hole.
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To find horizontal asymptotes, we are interested in the behavior of the function as the
input grows large, so we consider long run behavior of the numerator and denominator
separately. Recall that a polynomial’s long run behavior will mirror that of the leading
term. Likewise, a rational function’s long run behavior will mirror that of the ratio of the
leading terms of the numerator and denominator functions.

There are three distinct outcomes when this analysis is done:

Case 1: The degree of the denominator > degree of the numerator

3X+2
Example: f(X)=————
P *) X +4x-5
In this case, the long run behavior is f (X) = 3—1( = E This tells us that as the inputs grow
X X

large, this function will behave similarly to the function g(X) = 3 . As the inputs grow
X

large, the outputs will approach zero, resulting in a horizontal asymptote at y=0.
As X—> 1o, f(X)>0

Case 2: The degree of the denominator < degree of the numerator
3x* +2
X=5

Example: f(X)=

2
In this case, the long run behavior is f (X) ~ 3x =3X. This tells us that as the inputs
X

grow large, this function will behave similarly to the function g(X) =3 X. As the inputs

grow large, the outputs will grow and not level off, so this graph has no horizontal
asymptote.
As X — too, f(X) > too, respectively.

Ultimately, if the numerator is larger than the denominator, the long run behavior of the

graph will mimic the behavior of the reduced long run behavior fraction. As another
5 2

example if we had the function f(X)=

with long run behavior

5
f(X)~ 3X =3x", the long run behavior of the graph would look similar to that of an
X

even polynomial, and as X — oo, f(X) > 0.

Case 3: The degree of the denominator = degree of the numerator
3% +2

Example: f(X)= ————
P (X) x? +4x-5
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2

In this case, the long run behavior is f(X) = 312 =3. This tells us that as the inputs grow
X

large, this function will behave like the function g(X) =3, which is a horizontal line. As

X — oo, f(X) > 3, resulting in a horizontal asymptote at y=3.

Horizontal Asymptote of Rational Functions

The horizontal asymptoteof a rational function can be determined by looking at the
degrees of the numerator and denominator.

Degree of denominator > degree of numerator: Horizontal asymptote at y =0

Degree of denominator < degree of numerator: No horizontal asymptote

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of leading
coefficients.

In the sugar concentration problem from earlier, we created the equation
5+t

Cty=———.

100 +10t

Find the horizontal asymptote and interpret it in context of the scenario.

Both the numerator and denominator are linear (degree 1), so since the degrees are
equal, there will be a horizontal asymptote at the ratio of the leading coefficients. In the
numerator, the leading term is t, with coefficient 1. In the denominator, the leading
term is 10t, with coefficient 10. The horizontal asymptote will be at the ratio of these

values: As t > o, C(t) > % . This function will have a horizontal asymptote at

This tells us that as the input gets large, the output values will approach 1/10. In
context, this means that as more time goes by, the concentration of sugar in the tank will
approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon.

Find the horizontal and vertical asymptotes of the function
(%) = (X=2)(Xx+3)
(X=D(X+2)(X=5)

First, note this function has no inputs that make both the numerator and denominator
zero, so there are no potential holes. The function will have vertical asymptotes when
the denominator is zero, causing the function to be undefined. The denominator will be
zero at X =1, -2, and 5, indicating vertical asymptotes at these values.




378 Chapter 6

The numerator has degree 2, while the denominator has degree 3. Since the degree of
the denominator is greater than the degree of the numerator, the denominator will grow
faster than the numerator, causing the outputs to tend towards zero as the inputs get
large, and so as X — too, f(X) — 0. This function will have a horizontal asymptote at

y=0.

3. Find the vertical and horizontal asymptotes of the function

2x-D(2x+1)
(X=2)(X+3)

f(x)=

Intercepts

As with all functions, a rational function will have a vertical intercept when the input is
zero, if the function is defined at zero. It is possible for a rational function to not have a
vertical intercept if the function is undefined at zero.

Likewise, a rational function will have horizontal intercepts at the inputs that cause the
output to be zero (unless that input corresponds to a hole). It is possible there are no
horizontal intercepts. Since a fraction is only equal to zero when the numerator is zero,
horizontal intercepts will occur when the numerator of the rational function is equal to
Zero.

(X=2)(x+3)
(X=D(X+2)(Xx-5)

Find the intercepts of f(X)=

We can find the vertical intercept by evaluating the function at zero
£(0) = (0-2)(0+3) _-6_ 3
(0-1)0+2)0-5) 10 5

The horizontal intercepts will occur when the function is equal to zero:
o (X=2)(x+3)
T (x=D(x+2)(x—5)
0=(X-2)(x+3)
Xx=2,-3

This is zero when the numerator is zero

4. Given the reciprocal squared function that is shifted right 3 units and down 4 units,
write this as a rational function and find the horizontal and vertical intercepts and the
horizontal and vertical asymptotes.
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From the previous example, you probably noticed that the numerator of a rational
function reveals the horizontal intercepts of the graph, while the denominator reveals the

vertical asymptotes of the

graph. As with polynomials, factors of the numerator may

have integer powers greater than one. Happily, the effect on the shape of the graph at
those intercepts is the same as we saw with polynomials.

When factors of the denominator have integer powers greater than one, the behavior at
the corresponding vertical asymptote will mirror one of the two toolkit reciprocal

functions.

24

R

44

For example, the graph of
2 —

F(x) = (x+1)2(x 3)

(X+3)"(x-2)

At the horizontal intercept X = -1
corresponding to the (X+1)* factor of

the numerator, the graph bounces at the -
intercept, consistent with the quadratic

nature of the factor.

At the horizontal intercept

1s shown here. =

We get this behavior when the degree of the factor in the
denominator is odd. The distinguishing characteristic is that
on one side of the vertical asymptote the graph heads towards
positive infinity, and on the other side the graph heads
towards negative infinity.

We get this behavior when the degree of the factor in the
denominator is even. The distinguishing characteristic is
that the graph either heads toward positive infinity on both
sides of the vertical asymptote, or heads toward negative
infinity on both sides.

;J

a1
&
-
do
=
II\;."
o1
—
=
oy
Ly
=
-5

AT
X =3 corresponding to the (X—3) factor of the numerator, the

graph passes through the axis as we’d expect from a linear factor.

At the vertical asymptote X = -3 corresponding to the (X+3)° factor of the denominator,
the graph heads towards positive infinity on both sides of the asymptote, consistent with

the behavior of the iz toolkit.
X
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At the vertical asymptote X =2 corresponding to the (X—2) factor of the denominator,
the graph heads towards positive infinity on the left side of the asymptote and towards

negative infinity on the right side, consistent with the behavior of the — toolkit.
X

_ (X+2)(x=3)
Sketch a graph of f(X)= —(X+ D2

We can start our sketch by finding intercepts and asymptotes. Evaluating the function
at zero gives the vertical intercept:

£(0)= (O+22(0—3) _
(0+1)7(0-2)

Looking at when the numerator of the function is zero, we can determine the graph will
have horizontal intercepts at X =-2 and X = 3. At each, the behavior will be linear, with
the graph passing through the intercept.

Looking at when the denominator of the function is zero, we can determine the graph
will have vertical asymptotes at X=-1 and X = 2.

Finally, the degree of denominator is larger than the degree of the numerator, telling us
this graph has a horizontal asymptote at y = 0.

To sketch the graph, we might start by plotting the 13
three intercepts. Since the graph has no horizontal \
intercepts between the vertical asymptotes, and the
vertical intercept is positive, we know the function
must remain positive between the asymptotes,
letting us fill in the middle portion of the graph.

e
'

Aol

Since the factor associated with the vertical
asymptote at X = -1 was squared, we know the
graph will have the same behavior on both sides
of the asymptote. Since the graph heads towards
positive infinity as the inputs approach the
asymptote on the right, the graph will head
towards positive infinity on the left as well. For IR . ]
the vertical asymptote at X = 2, the factor wasnot > = = =2 4 | I 273 4 3
squared, so the graph will have opposite behavior
on either side of the asymptote.

o e

Aol

After passing through the horizontal intercepts, the graph will then level off towards an
output of zero, as indicated by the horizontal asymptote.
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(Xx+2)*(x=2)
2(x—1)*(x-3)
and rational functions to describe its behavior and sketch the function .

5. Given the function f(X) = , use the characteristics of polynomials

Since a rational function written in factored form will have a horizontal intercept where
each factor of the numerator is equal to zero, we can form a numerator that will pass
through a set of horizontal intercepts by introducing a corresponding set of factors.
Likewise, since the function will have a vertical asymptote where each factor of the
denominator is equal to zero, we can form a denominator that will produce the vertical
asymptotes by introducing a corresponding set of factors.

Rational Functions from Intercepts and Asymptotes

If a rational function has horizontal intercepts at X=X, X,,..., X, and vertical

v X
asymptotes at X=V,,V,,...,V,, then the function can be written in the form

(X=X) P (X=%) " - (X = %)™

(X=V)H (X=V,)® e (X = V)™

where the powers p; or ¢ on each factor can be determined by the behavior of the graph
at the corresponding intercept or asymptote, and the stretch factor a can be determined

given a value of the function other than the horizontal intercept, or by the horizontal
asymptote if it is nonzero.

f(x)=a

Write an equation for the rational function
graphed here.

R T
—t——

The graph appears to have horizontal et
intercepts at X =-2 and X= 3. At both, the T
graph passes through the intercept, suggesting /
linear factors.

The graph has two vertical asymptotes. The
one at X = -1 seems to exhibit the basic

behavior similar to —, with the graph heading toward positive infinity on one side and
X

heading toward negative infinity on the other. The asymptote at X =2 is exhibiting a

behavior similar to —-, with the graph heading toward negative infinity on both sides
X

of the asymptote.
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Utilizing this information indicates an function of the form
f(x)=a (X+ 2)(x—3)2
(X+1)(x-2)

To find the stretch factor, we can use another clear point on the graph, such as the
vertical intercept (0,-2):
_9_a (0+2)(0—3)2

(0+1)(0-2)

-6

_2=a_
4

-8 4
a=—=—
-6 3

4(X+2)(x-3)
3(X+1)(x=2)*

This gives us a final function of f(X) =

I mportant Topics of this Section

Inversely proportional; Reciprocal toolkit function
Inversely proportional to the square; Reciprocal squared toolkit function
Horizontal Asymptotes
Vertical Asymptotes
Rational Functions
Finding intercepts, asymptotes, and holes.
Given equation sketch the graph
Identifying a function from its graph

Try it Now Answers

1. Long run behavior, as X — foo, f(X) > 0
Short run behavior, as X — 0, f(X) — o (there are no horizontal or vertical
intercepts)

2.

54
The function and the asymptotes are shifted 3 units right and 4 units down.
As Xx—>3, f(X) > o andas X > oo, f(X) > —4
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3. Vertical asymptotes at X =2 and X = -3; horizontal asymptote at y =4

4. For the transformed reciprocal squared function, we find the rational form.
_ _ 2 _ 2 _ 2 _
£(x) 1 4 1-4(x-3) _ 1-4(x" —6X+9) _ 4X° +24x-35

T (x=3)  (x=3) (X=3)(X—3) x> —6X+9
Since the numerator is the same degree as the denominator we know that as
X — too, f(X) > —4. y=-4 is the horizontal asymptote. Next, we set the
denominator equal to zero to find the vertical asymptote at X = 3, because as X — 3,
f (X) > . We set the numerator equal to 0 and find the horizontal intercepts are at

(2.5,0) and (3.5,0), then we evaluate at 0 and the vertical intercept is at (0,%)

5.

Horizontal asymptote at y = 1/2.

Vertical asymptotes are at X= 1, and X = 3.

Vertical intercept at (0, 4/3),

Horizontal intercepts (2, 0) and (-2, 0)

(-2, 0) is a double zero and the graph bounces off

the axis at this point. B0 S T B B -
(2, 0) is a single zero and crosses the axis at this -
point. 21

&
54
4
7

I

-

5
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Section 6.7 Exercises

Match each equation form with one of the graphs.

1.f(x)=§%§ 2.g(x):% 3.h(x)=(;(__;;2 4.k(x)=2i::;z
\ J

A\ B/_\ C D

For each function, find the horizontal intercepts, the vertical intercept, the vertical
asymptotes, and the horizontal asymptote. Use that information to sketch a graph.

2X-3 X-=5
5. = 6_ =
p(x) X+4 q(x) 3x—-1
4 5
7. s( X)= 8. r(x)=
3x* —14x-5 2X* +7x-15
9. f = 10. =t 'n
(X) 3 +8x-16 g(x) 3 —14+15
1. a )_x2+2x—3 1 b(X)_xz—x—6
X1 ' X -4
2 2
13, h(x):2X +X-1 14, k(x):2X —-3x-20
X—4 X=5
3% +4x-4 5-x
15. AN A 16. A
5. n(x) X —4x? 6. m() 2X* +7X+3
2
. W(X):(x—l)(x+3)(x—5) 18, 2(X)— (x+2) (x=5)

(x+2) (x—4) (x=3)(x+1)( x+4)
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Write an equation for a rational function with the given characteristics.

19. Vertical asymptotes at X=5 and X=-5
X intercepts at (2,0) and (—1,0) y intercept at (0,4)

20. Vertical asymptotes at X=—-4 and X=-1
X intercepts at (1,0) and (5,0) y intercept at (0,7)

21. Vertical asymptotes at X=—-4 and X=-5
X intercepts at (4,0) and (—6,0) Horizontal asymptote at y =7

22. Vertical asymptotes at X=-3 and X=6
X intercepts at (—2,0) and (1,0) Horizontal asymptote at y=—2

23. Vertical asymptote at X =—1
Double zero at Xx=2 y intercept at (0,2)

24. Vertical asymptote at X =3
Double zero at x=1 y intercept at (0,4)

Write an equation for the function graphed.

54
44
EE
4

25.
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Write an equation for the function graphed.

5
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34.
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Write an equation for the function graphed.

37.

39.

40.

41.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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38. 54

A scientist has a beaker containing 20 mL of a solution containing 20% acid. To
dilute this, she adds pure water.
a. Write an equation for the concentration in the beaker after adding n mL of
water.
b. Find the concentration if 10 mL of water has been added.
How many mL of water must be added to obtain a 4% solution?
What is the behavior as n — oo, and what is the physical significance of this?

a o

A scientist has a beaker containing 30 mL of a solution containing 3 grams of
potassium hydroxide. To this, she mixes a solution containing 8 milligrams per mL
of potassium hydroxide.

a. Write an equation for the concentration in the tank after adding n mL of the

second solution.

b. Find the concentration if 10 mL of the second solution has been added.
How many mL of water must be added to obtain a 50 mg/mL solution?
d. What is the behavior as n — oo, and what is the physical significance of this?

o

Oscar 1s hunting magnetic fields with his gauss meter, a device for measuring the
strength and polarity of magnetic fields. The reading on the meter will increase as
Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a
room containing an extremely strong magnet. When he is far down the hallway from
the room, the meter reads a level of 0.2. He then walks down the hallway and enters
the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into
the room, the meter reads 4.4. [UW]

b relating the meter reading m( X)
cx+d

to how many feet X Oscar has gone into the room.
b. How far must he go for the meter to reach 10? 100?
c. Considering your function from part (a) and the results of part (b), how far

a. Qive a rational model of form m( X) =

into the room do you think the magnet is?
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42. The more you study for a certain exam, the better your performance on it. If you

43.

study for 10 hours, your score will be 65%. If you study for 20 hours, your score will
be 95%. You can get as close as you want to a perfect score just by studying long
enough. Assume your percentage score, P(N), is a function of the number of hours, n,

that you study in the form p(n) = an+b
cn+d

. If you want a score of 80%, how long do

you need to study? [UW]

A street light is 10 feet north of a

] ) (Top View—looking down) \/
straight bike path that runs east- d

west. Olav is bicycling down the 4 Qi‘(‘)‘ft
path at a rate of 15 miles per hour. olav

At noon, Olav is 33 feet west of path .

the point on the bike path closest T 3

to the street light. (See the
picture). The relationship between the intensity C of light (in candlepower) and the

distance d (in feet) from the light source is given by C = Lz , where K is a constant
d

depending on the light source. [UW]
a. From 20 feet away, the street light has an intensity of 1 candle. What is k?
b. Find a function which gives the intensity of the light shining on Olav as a
function of time, in seconds.
c. When will the light on Olav have maximum intensity?
d. When will the intensity of the light be 2 candles?
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Section 6.8 Inverses and Radical Functions

In this section, we will explore the inverses of polynomial and rational functions, and in
particular the radical functions that arise in the process.

A water runoff collector is built in the shape of a parabolic trough as shown below.
Find the surface area of the water in the trough as a function of the depth of the water.

/?)f/

18 in

12 in

Since it will be helpful to have an equation for the parabolic cross-sectional shape, we
will impose a coordinate system at the cross section, with X measured horizontally and y
measured vertically, with the origin at the vertex of the parabola.

y
181

X

-6 6

From this we find an equation for the parabolic shape. Since we placed the origin at the
vertex of the parabola, we know the equation will have form y(X) = ax>. Our equation

will need to pass through the point (6,18), from which we can solve for the stretch
factor a:

18 = a6’
18 1

a=—=—
36 2

. . . 1
Our parabolic cross section has equation Y(X) = 5 x?

Since we are interested in the surface area of the water, we are interested in determining
the width at the top of the water as a function of the water depth. For any depth y the
width will be given by 2X, so we need to solve the equation above for X. However
notice that the original function is not one-to-one, and indeed given any output there are
two inputs that produce the same output, one positive and one negative.
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To find an inverse, we can restrict our original function to a limited domain on which it
is one-to-one. In this case, it makes sense to restrict ourselves to positive X values. On
this domain, we can find an inverse by solving for the input variable:

1,
=—X
y2

2y =X

X=1+,2y

This is not a function as written. Since we are limiting ourselves to positive X values,
we eliminate the negative solution, giving us the inverse function we’re looking for

X(y) =2y

Since X measures from the center out, the entire width of the water at the top will be 2x.
Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2X), or in
terms of y:

Area=T72x =722y

The previous example illustrated two important things:
1) When finding the inverse of a quadratic, we have to limit ourselves to a domain
on which the function is one-to-one.
2) The inverse of a quadratic function is a square root function. Both are toolkit
functions and different types of power functions.

Functions involving roots are often called radical functions.

Find the inverse of f(X)=(x-2)"-3=x"—4x+1

From the transformation form of the function, we can see this is a transformed quadratic
with vertex at (2,-3) that opens upwards. Since the graph will be decreasing on one
side of the vertex, and increasing on the other side, we can restrict this function to a
domain on which it will be one-to-one by limiting the domain to X > 2.

To find the inverse, we will use the vertex form of the quadratic. We start by replacing
the f(X) with a simple variable y, then solve for X.

y=(x-2)"-3 Add 3 to both sides
y+3=(x-2)° Take the square root
+Jy+3=x-2 Add 2 to both sides

2+, y+3=X
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Of course, as written this is not a function. Since we restricted our original function to a
domain of X > 2, the outputs of the inverse should be the same, telling us to utilize the
+ case:

x=11(y)=2+y+3

If the quadratic had not been given in vertex form, rewriting it into vertex form is
probably the best approach. Alternatively, we could have taken the standard equation
and rewritten it equal to zero:

0=xX" —4x+1-y

We would then be able to use the quadratic formula with a=1, b=-4,and c=(1-Y),
resulting in the same solutions we found above:

(At -a)1-y)  Jl2+dy
= : =243 =2+\3+y

-+

X

‘ 1. Find the inverse of the function f(X)= X +1, on the domain X>0.

While it is not possible to find an inverse of most polynomial functions, some other basic
polynomials are invertible.

xample 3
Find the inverse of the function f(X)=5x’ +1.

This is a transformation of the basic cubic toolkit function, and based on our knowledge
of that function, we know it is one-to-one. Solving for the inverse by solving for X

y=5x"+1
y—-1=5x

3

y-1_,
5

x= 10 =35

Notice that this inverse is also a transformation of a power function with a fractional

power, x>

Try it Now
| 2. Which toolkit functions have inverse functions without restricting their domain?
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Besides being important as an inverse function, radical functions are common in
important physical models.

The velocity, V in feet per second, of a car that slammed on its brakes can be determined
based on the length of skid marks that the tires left on the ground. This relationship is
given by

v(d) = y2gfd

In this formula, g represents acceleration due to gravity (32 ft/sec?), d is the length of
the skid marks in feet, and f is a constant representing the friction of the surface. A car
lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid
marks. How fast was the car travelling when it lost control?

Using the given values of f = 0.5 and d = 200, we can evaluate the given formula:
V(200) = \/ 2(32)(0.5)(200) =80 ft/sec , which is about 54.5 miles per hour.

When radical functions are composed with other functions, determining domain can
become more complicated.

xample 5

Find the domain of the function f(X)= / % .
X —_

Since a square root is only defined when the quantity under the radical is non-negative,
(X+2)(x-3)
(x=1)
(change from positive to negative or vice versa) at horizontal intercepts and at vertical

asymptotes. For this equation, the graph could change signs at Xx=-2, 1, and 3.

we need to determine where > (. A rational function can change signs

To determine on which intervals the rational expression is positive, we could evaluate
the expression at test values, or sketch a graph. While both approaches work equally
well, for this example we will use a graph.

This function has two horizontal intercepts, both of which exhibit linear behavior,
where the graph will pass through the intercept. There is one vertical asymptote,
corresponding to a linear factor, leading to a behavior similar to the basic reciprocal
toolkit function. There is a vertical intercept at (0, 6). This graph does not have a
horizontal asymptote, since the degree of the numerator is larger than the degree of the
denominator.
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From the vertical intercept and horizontal intercept at X = -2, we can sketch the left side
of the graph. From the behavior at the asymptote, we can sketch the right side of the
graph.

i

&

(3]

From the graph, we can now tell on which /;/

intervals this expression will be non-negative, S R
so the original function f(X) will be defined.
f(x) has domain —2 < x<1o0r Xx>3, or in

interval notation, [-2,1) U[3,0).

BV EEE

Shdbu]

Like with finding inverses of quadratic functions, it is sometimes desirable to find the
inverse of a rational function, particularly of rational functions that are the ratio of linear
functions, such as our concentration examples.

xample 6

) 20+ 0.4n . . .
The function C(n) = ﬁ was used in the previous section to represent the
+N

concentration of an acid solution after n mL of 40% solution has been added to 100 mL
of'a 20% solution. We might want to be able to determine instead how much 40%
solution has been added based on the current concentration of the mixture.

To do this, we would want the inverse of this function:

C= 20+0.4n multiply both sides by the denominator
100+ n

C100+n)=20+04n distribute

100C+Cn=20+0.4n group everything with n on one side
100C-20=0.4n-Cn factor out n
100C-20=(0.4-C)n divide to find the inverse
n(C) = 100C -20
04-C

If, for example, we wanted to know how many mL of 40% solution need to be added to
obtain a concentration of 35%, we can simply evaluate the inverse rather than solving
an equation involving the original function:

n(035) = 100(0.35)-20 _ 15
0.4-0.35 0.05

=300mL of 40% solution would need to be added.

3. Find the inverse of the function f(X)= XL;
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Important Topics of this Section

Imposing a coordinate system

Finding an inverse function
Restricting the domain

Invertible toolkit functions

Radical Functions

Inverses of rational functions

Try it Now Answers

1. x=f"'(y)=4y-1

2. identity, cubic, square root, cube root

2y+3

3. f(y)=
y—-1
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Section 6.8 Exercises

For each function, find a domain on which the function is one-to-one and non-decreasing,
then find an inverse of the function on this domain.

1. f(x):(x—4)2 2. f(x):(x+2)2
3. f(x)=12-% 4. f(x)=9-x
5. F(x)=3x+1 6. f(x)=4-2x%

Find the inverse of each function.

7. f(X)=9+4x—4 8. f(x)=v6x-8+5
9. f(x)=9+2¥x 10. f(x)=3-3/x

2 3
11 f(X):?S 12 f(X):m
X+3 X—2
13 f(X):?7 14 f(X):?7
3x+4 S5x+1
],5.f(x):5_4X 16.f(x):2_5X

Police use the formula v=+/20L to estimate the speed of a car, Vv, in miles per hour,
based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt
road.

17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet
long. Approximately how fast was the car traveling?

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet
long. Approximately how fast was the car traveling?

The formula v=+/2.7r models the maximum safe speed, v, in miles per hour, at which a
car can travel on a curved road with radius of curvature r, in feet.

19. A highway crew measures the radius of curvature at an exit ramp on a highway as
430 feet. What is the maximum safe speed?

20. A highway crew measures the radius of curvature at a tight corner on a highway as
900 feet. What is the maximum safe speed?
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21. A drainage canal has a cross- (" )

22.

23.

section in the shape of a parabola. * N = Cmterlme
Suppose that the canal is 10 feet
deep and 20 feet wide at the top. If EEEE\ % 1 [ |
the water depth in the ditch is 5 10 IE‘C-'I
feet, how wide is the surface of the
water in the ditch? [UW] T T 1 LT T

20 feet

Brooke is located 5 miles out from the

nearest point A along a straight shoreline in B.rookf‘- —
her sea kayak. Hunger strikes and she wants —
to make it to Kono’s for lunch; see picture. gl 3 o
Brooke can paddle 2 mph and walk 4 mph. kayak reaches shore here
[UW] A | Kono's

a. If she paddles along a straight line shore 7~ I 77

o

course to the shore, find an 6 mi

expression that computes the total time to reach lunch in terms of the location
where Brooke beaches her kayak.

Determine the total time to reach Kono’s if she paddles directly to the point A.
Determine the total time to reach Kono’s if she paddles directly to Kono’s.
Do you think your answer to b or ¢ is the minimum time required for Brooke
to reach lunch?

Determine the total time to reach Kono’s if she paddles directly to a point on
the shore half way between point A and Kono’s. How does this time compare
to the times in parts b or ¢? Do you need to modify your answer to part d?

Clovis is standing at the edge of a dropoff, which slopes 4 feet downward from him
for every 1 horizontal foot. He launches a small model rocket from where he is

standing. With the origin of the coordinate system located where he is standing, and
the x-axis extending horizontally, the path of the rocket is described by the formula

y=-2x>+120x. [UW]

a.

Give a function h= f(X) relating the height h of the rocket above the sloping
ground to its X-coordinate.

Find the maximum height of the rocket above the sloping ground. What is its
x-coordinate when it is at its maximum height?

Clovis measures the height h of the rocket above the sloping ground while it is
going up. Give a function X=Q ( h) relating the X-coordinate of the rocket to

h.
Does the function from (c) still work when the rocket is going down? Explain.
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24. A trough has a semicircular S
cross section with a radius iy
of 5 feet. Water starts N TR
flowing into the trough in
such a way that the depth of
the water is increasing at a

rate of 2 inches per hour. A S 4 SO0 TR % % N
[UW] ‘
a. Give a function

w= f(t) relating

cross-section of
trough

the width w of the surface of the water to the time t, in hours. Make sure to
specify the domain and compute the range too.
b. After how many hours will the surface of the water have width of 6 feet?

Give a function t = f ™' (w) relating the time to the width of the surface of the

water. Make sure to specify the domain and compute the range too.
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Section 7.1 Exponential Functions

India is the second most populous country in the world, with a population in 2008 of
about 1.14 billion people. The population is growing by about 1.34% each year'. We
might ask if we can find a formula to model the population, P, as a function of time, t, in
years after 2008, if the population continues to grow at this rate.

In linear growth, we had a constant rate of change — a constant numberthat the output
increased for each increase in input. For example, in the equation f(X)=3X+4, the

slope tells us the output increases by three each time the input increases by one. This
population scenario is different — we have a percentrate of change rather than a constant
number of people as our rate of change. To see the significance of this difference
consider these two companies:

Company A has 100 stores, and expands by opening 50 new stores a year

Company B has 100 stores, and expands by increasing the number of stores by 50% of
their total each year.

Looking at a few years of growth for these companies:

Year | Stores, company A Stores, company B
0 100 Starting with 100 each | 100
1 100 + 50 = 150 They both grow by 50 100 + 50% of 100
stores in the first year. 100 + 0.50(100) = 150
2 150 + 50 =200 Store A grows by 50, 150 + 50% of 150
Store B grows by 75 150 + 0.50(150) =225
3 200 + 50 =250 Store A grows by 50, 225 +50% of 225
Store B grows by 112.5 | 225 + 0.50(225) = 337.5

! World Bank, World Development Indicators, as reported on http:/www.google.com/publicdata, retrieved

August 20, 2010

This chapter is part of Precalculus: An Investigation of Functio@sLippman & Rasmussen 2011.
This material is licensed under a Creative Commons CC-BY-SA license.




400 Chapter 7

Notice that with the percent growth, each year the company is grows by 50% of the
current year’s total, so as the company grows larger, the number of stores added in a year
grows as well.

To try to simplify the calculations, notice that after 1 year the number of stores for
company B was:
100 + 0.50(100) or equivalently by factoring

100(1+0.50) = 150

We can think of this as “the new number of stores is the original 100% plus another
50%”.

After 2 years, the number of stores was:
150+ 0.50(150) or equivalently by factoring

150(1+0.50) now recall the 150 came from 100(1+0.50). Substituting that,
100(1+ 0.50)(1+0.50) = 100(1 + 0.50)* = 225

After 3 years, the number of stores was:
225+ 0.50(225) or equivalently by factoring

225(1+0.50) now recall the 225 came from 100(1+ 0.50)>. Substituting that,
100(1 + 0.50)* (1+0.50) =100(1 + 0.50)" =337.5

From this, we can generalize, noticing that to show a 50% increase, each year we
multiply by a factor of (1+0.50), so after n years, our equation would be

B(n) = 100(1 + 0.50)"

In this equation, the 100 represented the initial quantity, and the 0.50 was the percent
growth rate. Generalizing further, we arrive at the general form of exponential functions.

[Exponential Function

An exponential growth or decay functionis a function that grows or shrinks at a
constant percent growth rate. The equation can be written in the form
f(x)=a(l+r)* or f(x)=ab* whereb=1+r
Where
a is the initial or starting value of the function
I is the percent growth or decay rate, written as a decimal
b is the growth factor or growth multiplier. Since powers of negative numbers behave
strangely, we limit b to positive values.

To see more clearly the difference between exponential and linear growth, compare the
two tables and graphs below, which illustrate the growth of company A and B described
above over a longer time frame if the growth patterns were to continue
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B
years | Company A | Company B
2 200 225
4 300 506
6 400 1139
8 500 2563
10 600 5767

Examplel . |

Write an exponential function for India’s population, and use it to predict the population
in 2020.

At the beginning of the chapter we were given India’s population of 1.14 billion in the
year 2008 and a percent growth rate of 1.34%. Using 2008 as our starting time (t = 0),
our initial population will be 1.14 billion. Since the percent growth rate was 1.34%, our
value for r 1s 0.0134.

Using the basic formula for exponential growth f (x) = a(1+r)* we can write the
formula, f(t)=1.14(1+0.0134)'

To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12
years after 2008.

f(12) =1.14(1+0.0134)" ~1.337 billion people in 2020

1. Given the three statements below, identify which represent exponential functions.

A. The cost of living allowance for state employees increases salaries by 3.1% each
year.

B. State employees can expect a $300 raise each year they work for the state.

C. Tuition costs have increased by 2.8% each year for the last 3 years.

Example2 |

A certificate of deposit (CD) is a type of savings account offered by banks, typically
offering a higher interest rate in return for a fixed length of time you will leave your
money invested. If a bank offers a 24 month CD with an annual interest rate of 1.2%
compounded monthly, how much will a $1000 investment grow to over those 24
months?

First, we must notice that the interest rate is an annual rate, but is compounded monthly,
meaning interest is calculated and added to the account monthly. To find the monthly
interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a
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year: 1.2%/12 = 0.1%. Each month we will earn 0.1% interest. From this, we can set
up an exponential function, with our initial amount of $1000 and a growth rate of r =
0.001, and our input m measured in months.

f(m) = 1000(1 +£j
12

f (m) =1000(1+0.001)™
After 24 months, the account will have grown to f(24) =1000(1+0.001)** = $1024.28

2. Looking at these two equations that represent the balance in two different savings
accounts, which account is growing faster, and which account will have a higher
balance after 3 years?

A(t) =1000(1.05)' B(t) = 900(1.075)

In all the preceding examples, we saw exponential growth. Exponential functions can
also be used to model quantities that are decreasing at a constant percent rate. An
example of this is radioactive decay, a process in which radioactive isotopes of certain
atoms transform to an atom of a different type, causing a percentage decrease of the
original material over time.

Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning
13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this
case) each day. If you begin with 100 mg of Bismuth-210, how much remains after one
week?

With radioactive decay, instead of the quantity increasing at a percent rate, the quantity
is decreasing at a percent rate. Our initial quantity is a = 100 mg, and our growth rate
will be negative 13%, since we are decreasing: r =-0.13. This gives the equation:

Q(d) =100(1-0.13)* =100(0.87)*
This can also be explained by recognizing that if 13% decays, then 87 % remains.

After one week, 7 days, the quantity remaining would be
Q(7) =100(0.87)” =37.73 mg of Bismuth-210 remains.

3. A population of 1000 is decreasing 3% each year. Find the population in 30 years.
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T(q) represents the total number of Android smart phone contracts, in thousands, held
by a certain Verizon store region measured quarterly since January 1, 2010,

Interpret all of the parts of the equation T(2) = 86(1.64)* = 231.3056.

Interpreting this from the basic exponential form, we know that 86 is our initial value.
This means that on Jan. 1, 2010 this region had 86,000 Android smart phone contracts.
Since b= 1 +r = 1.64, we know that every quarter the number of smart phone contracts
grows by 64%. T(2) =231.3056 means that in the 2 quarter (or at the end of the
second quarter) there were approximately 231,305 Android smart phone contracts.

Finding Equations of Exponential Functions

In the previous examples, we were able to write equations for exponential functions since
we knew the initial quantity and the growth rate. If we do not know the growth rate, but
instead know only some input and output pairs of values, we can still construct an
exponential function.

In 2002, 80 deer were reintroduced into a wildlife refuge area from which the
population had previously been hunted to elimination. By 2008, the population had
grown to 180 deer. If this population grows exponentially, find a formula for the
function.

By defining our input variable to be t, years after 2002, the information listed can be
written as two input-output pairs: (0,80) and (6,180). Notice that by choosing our input
variable to be measured as years after the first year value provided, we have effectively
“given” ourselves the initial value for the function: a= 80. This gives us an equation
of the form

f(t) =80b".
Substituting in our second input-output pair allows us to solve for b:
180 = 80b° Divide by 80
¢ 180 9 th .
b” = 0 = 2 Take the 6 root of both sides.

b:§/§:1.1447
4

This gives us our equation for the population:
f (t) =80(1.1447)"

Recall that since b= 1+r, we can interpret this to mean that the population growth rate
is r = 0.1447, and so the population is growing by about 14.47% each year.

In this example, you could also have used (9/4)(1/6) to evaluate the 6™ root if your
calculator doesn’t have an n™ root button.
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In the previous example, we chose to use the f(x) =ab” form of the exponential

function rather than the f(x)=a(l+r)* form. This choice was entirely arbitrary — either
form would be fine to use.

When finding equations, the value for b or r will usually have to be rounded to be written
easily. To preserve accuracy, it is important to not over-round these values. Typically,
you want to be sure to preserve at least 3 significant digits in the growth rate. For
example, if your value for b was 1.00317643, you would want to round this no further
than to 1.00318.

In the previous example, we were able to “give” ourselves the initial value by clever
definition of our input variable. Next we consider a situation where we can’t do this.

Find a formula for an exponential function passing through the points (-2,6) and (2,1).

Since we don’t have the initial value, we will take a general approach that will work for
any function form with unknown parameters: we will substitute in both given input-

output pairs in the function form f(X)=ab* and solve for the unknown values, a and b.
Substituting in (-2, 6) gives 6 = ab™
Substituting in (2, 1) gives 1 = ab’

We now solve these as a system of equations. To do so, we could try a substitution
approach, solving one equation for a variable, then substituting that expression into the
second equation.

Solving 6 = ab™ for a:

a=-" 6l

b2

In the second equation, 1= ab’, we substitute the expression above for a:
1 = (6b*)b?

1= 6b*
T
6

b= i/I ~ 0.6389
6

Going back to the equation a=6b’ lets us find a:
a=6b> = 6(0.6389)" =2.4492

Putting this together gives the equation f (X) =2.4492(0.6389)"
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Try it Now
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function
that passes through these two points.

xample 7
Find an equation for the exponential function graphed below.

t‘-“l“
dot
bl
Pt
._'___.__
o i o A

I 2 3 4 35

2
The initial value for the function is not clear in this graph, so we will instead work using
two clearer points. There are three fairly clear points: (-1, 1), (1, 2), and (3, 4). As we
saw in the last example, two points are sufficient to find the equation for a standard
exponential, so we will use the latter two points.
Substituting in (1,2) gives 2 = ab'
Substituting in (3,4) gives 4 = ab’

Solving the first equation for a gives a = % .

Substituting this expression for a into the second equation:

4 = ap’
3
4= %b3 = % Simplify the right-hand side
4 =2p’
2=p

b=+y2

Since we restrict ourselves to positive values of b, we will use b= V2. We can then go
back and find a:

This gives us a final equation of f(X) = V2 («/5 ).
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Compound Interest

In the bank certificate of deposit (CD) example earlier in the section, we encountered
compound interest. Typically bank accounts and other savings instruments in which
earnings are reinvested, such as mutual funds and retirement accounts, utilize compound
interest. The term compoundingomes from the behavior that interest is earned not on
the original value, but on the accumulated value of the account.

In the example from earlier, the interest was compounded monthly, so we took the annual
interest rate, usually called the nominal rate or annual percentage rate (APRand
divided by 12, the number of compounds in a year, to find the monthly interest. The
exponent was then measured in months.

Generalizing this, we can form a general formula for compound interest. If the APR is
written in decimal form as r, and there are k compounding periods per year, then the
interest per compounding period will be r/k. Likewise, if we are interested in the value
after t years, then there will be kt compounding periods in that time.

Compound Interest Formula

Compound Interestcan be calculated using the formula

r kt
A(t) = a(l'FEJ

Where

A(t) is the account value

t is measured in years

a is the starting amount of the account, often called the principal

I is the annual percentage rate (APR), also called the nominal rate
k is the number of compounding periods in one year

If you invest $3,000 in an investment account paying 3% interest compounded
quarterly, how much will the account be worth in 10 years?

Since we are starting with $3000, a = 3000

Our interest rate is 3%, so r = 0.03

Since we are compounding quarterly, we are compounding 4 times per year, so k=4
We want to know the value of the account in 10 years, so we are looking for A(10), the
value when t = 10.

4(10)
A(0) = 3000(1 + %) = $4045.05

The account will be worth $4045.05 in 10 years.
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A 529 plan is a college savings plan in which a relative can invest money to pay for a
child’s later college tuition, and the account grows tax free. If Lily wants to set up a
529 account for her new granddaughter, wants the account to grow to $40,000 over 18
years, and she believes the account will earn 6% compounded semi-annually (twice a
year), how much will Lily need to invest in the account now?

Since the account is earning 6%, r = 0.06
Since interest is compounded twice a year, K= 2

In this problem, we don’t know how much we are starting with, so we will be solving
for a, the initial amount needed. We do know we want the end amount to be $40,000,
so we will be looking for the value of a so that A(18) =40,000.

2(18)
40,000 = A(18) = a(l + %j

2
40,000 = a(2.8983)
40,000
a=
2.8983

~ $13,801

Lily will need to invest $13,801 to have $40,000 in 18 years.

\ 5. Recalculate example 2 from above with quarterly compounding.

Because of compounding throughout the year, with compound interest the actual increase
in a year is morethan the annual percentage rate. If $1,000 were invested at 10%, the
table below shows the value after 1 year at different compounding frequencies:

Frequency Value after 1 year
Annually $1100
Semiannually $1102.50
Quarterly $1103.81
Monthly $1104.71

Daily $1105.16

If we were to compute the actual percentage increase for the daily compounding, there
was an increase of $105.16 from an original amount of $1,000, for a percentage increase
of 105.16

1000
yield (APY).

=0.10516=10.516% increase. This quantity is called the annual percentage
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Notice that given any starting amount, the amount after 1 year would be
k
r ..
All) = a(l + E] . To find the total change, we would subtract the original amount, then

to find the percentage change we would divide that by the original amount:

{114

1+j —a K

#:(1+Lj -1
k

Annual Percentage Yield

The annual percentage yields the actual percent a quantity increases in one year. It
can be calculated as

k
APY:(1+LJ -1
K

Notice this is equivalent to finding the value of $1 after 1 year, and subtracting the
original dollar.

Bank A offers an account paying 1.2% compounded quarterly. Bank B offers an
account paying 1.1% compounded monthly. Which is offering a better rate?

We can compare these rates using the annual percentage yield — the actual percent
increase in a year.

0.012)"
Bank A: APY= 1+T ~1=0.012054 = 1.2054%

0.011)"
Bank B: APY = 1+T ~1=0.011056 = 1.1056%

Bank B’s monthly compounding is not enough to catch up with Bank A’s better APR.
Bank A offers a better rate.

A Limit to Compounding

As we saw earlier, the amount we earn increases as we increase the compounding
frequency. The table, though, shows that the increase from annual to semi-annual
compounding is larger than the increase from monthly to daily compounding. This might
lead us to believe that although increasing the frequency of compounding will increase
our result, there is an upper limit to this process.
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To see this, let us examine the value of $1 invested at 100% interest for 1 year.

Frequency Value
Annual $2
Semiannually $2.25
Quarterly $2.441406
Monthly $2.613035
Daily $2.714567
Hourly $2.718127
Once per minute $2.718279
Once per second $2.718282

These values do indeed appear to be approaching an upper limit. This value ends up
being so important that it gets represented by its own letter, much like how 7 represents a
number.

Euler’s Number: e

k
eis the letter used to represent the value that (1 + éj approaches as K gets big.

e~ 2.718282

Because e is often used as the base of an exponential, most scientific and graphing
calculators have a button that can calculate powers of €, usually labeled €. Some
computer software instead defines a function exp(x) where exp(x)= €.

Because e arises when the time between compounds becomes very small, e allows us to
define continuous growthand allows us to define a new toolkit function, f(x)=€".

Continuous Growth Formula

Continuous Growth can be calculated using the formula
f(x) = ae”™

where

a is the starting amount

r is the continuous growth rate

This type of equation is commonly used when describing quantities that change more or
less continuously, like chemical reactions, growth of large populations, and radioactive
decay.
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Examplell . |

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100mg of
Radon-222 decay to in 3 days?

Since we are given a continuous decay rate, we use the continuous growth formula.
Since the substance is decaying, we know the growth rate will be negative: r =-0.173

f(3) =100e™*'”? %~ 59.512 mg of Radon-222 will remain.

6. Interpret the following: S(t) =20 €&"*"if S(t)represents the growth of a substance in
grams, and time is measured in days.

Continuous growth is also often applied to compound interest, allowing us to talk about
continuous compounding.

Examplel2 . |

If $1000 is invested in an account earning 10% compounded continuously, find the
value after 1 year.

Here, the continuous growth rate is 10%, so r = 0.10. We start with $1000, so a= 1000.
To find the value after 1 year,

f (1) =1000e"""" ~ $1105.17

Notice this is a $105.17 increase for the year. As a percent increase, this is
105.17

1000 =0.10517 =10.517% increase over the original $1000.

Notice that this value is slightly larger than the amount generated by daily compounding
in the table computed earlier.

The continuous growth rate is like the nominal growth rate (or APR) — it reflects the
growth rate before compounding takes effect. This is different than the annual growth

rate used in the formula f (X) = a(1+r)*, which is like the annual percentage yield — it
reflects the actualamount the output grows in a year.

While the continuous growth rate in the example above was 10%, the actual annual yield
was 10.517%. This means we could write two different looking but equivalent formulas
for this account’s growth:

f (t) =1000e™" using the 10% continuous growth rate
f (t)=1000(1.10517)" using the 10.517% actual annual yield rate.
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Important Topics of this Section

Percent growth

Exponential functions
Finding formulas
Interpreting equations
Graphs

Exponential Growth & Decay

Compound interest

Annual Percent Yield

Continuous Growth

Try it Now Answers

1. A & C are exponential functions, they grow by a % not a constant number.
2. B(t) is growing faster, but after 3 years A(t) still has a higher account balance

3. 1000(0.97)*° = 401.0071
4. f(x)=2(1.5)"

5.$1024.25
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day.
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Section 7.1 Exercises

For each table below, could the table represent a function that is linear, exponential, or

neither?
1. X |1 |2 |3 |4 2. X |1 |2 |3 |4
f(x)| 70 | 40 | 10 | -20 g(x) |40 [ 322622
3. X |1 |2 |3 4 4. X |1 |2 |3 |4
h(x) | 70 | 49 | 34.3 | 24.01 k(x) | 90 | 80 | 70 | 60
5. X |1 |2 |3 4 6. X |1 |2 |3 4
m(x) | 80 | 61 | 42.9 | 25.61 n(x) | 90 | 81 | 72.9 | 65.61
7. A population numbers 11,000 organisms initially and grows by 8.5% each year.

10.

1.

12.

Write an exponential model for the population.

A population is currently 6,000 and has been increasing by 1.2% each day. Write an
exponential model for the population.

The fox population in a certain region has an annual growth rate of 9 percent per year.
It is estimated that the population in the year 2010 was 23,900. Estimate the fox
population in the year 2018.

The amount of area covered by blackberry bushes in a park has been growing by 12%
each year. It is estimated that the area covered in 2009 was 4,500 square feet.
Estimate the area that will be covered in 2020.

A vehicle purchased for $32,500 depreciates at a constant rate of 5% each year.
Determine the approximate value of the vehicle 12 years after purchase.

A business purchases $125,000 of office furniture which depreciates at a constant rate
of 12% each year. Find the residual value of the furniture 6 years after purchase.
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Find a formula for an exponential function passing through the two points.
13. (0,6), (3,750) 14. (0,3), (2,75)

0,2000), (2,20)

5. ( 6. (
17(1,}324 18(1,}110

(-

(

0,9000), (3,72)

19. (-2,6),(3,1) 20. (-3,4),(3,2)

(-
21. (3,1), (5.4 22.(2,5),(6,9)

23. A radioactive substance decays exponentially. A scientist begins with 100 milligrams
of a radioactive substance. After 35 hours, 50 mg of the substance remains. How
many milligrams will remain after 54 hours?

24. A radioactive substance decays exponentially. A scientist begins with 110 milligrams
of a radioactive substance. After 31 hours, 55 mg of the substance remains. How
many milligrams will remain after 42 hours?

25. A house was valued at $110,000 in the year 1985. The value appreciated to $145,000
by the year 2005. What was the annual growth rate between 1985 and 2005?
Assume that the house value continues to grow by the same percentage. What did the
value equal in the year 20107

26. An investment was valued at $11,000 in the year 1995. The value appreciated to
$14,000 by the year 2008. What was the annual growth rate between 1995 and 2008?
Assume that the value continues to grow by the same percentage. What did the value
equal in the year 2012?

27. A car was valued at $38,000 in the year 2003. The value depreciated to $11,000 by
the year 2009. Assume that the car value continues to drop by the same percentage.
What will the value be in the year 2013?

28. A car was valued at $24,000 in the year 2006. The value depreciated to $20,000 by
the year 2009. Assume that the car value continues to drop by the same percentage.
What will the value be in the year 2014?

29. 1f $4,000 is invested in a bank account at an interest rate of 7 per cent per year, find
the amount in the bank after 9 years if interest is compounded annually, quarterly,
monthly, and continuously.
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30.

31.

32.

33.

34.

35.

36.

If $6,000 is invested in a bank account at an interest rate of 9 per cent per year, find
the amount in the bank after 5 years if interest is compounded annually, quarterly,
monthly, and continuously.

Find the annual percentage yield (APY) for a savings account with annual percentage
rate of 3% compounded quarterly.

Find the annual percentage yield (APY) for a savings account with annual percentage
rate of 5% compounded monthly.

A population of bacteria is growing according to the equation P(t)=1600€"*"", with t

measured in years. Estimate when the population will exceed 7569.

A population of bacteria is growing according to the equation P(t)=1200€"""", with t

measured in years. Estimate when the population will exceed 3443.

In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage
was $2.30 per hour. Assume the minimum wage grows according to an exponential
model W(t), where t represents the time in years after 1960. [UW]

a. Find a formula for w(t).

b. What does the model predict for the minimum wage in 19607
c. Ifthe minimum wage was $5.15 in 1996, is this above, below or equal to what
the model predicts?

In 1989, research scientists published a model for predicting the cumulative number
t—1980 T

of AIDS cases (in thousands) reported in the United States: a(t) = 155(

where t is the year. This paper was considered a “relief”, since there was a fear the
correct model would be of exponential type. Pick two data points predicted by the
research model a(t) to construct a new exponential model b(t) for the number of

cumulative AIDS cases. Discuss how the two models differ and explain the use of the
word “relief.” [UW]
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37. You have a chess board as pictured, with

squares numbered 1 through 64. You also have 63

64

a huge change jar with an unlimited number of
dimes. On the first square you place one dime.

On the second square you stack 2 dimes. Then

you continue, always doubling the number

from the previous square. [UW]
a. How many dimes will you have

stacked on the 10th square?

b. How many dimes will you have
stacked on the nth square? 10

c. How many dimes will you have 1

2
7}

stacked on the 64th square?

d. Assuming a dime is 1 mm thick, how
high will this last pile be?

e. The distance from the earth to the sun is approximately 150 million km.
Relate the height of the last pile of dimes to this distance.
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Section 7.2 Graphs of Exponential Functions

Like with linear functions, the graph of an exponential function is determined by the
values for the parameters in the function’s formula.

To get a sense for the behavior of exponentials, let us begin by looking more closely at
the function f (X) =2%. Listing a table of values for this function:

X 3 2 -1 0 1 2 3
1 1 1

f(x) — — — 1 2 4 8
8 4 2

Notice that:
1)  This function is positive for all values of x.
2)  AsXincreases, the function grows faster and faster (the rate of change
increases).
3) AsXdecreases, the function values grow smaller, approaching zero.
4)  This is an example of exponential growth.

Looking at the function g(X) = (%J
X -3 -2 -1 0 1 2 3
1 1 1
X 8 4 2 1 — - -
9(x) : y .

Note this function is also positive for all values of X, but in this case grows as X decreases,
and decreases towards zero as X increases. This is an example of exponential decay. You
may notice from the table that this function appears to be the horizontal reflection of the

f (xX) = 2" table. This is in fact the case:

f(x) =27 =(2")" =Gj ~ g(%)

Looking at the graphs also confirms this relationship:
54
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Consider a function for the form f(x) = ab”. Since a, which we called the initial value

in the last section, is the function value at an input of zero, a will give us the vertical
intercept of the graph. From the graphs above, we can see that an exponential graph will
have a horizontal asymptote on one side of the graph, and can either increase or decrease,
depending upon the growth factor. This horizontal asymptote will also help us determine
the long run behavior and is easy to determine from the graph.

The graph will grow when the growth rate is positive, which will make the growth factor
b larger than one. When it’s negative, the growth factor will be less than one.

Graphical Features of Exponential Functions

Graphically, in the function f(Xx)=ab*
a is the vertical intercept of the graph
b determines the rate at which the graph grows
the function will increase if b > 1
the function will decrease if 0 <b <1
The graph will have a horizontal asymptote aty =0
The graph will be concave up if a> 0; concave down if a<0.

The domain of the function is all real numbers
The range of the function is (0, )

When sketching the graph of an exponential function, it can be helpful to remember that
the graph will pass through the points (0, a) and (1, ab).

The value b will determine the function’s long run behavior:
Ifb>1,as x>, f(X) >0 andas X > -, f(X)—>0.

If0<b<1,as x> o0, f(X) >0 andas X > -0, f(X) > .

xample 1
1

Sketch a graph of f(X) = 4(§j
This graph will have a vertical intercept at (0,4), and
pass through the point (l,g] . Since b <1, the graph

will be decreasing towards zero. Since a> 0, the graph
will be concave up.

We can also see from the graph the long run behavior:
as X > o, f(X) >0 andas x> -, f(X) > .
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs
below. The first set shows various graphs, where a remains the same and we only change
the value for b.

Notice that the closer the value of b is to 1, the less steep the graph will be.

In the next set of graphs, a is altered and our value for b remains the same.

4(1.2%)  3(1.2"

e

)
2(1.2%)
(1)

0.5(1.2*

5 4 3 2 - I 2 3 4 5

Notice that changing the value for a changes the vertical intercept. Since a is multiplying
the b term, a acts as a vertical stretch factor, not as a shift. Notice also that the long run
behavior for all of these functions is the same because the growth factor did not change
and none of these a values introduced a vertical flip.



xample 2
Match each equation with its graph.
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f(x)=2(1.3)"
g(x) =2(1.8)"

h(x) = 4(1.3)" |
o :/
f—-

5 4 3 2 - I 2 3 4 35

The graph of k(x) is the easiest to identify, since it is the only equation with a growth
factor less than one, which will produce a decreasing graph. The graph of h(x) can be
identified as the only growing exponential function with a vertical intercept at (0,4).
The graphs of f(x) and g(X) both have a vertical intercept at (0,2), but since g(X) has a
larger growth factor, we can identify it as the graph increasing faster.

1. Graph the following functions on the same axis: f(X)=(2)*; g(x) =2(2)*;
h(x) = 2(1/2)*.

Transformations of Exponential Graphs

While exponential functions can be transformed following the same rules as any function,
there are a few interesting features of transformations that can be identified. The first
was seen at the beginning of the section — that a horizontal reflection is equivalent to a
change in the growth factor. Likewise, since a is itself a stretch factor, a vertical stretch
of an exponential corresponds with a change in the initial value of the function.
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Next consider the effect of a horizontal shift on an exponential function. Shifting the
function f(x)=3(2)* four units to the left would give f (Xx+4) = 3(2)***. Employing
exponent rules, we could rewrite this:

f(x+4)=3(2)"" =3(2)*(2*) = 48(2)"

Interestingly, it turns out that a horizontal shift of an exponential function corresponds
with a change in initial value of the function.

Lastly, consider the effect of a vertical shift on an exponential function. Shifting
f(X) =3(2)* down 4 units would give the equation f(X)=3(2)" —4, yielding the graph
5

— kg L R
P N —

¥ 5 4 7 5 4 3 & 4 § &

Notice that this graph is substantially different than the basic exponential graph. Unlike a
basic exponential, this graph does not have a horizontal asymptote at y = 0; due to the
vertical shift, the horizontal asymptote has also shifted to y=-4. We can see that as

X— o, f(X)—>o andas X—> -, f(X)—>—4.

We have determined that a vertical shift is the only transformation of an exponential
function that changes the graph in a way that cannot be achieved by altering the

parameters a and b in the basic exponential function f(X)=ab*.

Transformations of Exponentials
Any transformed exponential can be written in the form

f(x)=ab*+c
where
y = cis the horizontal asymptote.

Note that, due to the shift, the vertical intercept is shifted to (0, a+c).

2. Write the equation and graph the exponential function described as follows:
f (X) = €*is vertically stretched by a factor of 2, flipped across the y axis and shifted up
4 units.



y =4. Sketching this as a transformation of g(X) = (lj ,
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Sketch a graph of f(X) = —3(%] +4.

Notice that in this exponential function, the negative in the stretch factor -3 will cause a
vertical reflection, and the vertical shift up 4 will move the horizontal asymptote to

2
1 X
The basic g(X) = 5] Vertically reflected and stretched by 3
= 54
4 4
3 3
2 24
1
554?2:_;_:2345 5&?2;_;_12 3
-2 -2
-3 -1
: :
-5 5

Notice that while the domain of this function is unchanged, due to the reflection and
shift, the range of this function is (—00,4) .

As x>0, f(X) >4 andas X > -0, f(X)—> —o0.

Functions leading to graphs like the one above are common as models for learning and
models of growth approaching a limit.
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Exampled

Find an equation for the graph sketched below.

Looking at this graph, it appears to have a horizontal asymptote at y = 5, suggesting an
equation of the form f(X)=ab* +5. To find values for a and b, we can identify two

other points on the graph. It appears the graph passes through (0,2) and (-1,3), so we
can use those points. Substituting in (0,2) allows us to solve for a

2=ab’ +5
2=a+5
a=-3

Substituting in (-1,3) allows us to solve for b

3=-3b"+5
_2:__3
b
_2b=-3
b=>=15
2

The final formula for our function is f(x) =-3(1.5)* +5.

TryieNow . . .
3. Given the graph of the transformed exponential function, find a formula and describe
the long run behavior.

N T

7 6 5 4 37 ] 12 3 4

oy
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Important Topics of this Section
Graphs of exponential functions
Intercept
Growth factor
Exponential Growth
Exponential Decay
Horizontal intercepts
Long run behavior
Transformations

Try it Now Answers

2. f(X)=-2e"+4,;
3. f(X)=3(.5) " -1or f(x)=3(2")-1;
As X > o0, f(X) > o andas x > -0, f(X)—> -1
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Section 7.2 Exercises

Match each function with one of the graphs below. C
1. f

2
3
4. f
5
6

If all the graphs to the right have equations with form \ D
f(x)= ab*, N\l /
7. Which graph has the largest value for b? A
8. Which graph has the smallest value for b? F
9. Which graph has the largest value for a? - e T ;_"'.' <
10. Which graph has the smallest value for a? ; —

Sketch a graph of each of the following transformations of f (X) =2"

11. f(x)=27 12. g(x)=-2"
13. h(x)=2%+3 14. f(x)=2"-4
15. f(x)=2"" 16. k(x)=2""

Starting with the graph of f (X) =4", find a formula for the function that results from
17. Shifting f(X) 4 units upwards

18. Shifting f(X) 3 units downwards

19. Shifting f(X) 2 units left

20. Shifting f(X) 5 units right

21. Reflecting f(X) about the x-axis

22. Reflecting f(X) about the y-axis



Section 7.2 Graphs of Exponential Functions 425

Describe the long run behavior, as X — o and X — —o of each function

23. f(x)=-5(4")-1

2s. f(x)=3(%)x—2

27. f(x)=3(4)"+2

24. f(x)=-2(3")+2

%. f(x):4@x+1

28. f(x)=-2(3)" -1

Find a formula for each function graphed as a transformation of f (X) =2%.

31.

30. 54

32. 5

Find an equation for the exponential function graphed.
5

5
4
3
24
s

B T N

-4
-2

33. )
5
4
BN
2
i1

VRN \ 23

-2
-.LK
=3

35.

34.

36.
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Section 7.3 Logarithmic Functions

A population of 50 flies is expected to double every week, leading to a function of the
form f(X)=50(2)", where X represents the number of weeks that have passed. When
will this population reach 500? Trying to solve this problem leads to:

500 =50(2)" Dividing both sides by 50 to isolate the exponential

10=2"

While we have set up exponential models and used them to make predictions, you may
have noticed that solving exponential equations has not yet been mentioned. The reason
is simple: none of the algebraic tools discussed so far are sufficient to solve exponential

equations. Consider the equation 2* =10 above. We know that 2° =8 and 2* =16, so

it is clear that X must be some value between 3 and 4 since g(X) =2" is increasing. We

could use technology to create a table of values or graph to better estimate the solution.
12+

I 2 3 4 5

From the graph, we could better estimate the solution to be around 3.3. This result is still
fairly unsatisfactory, and since the exponential function is one-to-one, it would be great
to have an inverse function. None of the functions we have already discussed would
serve as an inverse function and so we must introduce a new function, named log as the
inverse of an exponential function. Since exponential functions have different bases, we
will define corresponding logarithms of different bases as well.

The logarithm (base b) function, written logb(x), is the inverse of the exponential
function (base b), b*.

Since the logarithm and exponential are inverses, it follows that:

s: Inverse Properties
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Recall also from the definition of an inverse function that if f(a)=c,then f '(c)=a.
Applying this to the exponential and logarithmic functions:

Logarithm Equivalent to an Exponential
The statement b® = ¢ is equivalent to the statement log, (C) = a.

Alternatively, we could show this by starting with the exponential functionc = b*, then
taking the log base b of both sides, giving log, () =log, b*. Using the inverse property
of logs we see that log, (C) = a.

Since log is a function, it is most correctly written as log, (C), using parentheses to

denote function evaluation, just as we would with f(c). However, when the input is a
single variable or number, it is common to see the parentheses dropped and the
expression written as log, C.

Examplel .

Write these exponential equations as logarithmic equations:

2° =8 52 =25 0=
10000
2°=8 is equivalent to log,(8) =3
57 =25 is equivalent to log,(25) =2
1
-4

— is equivalent to log,, (

10000 10000)

Example2 .

Write these logarithmic equations as exponential equations:

1
log (‘/g) = 5 log, (9) =2
log, («/g): % is equivalent to 6'* = J6
log, (9) =2 is equivalent to 3> =9

TryitNow . |

‘ Write the exponential equation 4° =16 as a logarithmic equation.
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By establishing the relationship between exponential and logarithmic functions, we can
now solve basic logarithmic and exponential equations by rewriting.

Solve log,(x)=2 for x.

By rewriting this expression as an exponential, 4* = X, so X = 16

Example 4
Solve 2* =10 for X.

By rewriting this expression as a logarithm, we get X = log, (10)

While this does define a solution, and an exact solution at that, you may find it somewhat
unsatisfying since it is difficult to compare this expression to the decimal estimate we
made earlier. Also, giving an exact expression for a solution is not always useful — often
we really need a decimal approximation to the solution. Luckily, this is a task calculators
and computers are quite adept at. Unluckily for us, most calculators and computers will
only evaluate logarithms of two bases. Happily, this ends up not being a problem, as
we’ll see briefly.

Common and Natural Logarithms

The common logis the logarithm with base 10, and is typically written log(X).
The natural log is the logarithm with base €, and is typically written In(X).

Examples |

Evaluate log(1000) using the definition of the Values of the common log

common log. number | number as | log(number)
exponential

To evaluate 1log(1000), we can say 1000 10° 3

X =10g(1000), then rewrite into exponential 100 102 2

form using the common log base of 10. 10 10" 1

10* =1000 1 10° 0

From this, we might recognize that 1000 is the 0.1 10" -1

cube of 10, s0 X = 3. 0.01 10” -2

We also can use the inverse property of logs to || 0.001 107 -3

write log,,(10°)=3
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2. Evaluate 1og(1000000) .

Evaluate In \/E .

We can rewrite ln(\/é) as ln(e” 2). Since In is a log base €, we can use the inverse

property for logs: 1n<e”2 ): loge(e”2 ): %

Evaluate log(500) using your calculator or computer.

Using a computer, we can evaluate log(500) ~ 2.69897

To utilize the common or natural logarithm functions to evaluate expressions like
log, (10), we need to establish some additional properties.

Properties of Logs: Exponent Property
log, (A" )=rlog, (A)

To show why this is true, we offer a proof.
Since the logarithmic and exponential functions are inverses, b"®”* = A,
So A" = (p°=A)

Utilizing the exponential rule that states ( xP )q =x",
Ar — (bloglJ A)r — brlogbA
So then logb(Ar )= logb(brlogb A)

Again utilizing the inverse property on the right side yields the result
logb(Ar ): rlog, A

Rewrite log, (25) using the exponent property for logs.

Since 25 = 52,
log,(25)= 10g3(52)= 2log, 5
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Rewrite 41n(X) using the exponent property for logs.

Using the property in reverse, 4In(X) = ln(x4)

3. Rewrite using the exponent property for logs: ln(%j .
X

The exponent property allows us to find a method for changing the base of a logarithmic
expression.

Properties of Logs: Change of Base

Proof:

Let logb(A) = X. Rewriting as an exponential gives b* = A. Taking the log base ¢ of
both sides of this equation gives

log, b* =log, A

Now utilizing the exponent property for logs on the left side,

xlog, b=1og, A

Dividing, we obtain

loo A log, A
%8R oy replacing our expression for X, log, A= o8,
log. b log. b

With this change of base formula, we can finally find a good decimal approximation to
our question from the beginning of the section.

Exampleio . . . . |

Evaluate log,(10) using the change of base formula.

According to the change of base formula, we can rewrite the log base 2 as a logarithm
of any other base. Since our calculators can evaluate the natural log, we might choose
to use the natural logarithm, which is the log base €:

log,10  In10
log,2 In2
Using our calculators to evaluate this,

log, 10 =
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In10  2.30259
In2  0.69315

~3.3219

This finally allows us to answer our original question — the population of flies we
discussed at the beginning of the section will take 3.32 weeks to grow to 500.

Evaluate log,(100) using the change of base formula.

We can rewrite this expression using any other base. If our calculators are able to
evaluate the common logarithm, we could rewrite using the common log, base 10.

log,, 100 2

log, (100) = ~ — 2.6
&0 = 5~ 0.69897

While we were able to solve the basic exponential equation 2* =10 by rewriting in
logarithmic form and then using the change of base formula to evaluate the logarithm, the
proof of the change of base formula illuminates an alternative approach to solving
exponential equations.

Solving exponential equations:

1. Isolate the exponential expressions when possible

2. Take the logarithm of both sides

3. Utilize the exponent property for logarithms to pull the variable out of the exponent
4. Use algebra to solve for the variable.

xample 12

Solve 2* =10 for x.

Using this alternative approach, rather than rewrite this exponential into logarithmic
form, we will take the logarithm of both sides of the equation. Since we often wish to
evaluate the result to a decimal answer, we will usually utilize either the common log or
natural log. For this example, we’ll use the natural log:

1n(2x ) = In(10) Utilizing the exponent property for logs,
x1n(2) = In(10) Now dividing by In(2),
_IndO) 5 g61
In(2)

Notice that this result matches the result we found using the change of base formula.
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Example13 . . _ __ |

In the first section, we predicted the population (in billions) of India t years after 2008
by using the function f(t) =1.14(1+0.0134)". If the population continues following
this trend, when will the population reach 2 billion?

We need to solve for the t so that f(t) = 2

2=1.14(1.0134)" Divide by 1.14 to isolate the exponential expression
2

1.14
( j—tln10134) Divide both sides by In(1.0134)

_ h{l 14)

In(1.0134)

=1.0134 Take the logarithm of both sides of the equation

j 1 0134 ) Apply the exponent property on the right side

‘l\) »—t‘l\)
B

.J;

~ 42.23 years

If this growth rate continues, the model predicts the population of India will reach 2
billion about 42 years after 2008, or approximately in the year 2050.

4. Solve 5(0.93)* =10.

In addition to solving exponential equations, logarithmic expressions are common in
many physical situations.

Exampleld . . |
In chemistry, pH is a measure of the acidity or basicity of a liquid. The pH is related to
the concentration of hydrogen ions, [H'], measured in moles per liter, by the equation

pH =—log([H+]).

If a liquid has concentration of 0.0001 moles per liber, determine the pH.
Determine the hydrogen ion concentration of a liquid with pH of 7.

To answer the first question, we evaluate the expression —10g(0.0001). While we could

use our calculators for this, we do not really need them here, since we can use the
inverse property of logs:
—~10g(0.0001) = —log(10™* )= ~(—4) = 4
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To answer the second question, we need to solve the equation 7 = —log([ HY ]) . Begin

by isolating the logarithm on one side of the equation by multiplying both sides by -1:

7-1oe([#]

Rewriting into exponential form yields the answer
[H"]=107 =0.0000001 moles per liter.

Logarithms also provide us a mechanism for finding continuous growth models for
exponential growth given two data points.

A population grows from 100 to 130 in 2 weeks. Find the continuous growth rate.

Measuring t in weeks, we are looking for an equation P(t) = a€e" so that P(0) = 100 and
P(2) = 130. Using the first pair of values,
100=a€”’, so a=100.

Using the second pair of values,

130 =100€"* Divide by 100

% =g Take the natural log of both sides
In(1.3) = ln(erz) Use the inverse property of logs
In(1.3) =2r

p =009 01312

This population is growing at a continuous rate of 13.12% per week.

In general, we can relate the standard form of an exponential with the continuous growth
form by noting (using K to represent the continuous growth rate to avoid the confusion of
using I in two different ways in the same formula):

a(l+r)* =ae”

(l+r) =¥

1+r=¢€"

Using this, we see that it is always possible to convert from the continuous growth form
of an exponential to the standard form and vice versa. Remember that the continuous
growth rate K represents the nominal growth rate before accounting for the effects of
continuous compounding, while r represents the actual percent increase in one time unit
(one week, one year, etc.).
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Examplelo . |

A company’s sales can be modeled by the function S(t) = 5000€”'*", with t measured in
years. Find the annual growth rate.

Noting that 1+1 = e, then r =e”'* —1=0.1275, so the annual growth rate is 12.75%.
The sales function could also be written in the form S(t) = 5000(1 + 0.1275)".

| mportant Topics of this Section

The Logarithmic function as the inverse of the exponential function
Writing logarithmic & exponential expressions
Properties of logs
Inverse properties
Exponential properties
Change of base
Common log
Natural log
Solving exponential equations

1. log,(16)=2 =log, 4> = 2log, 4

2.6

3. —2In(x)
In(2)

Y L 95513
In(0.93)
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Section 7.3 Exercises

Rewrite each equation in exponential form

1. log,(Q)=m 2. log,(t)=k 3. log,(b)=cC 4. log,(9)=u
5.log(v)=t 6. log(r)=s 7. In(w)=n 8. In(x)=y
Rewrite each equation in logarithmic form.

9. 4=y 10. 5¥ =x 11. c* =k 12. n*=L
13.10* =b 14. 10P =v 15. e =h 16. &’ = x
Solve for Xx.

17. log3(x):2 18. log,(X)=3 19. log,(X)=-3 20. log (x)=-1
21. log(x)=3 22. log(x)=5 23. ln(x)=2 24, ln(x)=—2

Simplify each expression using logarithm properties.

1 1
25. log,(25) 26. log, (8) 27. log, (2—7] 28. log, (%]
29. log, (V6| 30. log, (5) 31. 1og(10,000)  32. log(100)
33. log(0.001) 34. 10g(0.00001)  35.In(e?) 36. In(€’)

Evaluate using your calculator.
37. log(0.04) 38. log(1045) 39. In(15) 40. In(0.02)

Solve each equation for the variable.

41. 5" =14 42.3*=23 43. 7X=% 44. 3*:%
45. e* =17 46. €* =12 47. 3% =38 48. 477 =44
49.1000(1.03)" =5000 50. 200(1.06) =550

51.3(1.04)" =8 52. 2(1.08)" =7

53. 50" =10 54.10e% =4

55. 10—8(%} =5 56.100-100 ij =70
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Convert the equation into continuous growth form, f (t)=ae“.

57

59

. f(t)=300(0.91) 58. f(t)=120(0.07)

. f(t)=10(1.04) 60. f(t)=1400(1.12)

Convert the equation into annual growth form, f (t) =ab'.

61

63.

65.

66.

67.

68.

69.

70.

71.

72.

. f(t)=150e""" 62. f (t)=100€"">

f (t)=50e" 64. f (t)=80e "

The population of Kenya was 39.8 million in 2009 and has been growing by about
2.6% each year. If this trend continues, when will the population exceed 45 million?

The population of Algeria was 34.9 million in 2009 and has been growing by about
1.5% each year. If this trend continues, when will the population exceed 45 million?

The population of Seattle grew from 563,374 in 2000 to 608,660 in 2010. If the
population continues to grow exponentially at the same rate, when will the population
exceed 1 million people?

The median household income (adjusted for inflation) in Seattle grew from $42,948
in 1990 to $45,736 in 2000. If it continues to grow exponentially at the same rate,
when will median income exceed $50,000?

A scientist begins with 100 mg of a radioactive substance. After 4 hours, it has
decayed to 80 mg. How long after the process began will it take to decay to 15 mg?

A scientist begins with 100 mg of a radioactive substance. After 6 days, it has
decayed to 60 mg. How long after the process began will it take to decay to 10 mg?

If $1000 is invested in an account earning 3% compounded monthly, how long will it
take the account to grow in value to $1500?

I£ $1000 is invested in an account earning 2% compounded quarterly, how long will it
take the account to grow in value to $1300?
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Section 7.4 Logarithmic Properties

In the previous section, we derived two important properties of logarithms, which
allowed us to solve some basic exponential and logarithmic equations.

Properties of Logs

Inverse Properties:
logb(bx): X
blogbx =X

Exponential Property:
log, (A’ ) =rlog,(A)

Change of Base:

1 A
log,, (A) = l(c))zc ((b))

While these properties allow us to solve a large number of problems, they are not
sufficient to solve all problems involving exponential and logarithmic equations.

Properties of Logs

Sum of Logs Property:
log,,(A)+log,,(C) = log, (AC)

Difference of Logs Property:
A
log,, (A) —log, (C) = log, (Ej

It’s just as important to know what properties logarithms do notsatisfy as to memorize
the valid properties listed above. In particular, the logarithm is not a linear function,
which means that it does not distribute: log(A + B) # log(A) + log(B).

To help in this process we offer a proof to help solidify our new rules and show how they
follow from properties you’ve already seen.

Let a=1log,(A) and ¢ =1log,(C), so by definition of the logarithm, b* = A and b° = C
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Using these expressions, AC = b°b°

Using exponent rules on the right, AC =b*™

Taking the log of both sides, and utilizing the inverse property of logs,
log, (AC) = log, (b*°)=a+c

Replacing a and ¢ with their definition establishes the result

log, (AC)=log, A+log, C

The proof for the difference property is very similar.

With these properties, we can rewrite expressions involving multiple logs as a single log,
or break an expression involving a single log into expressions involving multiple logs.

e
Write log,(5)+ log,(8)—1log,(2) as a single logarithm.

Using the sum of logs property on the first two terms,
log, (5) +log, (8) =log; (5 ) 8) = log; (40)

This reduces our original expression to log,(40)—log,(2)

Then using the difference of logs property,
40
log, (40)_ log, (2) = log, (?j = log, (20)

Evaluate 2log(5)+ log(4) without a calculator by first rewriting as a single logarithm.

On the first term, we can use the exponent property of logs to write
2l0g(5) = log(5* ) = log(25)

With the expression reduced to a sum of two logs, log(25)+log(4), we can utilize the
sum of logs property
log(25)+ log(4) = log(4 - 25) = log(100)

Since 100 = 10% we can evaluate this log without a calculator:
log(100) = log(10 ) =2

1. Without a calculator evaluate by first rewriting as a single logarithm:
log, (8) +log, (4)
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4

Rewrite ln( X J as a sum or difference of logs

First, noticing we have a quotient of two expressions, we can utilize the difference
property of logs to write

ln( X;yJ = ln(x4 y)— In(7)

Then seeing the product in the first term, we use the sum property
In(x*y)—1In(7) = In(x* )+ In(y) - In(7)

Finally, we could use the exponent property on the first term
In(x* )+ In(y) - In(7) = 4In(x) + In(y) — In(7)

Interestingly, solving exponential equations was not the reason

: .© o . value | log(value)
logarithms were originally developed. Historically, up until the 1 70.0000000
advent of calculators and computers, the power of logarithms was .
that these log properties reduced multiplication, division, roots, or 2 | 0.3010300
powers to be evaluated using addition, subtraction, division and 3104771213
multiplication, respectively, which are much easier to compute 4 | 0.6020600
without a calculator. Large books were published listing the 5 1 0.6989700
logarithms of numbers, such as in the table to the right. To find 6 ]0.7781513
the product of two numbers, the sum of log property was used. 7 | 0.8450980
Suppose for example we didn’t know the value of 2 times 3. 8 | 0.9030900
Using the sum property of logs: 9 | 0.9542425

10 | 1.0000000

log(2-3) =log(2) + log(3)

Using the log table,
log(2-3) = log(2) +1log(3) =0.3010300 + 0.4771213 = 0.7781513

We can then use the table again in reverse, looking for 0.7781513 as an output of the
logarithm. From that we can determine:

log(2-3) =0.7781513 = log(6) .
By doing addition and the table of logs, we were able to determine2-3=6.

Likewise, to compute a cube root like 8
log(3/8) == log(8'"* )= %10g(8) - %(0.9030900) = 0.3010300 = log(2)

So /8 =2.
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Although these calculations are simple and insignificant they illustrate the same idea that
was used for hundreds of years as an efficient way to calculate the product, quotient,
roots, and powers of large and complicated numbers, either using tables of logarithms or
mechanical tools called slide rules.

These properties still have other practical applications for interpreting changes in
exponential and logarithmic relationships.

Recall that in chemistry, pH = —log([ H*]) . If the concentration of hydrogen ions in a
liquid is doubled, what is the affect on pH?

Suppose C is the original concentration of hydrogen ions, and P is the original pH of the
liquid, so P =—log(C). If the concentration is doubled, the new concentration is 2C.

Then the pH of the new liquid is
pH = —log(2C)

Using the sum property of logs,
pH = —log(2C) = ~(log(2) + log(C)) = ~log(2) ~ log(C)

Since P = —log(C), the new pH is
pH = P—log(2) = P-0.301

When the concentration of hydrogen ions is doubled, the pH decreases by 0.301.

Log properties in solving equations
The logarithm properties often arise when solving problems involving logarithms.

Solve log(50x+25) —log(x)=2.

In order to rewrite in exponential form, we need a single logarithmic expression on the
left side of the equation. Using the difference property of logs, we can rewrite the left
side:

10g(50x+ 25j _,
X

Rewriting in exponential form reduces this to an algebraic equation:
S0X+25 102 Z100
X
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Solving,
50x+25=100x

25 = 50x
25

1
X = =-_
50 2

Checking this answer in the original equation, we can verify there are no domain issues,
and this answer is correct.

| 2. Solve log(x* —4) =1+log(x+2).

More complex exponential equations can often be solved in more than one way. In the
following example, we will solve the same problem in two ways — one using logarithm
properties, and the other using exponential properties.

In 2008, the population of Kenya was approximately 38.8 million, and was growing by
2.64% each year, while the population of Sudan was approximately 41.3 million and
growing by 2.24% each year”. If these trends continue, when will the population of
Kenya match that of Sudan?

We start by writing an equation for each population in terms of t, the number of years
after 2008.

Kenyd 1 = 38.8(1+0.0264)"
Sudar § = 41.3(1+0.0224)"

To find when the populations will be equal, we can set the equations equal
38.8(1.0264)" = 41.3(1.0224)'

For our first approach, we take the log of both sides of the equation
log(38.8(1.0264)' ) = log (41.3(1.0224)')

Utilizing the sum property of logs, we can rewrite each side,
log(38.8) +log(1.0264" ) = log(41.3) + log (1.0224')

Then utilizing the exponent property, we can pull the variables out of the exponent

2 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved
August 24,2010
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log(38.8) +tlog(1.0264) = log(41.3) +tlog(1.0224)

Moving all the terms involving t to one side of the equation and the rest of the terms to
the other side,

tlog(1.0264)—tlog(1.0224) = log(41.3) —log(38.8)

Factoring out the t on the left,
t(log(1.0264)—log(1.0224)) = log(41.3) —log(38.8)

Dividing to solve for t
log(41.3) —log(38.8)

" log(1.0264) — log (1.0224)

~15.991years until the populations will be equal.

Solve the problem above by rewriting before taking the log.

Starting at the equation
38.8(1.0264)' = 41.3(1.0224)'

Divide to move the exponential terms to one side of the equation and the constants to
the other side

1.0264' 413

1.0224° 388

Using exponent rules to group on the left,

(1.0264]t 413
1.0224) 388

Taking the log of both sides
1.0264 ) 413

log =log| —
1.0224 38.8

Utilizing the exponent property on the left,
1.0264 41.3

tlog| —— |=log| ——
1.0224 38.8

Dividing gives
o 41.3
®38.8

T 1.0264
log| ———
1.0224

~15.991 years
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While the answer does not immediately appear identical to that produced using the
previous method, note that by using the difference property of logs, the answer could be
rewritten:

{2

_ 38.8)  log(41.3)—log(38.8)

- 0g(1.0264j " log(1.0264) —log(1.0224)
1.0224

While both methods work equally well, it often requires fewer steps to utilize algebra
before taking logs, rather than relying solely on log properties.

3. Tank A contains 10 liters of water, and 35% of the water evaporates each week.
Tank B contains 30 liters of water, and 50% of the water evaporates each week. In how

many weeks will the tanks contain the same amount of water?

mportant Topics of this Section

Inverse

Exponential

Change of base

Sum of logs property

Difference of logs property
Solving equations using log rules

Try it Now Answers

1. 5
2. 12
3. 4.1874 weeks
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Section 7.4 Exercises

Simplify to a single logarithm, using logarithm properties.

1. log,(28)—1log,(7)

3. —log, (%)

5. log, (%j%rlog} (50)

1
7. glog7 (8)

9. log(2x4)+log(3x5)
11. In(6x")—In(3x’)
13. 2log(x)+3log(x+1)

15, log(x)—%log(y)+3log(z)

2. log,(32)—log, (4)

1
4. —log, (gj

6. log, (3)+1og,(7)
8. l1og5(36)
2
10. 1n(4x2)+ln(3x3)
12. log(12x*)~log (4x)

14. 310g(x)+210g(xz)

16. 210g(x)+§10g(y)—10g(2)

Use logarithm properties to expand each expression.

X15y13

17. log( =D
a>

19. In| ——

(ve)

21. log(\/X3y"4 )

23. h{y ILJ
-y

25. log(xzy3{/W)

a’b’
18. log( G j
213
20. ln[a b j
c

22. log(\/xTyz)

X
24. h{ﬂ}
26. log(x3y4m)



Solve each equation for the variable.
27 44X77 — 39X76

29. 17(1.14)" =19(1.16)"

3 1 ) 560.121 — loé).Ogt

33. log, (7x+6)=3

35. 2In(3x)+3=1

37. log(x*)=2

39. log(x)+log(x+3)=3

41. log(x+4)—log(x+3)=1

43. log, (X*)—logy(x+1) =1

45. log(x+12) =log(x)+log(12)

47. In(x)+In(x-3)=In(7x)
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28.

30.

32.

34.

36.

38.

40.

42.

44,

46.

48.

X5 _ 7%
20(1.07)" =8(1.13)"

300t _ 14t

log,(2X+4) =2
4In(5x)+5=2

log(x*) =3
log(x+4)+log(x)=9
log(x+5)—log(x+2)=2
log,(x*)—log,(X+2)=5
log(x+15) =log( x)+log(15)

In(X)+In(x—6)=In(6x)
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Section 7.5 Graphs of Logarithmic Functions

Recall that the exponential function f(X) =2 produces this table of values
-1 0 1 2 3

[\

X -3 -

fx)

1 2 4 8

1
2

NG

1
8

Since the logarithmic function is an inverse of the exponential, g(X) =log,(X produces
the table of values

X 1 1 1 1 2 4 8
8 4 2
9(x) 3 2 -1 0 1 2 3

In this second table, notice that
1) As the input increases, the output increases.
2) As input increases, the output increases more slowly.
3) Since the exponential function only outputs positive values, the logarithm can
only accept positive values as inputs, so the domain of the log function is (0,).

4) Since the exponential function can accept all real numbers as inputs, the logarithm
can output any real number, so the range is all real numbers or (—c0,0).

Sketching the graph, notice that as the input 41
approaches zero from the right, the output of RS
the function grows very large in the negative 24
direction, indicating a vertical asymptote at il
x=0. ||
In symbolic notation we write 2 7T 2 3 4 5 6 7 & 9 It
as X—> 0", f(X) > —0, and 7
asX —> o, f(X) > © 2;
4]

Graphical Features of the Logarithm

Graphically, in the function g(X) =log,(X)

The graph has a horizontal intercept at (1, 0)
The graph has a vertical asymptote at X =0
The graph is increasing and concave down
The domain of the function is X> 0, or (0, )

The range of the function is all real numbers, or (—o0, )

When sketching a general logarithm with base b, it can be helpful to remember that the
graph will pass through the points (1, 0) and (b, 1).
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To get a feeling for how the base affects the shape of the graph, examine the graphs
below.

log, (x)
In(x)

(LA NERLY TR -

log(X)

T/ 2 3 456 7 8 0101

TS

Notice that the larger the base, the slower the graph grows. For example, the common
log graph, while it grows without bound, it does so very slowly. For example, to reach an
output of 8, the input must be 100,000,000.

Another important observation made was the domain of the logarithm. Like the
reciprocal and square root functions, the logarithm has a restricted domain which must be
considered when finding the domain of a composition involving a log.

Find the domain of the function f(x) =1log(5—2x)

The logarithm is only defined with the input is positive, so this function will only be
defined when 5—2x> 0. Solving this inequality,
—-2X>-5

5
X< =
2

) . . 5 .. ) 5
The domain of this function is X < > or in interval notation, (— oo,—]

1. Find the domain of the function f(X)=1log(x—5)+ 2; before solving this as an
inequality, consider how the function has been transformed.
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Transformations of the Logarithmic Function

Transformations can be applied to a logarithmic function using the basic transformation
techniques, but as with exponential functions, several transformations result in interesting
relationships.

log, x
First recall the change of base property tells us that log, X = 0g X _ 1

= log, x
log.b log.b S

From this, we can see that log, X is a vertical stretch or compression of the graph of the
log, X graph. This tells us that a vertical stretch or compression is equivalent to a change

of base. For this reason, we typically represent all graphs of logarithmic functions in
terms of the common or natural log functions.

Next, consider the effect of a horizontal compression on the graph of a logarithmic
function. Considering f (X) =log(cX), we can use the sum property to see

f (X) =log(cx) = log(c) + log(x)

Since log(C) is a constant, the effect of a horizontal compression is the same as the effect
of a vertical shift.

Sketch f(X)=1In(x) and g(x) =In(X)+2.

Graph};l_lg these,
41 g(X) =In(x) + 2
EE
2] f (X) = In(x)
i
B
-1
_——
-3
4]

Note that, this vertical shift could also be written as a horizontal compression:
g(x) = In(X) + 2 = In(X) + In(e*) = In(e’X) .

While a horizontal stretch or compression can be written as a vertical shift, a horizontal
reflection is unique and separate from vertical shifting.

Finally, we will consider the effect of a horizontal shift on the graph of a logarithm
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Example3 |

Sketch a graph of f(X) =In(x+2).

This is a horizontal shift to the left by 2 units. Notice that none of our logarithm rules

allow us rewrite this in another form, so the effect of this transformation is unique.

Shifting the graph,
4 4

5 4 5 2

1
—
‘-k'-:aul‘lﬂ-l-.\--.t\)'-.-u

Notice that due to the horizontal shift, the vertical asymptote shifted to X = -2, and the
domain shifted to (—2,0).

Combining these transformations,

Exampled |

Sketch a graph of f(X) =5log(—x+2).

Factoring the inside as f(X) = 5log(—(X—2)) reveals that this graph is that of the

common logarithm, horizontally reflected, vertically stretched by a factor of 5, and
shifted to the right by 2 units.

The vertical asymptote will be shifted to
X =2, and the graph will have domain
(0,2). A rough sketch can be created by
using the vertical asymptote along with a
couple points on the graph, such as
f (1) =5log(-1+2)=5log(1)=0 ST TS R R —
f (—8) = 5log(—(—8) +2) = 5log(10) = 5 M

2. Sketch a graph of the function f(x)=-3log(x—2)+1.
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Transformations of Logs
Any transformed logarithmic function can be written in the form
f(x)=alog(x— b+ k, or f(x)= alog(—( X— b)) + k if horizontally reflected,
where
X = bis the vertical asymptote.

Find an equation for the logarithmic function graphed below.
j 1

2 3 45 6 7

This graph has a vertical asymptote at X =—2 and has been vertically reflected. We do
not know yet the vertical shift (equivalent to horizontal stretch) or the vertical stretch

(equivalent to a change of base). We know so far that the equation will have form
f(X) =—alog(x+2)+k

It appears the graph passes through the points (—1, 1) and (2, —1). Substituting in (-1, 1),
1=-alog(-1+2)+k

1=-alog(l)+k
1=k

Next, substituting in (2, —1),
—l1=-alog(2+2)+1

—2 =-alog(4)
2
a=
log(4)

This gives us the equation f(X)=-— log(x+2)+1.

log(4)
This could also be written as f (X) =—-2log,(X+2)+1.

Flashback

3. Write the domain and range of the function graphed in Example 5, and describe its
long run behavior.
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Important Topics of this Section

Graph of the logarithmic function (domain and range)
Transformation of logarithmic functions

Creating graphs from equations

Creating equations from graphs

Try it Now Answers

1. Domain: {X| X>5}
5-_

B T
! | 1 |
T T T T

HRERER R EEREEEE:

Flashback Answers
3. Domain: {x|x>-2}, Range: all real numbers; As X — -2, f(X) - ooand as
X— o, f(X) > —.
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Section 7.5 Exercises

For each function, find the domain and the vertical asymptote.

1. f(x)=log(x-5) 2. f(x)=log(x+2)

3. f(x)=In(3-x) 4. f(x)=In(5-x)

5. f(x)=log(3x+1) 6. f(x)=log(2x+5)

7. f(x)=3log(—x)+2 8. f(x)=2log(—x)+1

Sketch a graph of each pair of function.

9. f(x)=log(x),9(x)=In(x) 10. f(x)=1log,(X),9(x) =log, (X
Sketch each transformation.

11. f(x)=2log(x) 12. f(x)=3In(x)

13. f(x)=1In(-x) 14. f (x)=—log(x)

15. f (x)=log,(x+2) 16. f (x)=log, (x+4)

Find a formula for the transformed logarithm graph shown.

¥ 54
N \i_
R E
24 2]
44 1
'1J'fb-}Ejz'}i_% 'sl'fb}E::z 13
2 2
-3 7
i 4
17. -5 18. -3 4
54 5
41 4
s i
24 2
i i
54 2-}Ejé_}i_% S5 }E}é_}i_%
-2 ¥
=1 f\
4-\ -4
19. -5 20. 5
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Find a formula for the transformed logarithm graph shown.

2543 Ry T I I I B R

L
Lol Wl \‘\ Hy e 42 Un
T T F 1 P I

21. -5 22. -5

[C N LT S
[C N LT S

s 1 2 3.4 5 s i 343
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Section 7.6 Exponential and Logarithmic Models

While we have explored some basic applications of exponential and logarithmic
functions, in this section we explore some important applications in more depth.

Radioactive Decay
In an earlier section, we discussed radioactive decay — the idea that radioactive isotopes

change over time. One of the common terms associated with radioactive decay is half-
life.

The half-life of a radioactive isotope is the time it takes for half the substance to decay.

Given the basic exponential growth/decay equation h(t) = ab', half-life can be found by

solving for when half the original amount remains; by solving 1 a=a(b)', or more

simply % =b'. Notice how the initial amount is irrelevant when solving for half-life.

Bismuth-210 is an isotope that decays by about 13% each day. What is the half-life of
Bismuth-210?

We were not given a starting quantity, so we could either make up a value or use an
unknown constant to represent the starting amount. To show that starting quantity does
not affect the result, let us denote the initial quantity by the constant 8. Then the decay

of Bismuth-210 can be described by the equation Q(d) = a(0.87)¢.

To find the half-life, we want to determine when the remaining quantity is half the

original: %a. Solving,

%a =a(0.87)° Dividing by &,
% =0.87¢ Take the log of both sides
log(%j = 10g(0.87d ) Use the exponent property of logs

log(%j = dlog(0.87) Divide to solve for d
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log (;j
=——"—"2—~4.977 days
log(0.87)

This tells us that the half-life of Bismuth-210 is approximately 5 days.

xample 2

Cesium-137 has a half-life of about 30 years. If you begin with 200mg of cesium-137,
how much will remain after 30 years? 60 years? 90 years?

Since the half-life is 30 years, after 30 years, half the original amount, 100mg, will
remain.

After 60 years, another 30 years have passed, so during that second 30 years, another
half of the substance will decay, leaving 50mg.

After 90 years, another 30 years have passed, so another half of the substance will
decay, leaving 25mg.

Cesium-137 has a half-life of about 30 years. Find the annual decay rate.

Since we are looking for an annual decay rate, we will use an equation of the form
Q(t)=a(l+r)". We know that after 30 years, half the original amount will remain.
Using this information

%a =a(l+r)” Dividing by a

% =(1+r)* Taking the 30™ root of both sides
3{/% =1+r Subtracting one from both sides,

r= 3\0/% -1=-0.02284

This tells us cesium-137 is decaying at an annual rate of 2.284% per year.

Chlorine-36 is eliminated from the body with a biological half-life of 10 days’. Find the
daily decay rate.

3 http://www.ead.anl.gov/pub/doc/chlorine.pdf
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Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly
used for dating historical artifacts. Carbon-14 has a half-life of 5730 years. If a bone
fragment is found that contains 20% of its original carbon-14, how old is the bone?

To find how old the bone is, we first will need to find an equation for the decay of the
carbon-14. We could either use a continuous or annual decay formula, but opt to use
the continuous decay formula since it is more common in scientific texts. The half life
tells us that after 5730 years, half the original substance remains. Solving for the rate,

—a=ae Dividing by a

% =" Taking the natural log of both sides

ln(%j = 1n(e'573°) Use the inverse property of logs on the right side
ln(%j =5730r Divide by 5730

h{lj

2

==/ ~0.000121
5730

Now we know the decay will follow the equation Q(t) = ae """ . To find how old

the bone fragment is that contains 20% of the original amount, we solve for t so that
Q(t)=0.20a.

0.20a = g o121t
0.20 = g 0000121t
In(0.20) = ln(e‘°'°°°121t)
In(0.20) = —0.000121t
In(0.20)

=—————= 13301 years
—-0.000121

The bone fragment is about 13,300 years old.

2. In Example 2, we learned that Cesium-137 has a half-life of about 30 years. If you

begin with 200mg of cesium-137, will it take more or less than 230 years until only 1
milligram remains?
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Doubling Time
For decaying quantities, we asked how long it takes for half the substance to decay. For
growing quantities we might ask how long it takes for the quantity to double.

Doubling Time
The doubling time of a growing quantity is the time it takes for the quantity to double.

Given the basic exponential growth equation h(t) = ab', doubling time can be found by
solving for when the original quantity has doubled; by solving 2a = a(b)*, or more

simply 2 =b*. Again notice how the initial amount is irrelevant when solving for
doubling time.

Cancer cells sometimes increase exponentially. If a cancerous growth contained 300
cells last month and 360 cells this month, how long will it take for the number of cancer
cells to double?

Defining t to be time in months, with t = 0 corresponding to this month, we are given
two pieces of data: this month, (0, 360), and last month, (-1, 300).

From this data, we can find an equation for the growth. Using the form C(t) = ab', we
know immediately a= 360, giving C(t) =360b'. Substituting in (-1, 300),
300 =360b™"

300:@
b
b=>0_1>
300

This gives us the equation C(t) =360(1.2)"

To find the doubling time, we look for the time until we have twice the original amount,
so when C(t) = 2a.

2a=a(l1.2)'
2=(1.2)

log(2) = log(1.2t)
log(2) = tlog(1.2)

t= log_(2) ~ 3.802 months.
log(1.2)

It will take about 3.8 months for the number of cancer cells to double.
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Use of a new social networking website has been growing exponentially, with the
number of new members doubling every 5 months. If the site currently has 120,000
users and this trend continues, how many users will the site have in 1 year?

We can use the doubling time to find a function that models the number of site users,
and then use that equation to answer the question. While we could use an arbitrary a as

we have before for the initial amount, in this case, we know the initial amount was
120,000.

If we use a continuous growth equation, it would look like N(t) = 120€" , measured in
thousands of users after t months. Based on the doubling time, there would be 240
thousand users after 5 months. This allows us to solve for the continuous growth rate:
240 =120e"

2=¢"
In2 =5r
r =1n?2z 0.1386

Now that we have an equation, N(t) =120e”"**" | we can predict the number of users
after 12 months:

N(12) =120€*"**"® = 633.140 thousand users.

So after 1 year, we would expect the site to have around 633,140 users.

3. If tuition at a college is increasing by 6.6% each year, how many years will it take
for tuition to double?

Newton’s Law of Cooling

When a hot object is left in surrounding air that is at a lower temperature, the object’s
temperature will decrease exponentially, leveling off towards the surrounding air
temperature. This "leveling off" will correspond to a horizontal asymptote in the graph
of the temperature function. Unless the room temperature is zero, this will correspond to
a vertical shift of the generic exponential decay function.
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The temperature of an object, T, in surrounding air with temperature Ts will behave
according to the formula

T(t)=ae" +T,

Where

tis time

ais a constant determined by the initial temperature of the object

k is a constant, the continuous rate of cooling of the object

While an equation of the form T(t) = ab' + T, could be used, the continuous growth form
1s more common.

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees
Fahrenheit, and is placed into a 35 degree refrigerator. After 10 minutes, the
cheesecake has cooled to 150 degrees. If you must wait until the cheesecake has cooled
to 70 degrees before you eat it, how long will you have to wait?

Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s
temperature will decay exponentially towards 35, following the equation
T(t)=ae" +35

We know the initial temperature was 165, so T(0) =165 . Substituting in these values,
165 =ae"’ +35

165=a+35

a=130

We were given another pair of data, T(10) =150, which we can use to solve for k
150 =130€""" +35

115 =130e""?
115 _ Q10K
130

In g =10k
130

115
ln(woj
k=——""2=-0.0123
10

Together this gives us the equation for cooling: T(t) =130 "> +35.
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Now we can solve for the time it will take for the temperature to cool to 70 degrees.
70 =130e "% +35
35 — 130e70.0123'[
i _ @ 0.0123t
130
In ECR —0.0123t
130

35
ln(mj
=—""7 ~106.68

©-0.0123

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool.
Of course, if you like your cheesecake served chilled, you’d have to wait a bit longer.

4. A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One
hour later the temperature has risen to 45 degrees. How long will it take for the
temperature to rise to 60 degrees?

Logarithmic Scales

For quantities that vary greatly in magnitude, a standard scale of measurement is not
always effective, and utilizing logarithms can make the values more manageable. For
example, if the average distances from the sun to the major bodies in our solar system are
listed, you see they vary greatly.

Planet Distance (millions of km)
Mercury 58

Venus 108

Earth 150

Mars 228

Jupiter 779

Saturn 1430

Uranus 2880

Neptune 4500

Placed on a linear scale — one with equally spaced values — these values get bunched up.

Mercury ‘
Venus Jupiter Saturn Uranus Neptune

::‘L:::::l::::::lw

0 500 1000 1500 2000 2500 3000 3500 4000 4500
distance
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However, computing the logarithm of each value and plotting these new values on a

number line results in a more manageable graph, and makes the relative distances more
4

apparent.

Planet Distance(millions of km) | log(distance)
Mercury 58 1.76
Venus 108 2.03
Earth 150 2.18
Mars 228 2.36
Jupiter 779 2.89
Saturn 1430 3.16
Uranus 2880 3.46
Neptune 4500 3.65
Mercury VenuSEarth Mars  Jupiter Saturn Uranus Neptune
I\ A l | | | i | ll | | ll | | >
T | I
1.5 1.75 % 225 25 275 3 325 35 3.75 i log(distance)
10°=100 10°=100 10*=10000

Sometimes, as shown above, the scale on a logarithmic number line will show the log
values, but more commonly the original values are listed as powers of 10, as shown
below.

Estimate the value of point P on the log scale above

The point P appears to be half way between -2 and -1 in log value, so if V is the value of
this point,
logV)~—-1.5 Rewriting in exponential form,

V ~107"° =0.0316

* 1t is interesting to note the large gap between Mars and Jupiter on the log number line.
The asteroid belt, which scientists believe consists of the remnants of an ancient planet, is
located there.
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Place the number 6000 on a logarithmic scale.

Since log(6000) = 3.8, this point would belong on the log scale about here:

6000

‘IIIIIIIIIIII.IIIIIII'
102 10" 10 100 10> 10 10* 10° 10° 107

5. Plot the data in the table below on a logarithmic scale’.
Source of Sound/Noise .Ap proximate Sound Pressure
in pPa (micro Pascals)
Launching of the Space Shuttle 2,000,000,000
Full Symphony Orchestra 2,000,000
Diesel Freight Train at High Speed at 25 m | 200,000
Normal Conversation 20,000
Soft Whispering at 2 m in Library 2,000
Unoccupied Broadcast Studio 200
Softest Sound a human can hear 20

Notice that on the log scale above Example 8, the visual distance on the scale between
points A and B and between C and D is the same. When looking at the values these
points correspond to, notice B is ten times the value of A, and D is ten times the value of
C. A visual linear difference between points corresponds to a relative (ratio) change
between the corresponding values.

Logarithms are useful for showing these relative changes. For example, comparing
$1,000,000 to $10,000, the first is 100 times larger than the second.
1,000,000 _ 100 = 102
10,000
Likewise, comparing $1000 to $10, the first is 100 times larger than the second.

1,000 =100=10?
10

When one quantity is roughly ten times larger than another, we say it is one order of
magnitude larger. In both cases described above, the first number was two orders of
magnitude larger than the second.

> From http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/ml/intro_5.html, retrieved
Oct 2,2010
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Notice that the order of magnitude can be found as the common logarithm of the ratio of
the quantities. On the log scale above, B is one order of magnitude larger than A, and D
is one order of magnitude larger than C.

Orders of Magnitude

Given two values A and B, to determine how many orders of magnitudeA is greater
than B,

Difference in orders of magnitude = log(gj

On the log scale above Example 8, how many orders of magnitude larger is C than B?

The value B corresponds to 10° =100
The value C corresponds to 10° = 100,000

5
100,000 _ 1000 = g =10°. The log of this value is 3.
100 10

C is three orders of magnitude greater than B, which can be seen on the log scale by the
visual difference between the points on the scale.

6. Using the table from Try it Now #5, what is the difference of order of magnitude
between the softest sound a human can hear and the launching of the space shuttle?

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for
earthquakes. This scale is commonly and mistakenly called the Richter Scale, which was
a very similar scale succeeded by the MMS.

The relative change is

Moment Magnitude Scale
For an earthquake with seismic moment § a measurement of earth movement, the
MMS value, or magnitude of the earthquake, is

M = glog S
3 S,

Where S, =10 is a baseline measure for the seismic moment.
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Examplell . .. . |
If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0,
how much more powerful (in terms of earth movement) is the second earthquake?

Since the first earthquake has magnitude 6.0, we can find the amount of earth
movement. The value of § is not particularly relevant, so we will not replace it with its
value.

6.0 = glog(iJ
3 S,

6.0(§j = log(ij

2 Sy
9= log(iJ

Sy

S
SO
S=10’S,

Doing the same with the second earthquake with a magnitude of 8.0,

8.0= glog S
3 S

S=10"8,

From this, we can see that this second value’s earth movement is 1000 times as large as
the first earthquake.

One earthquake has magnitude of 3.0. If a second earthquake has twice as much earth
movement as the first earthquake, find the magnitude of the second quake.

Since the first quake has magnitude 3.0,
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10% = >
SO
S=10*'S,

Since the second earthquake has twice as much earth movement, for the second quake,
S=2-10"’S,

Finding the magnitude,
2 X 1 4.5
M = zlog(o_so]
3 Sy

M = %log(2 110*)~3.201

The second earthquake with twice as much earth movement will have a magnitude of
about 3.2.

In fact, using log properties, we could show that whenever the earth movement doubles,
the magnitude will increase by about 0.201:

M zzlog 25 :%log 2-i
3 S, 3 S,

2 S
M = g(log(Z) + log[gon

2 2 S
M ="log(2)+ —log| —
3 g(2) 3 g[sj

0

M = 0.201+210g S
3 S

0

This illustrates the most important feature of a log scale: that multiplyingthe quantity
being considered will addto the scale value, and vice versa.
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mportant Topics of this Section

Radioactive decay

Half life

Doubling time

Newton’s law of cooling
Logarithmic Scales
Orders of Magnitude
Moment Magnitude scale

Try it Now Answers

l.r= I\OE —1=-0.067 or 6.7% is the daily rate of decay.

2. Less than 230 years, 229.3157 to be exact
3. It will take 10.845 years, or approximately 11 years, for tuition to double.
4. 6.026 hours

5.
Broadcast  conyersation
Softest T00M  Soft ~ Symphony Space
Sound l Whisper Train l Shuttle
«l Y| | V] Ill v Ili e Ill -
10" 100 10° 10* 10° 10° 100 10° 10° 10"
2x10° g . . .
6 =10" The sound pressure in puPa created by launching the space shuttle is 8

©2x10'
orders of magnitude greater than the sound pressure in pPa created by the softest sound
a human ear can hear.
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Section 7.6 Exercises

1. You go to the doctor and he injects you with 13 milligrams of radioactive dye. After
12 minutes, 4.75 milligrams of dye remain in your system. To leave the doctor's
office, you must pass through a radiation detector without sounding the alarm. If the
detector will sound the alarm whenever more than 2 milligrams of the dye are in your
system, how long will your visit to the doctor take, assuming you were given the dye
as soon as you arrived and the amount of dye decays exponentially?

2. You take 200 milligrams of a headache medicine, and after 4 hours, 120 milligrams
remain in your system. If the effects of the medicine wear off when less than 80
milligrams remain, when will you need to take a second dose, assuming the amount
of medicine in your system decays exponentially?

3. The half-life of Radium-226 is 1590 years. If a sample initially contains 200 mg,
how many milligrams will remain after 1000 years?

4. The half-life of Fermium-253 is 3 days. If a sample initially contains 100 mg, how
many milligrams will remain after 1 week?

5. The half-life of Erbium-165 is 10.4 hours. After 24 hours a sample still contains 2
mg. What was the initial mass of the sample, and how much will remain after another
3 days?

6. The half-life of Nobelium-259 is 58 minutes. After 3 hours a sample still contains10
mg. What was the initial mass of the sample, and how much will remain after another
8 hours?

7. A scientist begins with 250 grams of a radioactive substance. After 225 minutes, the
sample has decayed to 32 grams. Find the half-life of this substance.

8. A scientist begins with 20 grams of a radioactive substance. After 7 days, the sample
has decayed to 17 grams. Find the half-life of this substance.

9. A wooden artifact from an archeological dig contains 60 percent of the carbon-14 that
is present in living trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)
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10. A wooden artifact from an archeological dig contains 15 percent of the carbon-14 that
is present in living trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

11. A bacteria culture initially contains 1500 bacteria and doubles in size every half hour.
Find the size of the population after: a) 2 hours b) 100 minutes

12. A bacteria culture initially contains 2000 bacteria and doubles in size every half hour.
Find the size of the population after: a) 3 hours b) 80 minutes

13. The count of bacteria in a culture was 800 after 10 minutes and 1800 after 40
minutes.
a. What was the initial size of the culture?
b. Find the doubling time.
c. Find the population after 105 minutes.
d. When will the population reach 11000?

14. The count of bacteria in a culture was 600 after 20 minutes and 2000 after 35
minutes.
a. What was the initial size of the culture?
b. Find the doubling time.
c. Find the population after 170 minutes.
d. When will the population reach 12000?

15. Find the time required for an investment to double in value if invested in an account
paying 3% compounded quarterly.

16. Find the time required for an investment to double in value if invested in an account
paying 4% compounded monthly

.013t

17. The number of crystals that have formed after t hours is given by n(t)=20€’

How long does it take the number of crystals to double?

18. The number of building permits in Pasco t years after 1992 roughly followed the
equation n(t)=400€"""". What is the doubling time?
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19. A turkey is pulled from the oven when the internal temperature is 165° Fahrenheit,
and is allowed to cool in a 75° room. If the temperature of the turkey is 145° after
half an hour,

a. What will the temperature be after 50 minutes?
b. How long will it take the turkey to cool to 110°?

20. A cup of coffee is poured at 190° Fahrenheit, and is allowed to cool in a 70° room. If
the temperature of the coffee is 170° after half an hour,
a. What will the temperature be after 70 minutes?
b. How long will it take the coffee to cool to 120°?

21. The population of fish in a farm-stocked lake after t years could be modeled by the
1000

1 + 9e—0.6t :

Sketch a graph of this equation.

What is the initial population of fish?

What will the population be after 2 years?

How long will it take for the population to reach 9007

equation P(t) =

e o o

22. The number of people in a town who have heard a rumor after t days can be modeled
500

1+49e°7

Sketch a graph of this equation.

How many people started the rumor?

by the equation N (t)=

How many people have heard the rumor after 3 days?
How long will it take until 300 people have heard the rumor?

a e oe

Find the value of the number shown on each logarithmic scale

———t—— e ———+————+ il{:lg:r'ﬂ + — Elé:lg:r'ﬂ t
73 5 4 3 2 4 0 1 2 3 4 5 ) 4.—5 4 3 2 1 0 I 2 3 4 35
—t—t—t—t——t———— ilﬂg:r'ﬂ' f et ——————t+———— Elr:lg:rﬂ t
75 S5 4 3 2 10 1 2 3 4 5 ) 6._5 4 3 2 4 0 1 2 3 4 35

Plot each set of approximate values on a logarithmic scale.

27. Intensity of sounds: Whisper: 10" W/ nT, Vacuum: 10~*W / nt, Jet: 10° W/ nt

28. Mass: Amoeba: 10~ g, Human: 10° g, Statue of Liberty: 10°g
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29.

30.

31.

32.

33.

34.

The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later
there was an earthquake with magnitude 4.7 that caused only minor damage. How
many times more intense was the San Francisco earthquake than the second one?

The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later
there was an earthquake with magnitude 6.5 that caused less damage. How many
times more intense was the San Francisco earthquake than the second one?

One earthquake has magnitude 3.9 on the MMS scale. If a second earthquake has 750
times as much energy as the first, find the magnitude of the second quake.

One earthquake has magnitude 4.8 on the MMS scale. If a second earthquake has
1200 times as much energy as the first, find the magnitude of the second quake.

A colony of yeast cells is estimated to contain 10° cells at time t = 0. After collecting
experimental data in the lab, you decide that the total population of cells at time t

hours is given by the function f (t)=10°€"*"" [UW]

a. How many cells are present after one hour?

b. How long does it take of the population to double?.

c. Cherie, another member of your lab, looks at your notebook and says: “That
formula is wrong, my calculations predict the formula for the number of yeast

cells is given by the function. f (t) =10° (2.042727)0'693147t .’ Should you be

worried by Cherie’s remark?

d. Anja, a third member of your lab working with the same yeast cells, took
these two measurements: 7.246x10°cells after 4 hours; 16.504x10° cells
after 6 hours. Should you be worried by Anja’s results? If Anja’s
measurements are correct, does your model over estimate or under estimate
the number of yeast cells at time t?

As light from the surface penetrates water, its intensity is diminished. In the clear

waters of the Caribbean, the intensity is decreased by 15 percent for every 3 meters of

depth. Thus, the intensity will have the form of a general exponential function. [UW]
a. If the intensity of light at the water’s surface is |, find a formula for 1(d), the

intensity of light at a depth of d meters. Your formula should depend on | and

d.
b. At what depth will the light intensity be decreased to 1% of its surface
intensity?



Section 7.6 Exponential and Logarithmic Models 471

35. Myoglobin and hemoglobin are oxygen-carrying molecules in the human body.
Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles
through the bloodstream. Myoglobin is found in muscle cells. The function

Y=M ( p) = 1+pp calculates the fraction of myoglobin saturated with oxygen at a

given pressure p Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means
half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need
to use something called the “partial pressure”, but the distinction is not important for

2.8
this problem.) Likewise, the function Y = H( p)= P Calculates the fraction

- 2628 + pz.s
of hemoglobin saturated with oxygen at a given pressure p. [UW]
a. The graphs of M(p) and H(p) are
given here on the domain
0 < p < 100; which is which? 0.8
b. If the pressure in the lungs is 100 0.6
Torrs, what is the level of oxygen 0.4

saturation of the hemoglobin in the
lungs?

fraction

0.2

20 40 50 B0 1ooF

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen
saturation of myoglobin in an active muscle? What is the level of hemoglobin
in an active muscle?

d. Define the efficiency of oxygen transport at a given pressure p to be
M (p)—H( p). What is the oxygen transport efficiency at 20 Torrs? At 40

Torrs? At 60 Torrs? Sketch the graph of M (p)— H( p); are there conditions

under which transport efficiency is maximized (explain)?

36. The length of some fish are modeled by a von Bertalanffy growth function. For
Pacific halibut, this function has the form L (t) = 200(1 — 0.9576_0'1&) where L(t) is

the length (in centimeters) of a fish t years old. [UW]
a. What is the length of a newborn halibut at birth?
b. Use the formula to estimate the length of a 6—year—old halibut.
c. At what age would you expect the halibut to be 120 cm long?
d. What is the practical (physical) significance of the number 200 in the formula
for L(t)?
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37. A cancer cell lacks normal biological growth regulation and can divide continuously.

38.

39.

Suppose a single mouse skin cell is cancerous and its mitotic cell cycle (the time for
the cell to divide once) is 20 hours. The number of cells at time t grows according to
an exponential model. [UW]

a. Find a formula C(t) for the number of cancerous skin cells after t hours.

b. Assume a typical mouse skin cell is spherical of radius 50x10~* cm. Find the
combined volume of all cancerous skin cells after t hours. When will the
volume of cancerous cells be 1 cm’?

A ship embarked on a long voyage. At the start of the voyage, there were 500 ants in
the cargo hold of the ship. One week into the voyage, there were 800 ants. Suppose
the population of ants is an exponential function of time. [UW]

a. How long did it take the population to double?

b. How long did it take the population to triple?

c. When were there be 10,000 ants on board?

d. There also was an exponentially growing population of anteaters on board. At
the start of the voyage there were 17 anteaters, and the population of anteaters
doubled every 2.8 weeks. How long into the voyage were there 200 ants per
anteater?

The populations of termites and spiders in a certain house are growing exponentially.
The house contains 100 termites the day you move in. After 4 days, the house
contains 200 termites. Three days after moving in, there are two times as many
termites as spiders. Eight days after moving in, there were four times as many
termites as spiders. How long (in days) does it take the population of spiders to
triple? [UW]
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Section 7.7 Fitting Exponential Models to Data

In the previous section, we saw number lines using logarithmic scales. It is also common
to see two dimensional graphs with one or both axes using a logarithmic scale.

One common use of a logarithmic scale on the vertical axis is to graph quantities that are
changing exponentially, since it helps reveal relative differences. This is commonly used
in stock charts, since values historically have grown exponentially over time. Both stock
charts below show the Dow Jones Industrial Average, from 1928 to 2010.

Jul 1, 1929 :  wm ~DIT 343.45

14K
12K

10K

[ .
1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1930 1985 1990 1995 2000 2005 2010

Ockt 1, 1928 : == ™~DIT 300

13k

10K

6K
4K

2K

1920 1035 1940 1045 1050 1955 1060 1065 1970 1075 1080 1085 1900 10495 2000 2005 2010

Both charts have a linear horizontal scale, but the first graph has a linear vertical scale,
while the second has a logarithmic vertical scale. The first scale is the one we are more
familiar with, and shows what appears to be a strong exponential trend, at least up until
the year 2000.
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Examplel . ____ |

There were stock market drops in 1929 and 2008. Which was larger?

In the first graph, the stock market drop around 2008 looks very large, and in terms of
dollar values, it was indeed a large drop. However the second graph shows relative
changes, and the drop in 2009 seems less major on this graph, and in fact the drop
starting in 1929 was, percentage-wise, much more significant.

Specifically, in 2008, the Dow value dropped from about 14,000 to 8,000, a drop of
6,000. This is obviously a large value drop, and amounts to about a 43% drop. In 1929,
the Dow value dropped from a high of around 380 to a low of 42 by July of 1932.
While value-wise this drop of 338 is much smaller than the 2008 drop, it corresponds to
a 89% drop, a much larger relative drop than in 2008. The logarithmic scale shows
these relative changes.

The second graph above, in which one axis uses a linear scale and the other axis uses a
logarithmic scale, is an example of a semi-loggraph.

Semi-log and Log-log Graphs

A semi-loggraph is a graph with one axis using a linear scale and one axis using a
logarithmic scale.
A log-log graph is a graph with both axes using logarithmic scales.

Example2 .

Plot 5 points on the graph of f (X) =3(2)* on a semi-log graph with a logarithmic scale
on the vertical axis.

To do this, we need to find 5 points on the graph, then calculate the logarithm of the
output value. Arbitrarily choosing 5 input values,

X f(x) log(f(x))
3 3
327 ==
@7 =3 | .0426
1 3
327 =2
@D7=3 10176
32" =3 {0477
2 32 =12 | 1.079
5 3(2)° =96 | 1.982
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Plotting these values on a semi-log graph,
log(f(x))
1 .
*
LI X
-4 T 2 - 2 3 4 > >

Notice that on this semi-log scale, values from the exponential function appear linear.
We can show this behavior is expected by utilizing logarithmic properties. For the
function f(X)=ab”, finding log(f(x)) gives

log(f(x))= log(abx) Utilizing the sum property of logs,

log(f (X)) = log( )+ log(bx) Now utilizing the exponent property,

log( (X)) =log(a)+ xlog(b)

This relationship is linear, with log(a) as the vertical intercept, and log(b) as the slope.
This relationship can also be utilized in reverse.

An exponential graph is plotted on a semi-log graph below. Find a formula for the
exponential function g(X) that generated this graph.

log(g(x))

n N W Bl

q
X

w N K

The graph is linear, with vertical intercept at (0, 1). Looking at the change between the

points (0, 1) and (4, 4), we can determine the slope of the line is % . Since the output is

log(g(x)), this leads to the equation log(g(x)) =1+ % X.
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We can solve this formula for g(X) by rewriting in exponential form and simplifying:
log(g( X)) =1+ % X Rewriting as an exponential,

g(x) = 101+ZX Breaking this apart using exponent rules,

g(x)=10' ~10%X Using exponent rules to group the second factor,
g(x)=10' -(IOzJ Evaluating the powers of 10,

g(x) =10(5.623)

1. An exponential graph is plotted on a semi-log graph below. Find a formula for the
exponential function g(X) that generated this graph.

log(g(x)

a
4

2
=

D

5

Fitting Exponential Functions to Data

Some technology options provide dedicated functions for finding exponential functions
that fit data, but many only provide functions for fitting linear functions to data. The
semi-log scale provides us with a method to fit an exponential function to data by
building upon the techniques we have for fitting linear functions to data.

To fit an exponential function to a set of data using linearization
1. Find the log of the data output values
2. Find the linear equation that fits the (input, log(output)) pairs. This equation will be
of the form log(f(x)) = b + mx
3. Solve this equation for the exponential function f(X)
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The table below shows the cost in dollars per megabyte of storage space on computer
hard drives from 1980 to 2004°, and the data is shown on a standard graph to the right,
with the input changed to years after 1980

This data appears to be decreasing exponentially. To find a function that models this
decay, we would start by finding the log of the costs.

Year Cost per MB 250
1980 192.31 2004
1984 87.86
1988 15.98 150
1992 4 100 1 .
1996 |0.173 50 -
2000 | 0.006849 o« .
2004 0.001149 0 ' N
0 4 8 12 16 20 24

Year Cost per MB | log(Cost) 3 l

1980 192.31 2.284002 27 ¢

1984 87.86 1.943791 11 ¢ .

1988 15.98 1.203577 0 - - - - -

1992 |4 0.60206 19 4 8 12 % 20 2
1996 0.173 -0.76195 2 1 .

2000 0.006849 -2.16437 3 23
2004 0.001149 -2.93952 4

As expected, the graph of the log of costs appears fairly linear, suggesting an
exponential function will fit the original data will fit reasonably well. Using
technology, we can find a linear equation to fit the log(Cost) values. Using t as years

after 1980, linear regression gives the equation:
log(C(t)) =2.794-0.231t

Solving for C(t),
C(t) — 102.794—0.231t

C(t) — 102.794 A 10—0.231t
C(t)=10™ .(10—0.231 )t
C(t) = 622-(0.5877)

This equation suggests that the cost per megabyte for storage on computer hard drives is
decreasing by about 41% each year.

6 Selected values from http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-
Space, retrieved Aug 26, 2010
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Using this function, we could predict the cost of storage in the future. Predicting the
cost in the year 2020 (t = 40):

C(40)=622- (0.5 877)40 ~ 0.000000364 dollars per megabyte, a really small number.
That is equivalent to $0.36 per terabyte of hard drive storage.

Comparing the values predicted by this model to the actual data, we see the model
matches the original data in order of magnitude, but the specific values appear quite
different. This is, unfortunately, the best exponential model that can fit the data. It is
possible that a non-exponential model would fit the data better, or there could just be
wide enough variability in the data that no relatively simple model would fit the data
any better.

Actual Cost | Cost predicted
Year per MB by model
1980 192.31 622.3
1984 87.86 74.3
1988 15.98 8.9
1992 4 1.1
1996 0.173 0.13
2000 0.006849 0.015
2004 0.001149 0.0018

2. The table below shows the value V, in billions of dollars, of US imports from China

t years after 2000.
year 2000 2001 2002 2003 2004 2005
t 0 1 2 3 4 5
V 100 102.3 125.2 152.4 196.7 243.5

This data appears to be growing exponentially. Linearize this data and build a model to
predict how many billions of dollars of imports were expected in 2011.

Important Topics of this Section
Semi-log graph
Log-log graph
Linearizing exponential functions
Fitting an exponential equation to data

Try it Now Answers

1. f(X)=100(0.3162)"
2. V(t) =90.545(1.2078)". Predicting in 2011, V(11) = 722.45billion dollars
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Section 7.7 Exercises

Graph each function on a semi-log scale, then find a formula for the linearized function in the
form log( f (X)) =nMX+Db.

1. f(x)=4(1.3)"
3. f(x)=10(0.2)"

The graph below is on a semi-log scale, as indicated. Find a formula for the exponential function

y(X¥).

o infy) 1 Infy
A1 A1
ERE i
27 N
54 52 d |42 54093 2543
24
-3
-1 ~
5 -5+ 6. 5
i log(v) 1 logiv)
d1— dr—F
it ERt
2+ 21
h X H X
i‘i--!.i-_!f-?%\}i’.!f-i_% CEEEPEEEREE
- 2
-3 e
4 4-\
7 3 8. T

Use regression to find an exponential function that best fits the data given.

9.

10.

11.

X |1 2 3 4 5 6

y | 1125 | 1495 | 2310 | 3294 | 4650 | 6361
X |1 2 3 4 5 6

y | 643 | 8291920 | 1073 | 1330 | 1631

X |1 2 3 4 5 6

y | 555|383 307|210 ] 158 | 122
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12.

13.

14

15.

16.

x

—_
[\
w
N
(9}
(@)

y 699701 | 695 | 668 | 683 | 712

Total expenditures (in billions of dollars) in the US for nursing home care are shown below.
Use regression to find an exponential function that models the data. What does the model
predict expenditures will be in 2015?

1990
53

1995
74

2000
95

2003
110

2005
121

2008
138

Year
Expenditure

. Light intensity as it passes through water decreases exponentially with depth. The data

below shows the light intensity (in lumens) at various depths. Use regression to find an
function that models the data. What does the model predict the intensity will be at 25 feet?

Depth (ft) 3 6 9
Lumen 11.5 8.6 6.7

12
52

15
3.8

18
2.9

The average price of electricity (in cents per kilowatt hour) from 1990 through 2008 is given
below. Determine if a linear or exponential model better fits the data, and use the better
model to predict the price of electricity in 2014.

1990
7.83

1992
8.21

1994
8.38

1996
8.36

1998
8.26

2000
8.24

2002
8.44

2004
8.95

2006
10.40

2008
11.26

Year
Cost

The average cost of a loaf of white bread from 1986 through 2008 is given below. Determine
if a linear or exponential model better fits the data, and use the better model to predict the
price of a loaf of bread in 2016.

Year

1986

1988

1990

1995

1997

2000

2002

2004

2006

2008

Cost

0.57

0.66

0.70

0.84

0.88

0.99

1.03

0.97

1.14

1.42




CHAPTER 8

SYSTEMS OF EQUATIONS

8.1 SYSTEMS OF LINEAR EQUATIONS: (GAUSSIAN ELIMINATION

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(z) = g(z), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The z-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(z) and y = g(z), where both the solution to z and y are of interest, we have
what is known as a system of equations, usually written as

{vz2 18

The ‘curly bracket’ notation means we are to find all pairs of points (z,y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a,x+a.y = ¢
where a,, a, and c are real numbers and at least one of a, and a, is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3z — 5 = 0.1 is a linear equation in two variables with a, = 3, a, = —%
and ¢ = 0.1. We can also consider z = 5 to be a linear equation in two variables! by identifying
a, =1, a, = 0, and ¢ = 5. If a; and a, are both 0, then depending on ¢, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If ¢ = 0, then we get 0 = 0, which is always true. If ¢ # 0, then we’d have
0 # 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that = = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.

This chapter is part of College Algebra (©)Stitz & Zeager 2013.
This material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are z?>+y = 1, zy = 5 and
e?® +In(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 7?7 and 77, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

_y = 49 _ 7 _
1 J2e-y =1 5 g = I 6xr+3y = 9
y = 3 ") 2yy 1 dr +2y = 12

9 T3 2
r—y = 0
9 3r+4y = -2 4 20 —4y = 6 6 r+y = 2
' —3r—y = 5 ) 3r—6y = 9 —2r+y = —2
Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2z — 3 =1, so that = 2. Our solution to the system is (2,3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) =3 =1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2z —y =1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3r+4y = -2
+ (-3z—y = 5
Jy = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say —3z—y = 5,
to get —3z — 1 =5 so that z = —2. Our solution is (—2,1). Substituting + = —2 and y = 1
into the first equation gives 3(—2) + 4(1) = —2, which is true, and, likewise, when we check
(—2,1) in the second equation, we get —3(—2) — 1 = 5, which is also true. Geometrically, the
lines 3x + 4y = —2 and —3x — y = 5 intersect at (—2,1).
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20 —y =1
y=

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system

5z — 12y 21
dr+6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by —5, we will be in a position to
eliminate the = term

20x — 48y = 84

+ (—20z—30y = —45)

—T8y = 39
From this we get y = —%. We can temporarily avoid too much unpleasantness by choosing to
substitute y = —% into one of the equivalent equations we found by clearing denominators,

say into 5z — 12y = 21. We get 5z + 6 = 21 which gives z = 3. Our answer is (3,—3).
At this point, we have no choice — in order to check an answer algebraically, we must see

if the answer satisfies both of the original equations, so we substitute x = 3 and y = —%
into both § — %y = % and %x + % = % We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of (3, —%)

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coeflicients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by —2, we are ready to
eliminate the x
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6r — 12y = 18
+ (—6x+12y = -18)
0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x,y) satisfies the equation 2x — 4y = 6, it automatically satisfies the equation
3z — 6y = 9. One way to describe the solution set to this system is to use the set notation
and write {(x,y) |2z — 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2z — 4y = 6
for one of the variables, say y = %ac — % For each value of z, the formula y = %x — %

determines the corresponding y-value of a solution. Since we have no restriction on z, it is

called a free variable. We let x = t, a so-called ‘parameter’, and get y = %t — % Our
set of solutions can then be described as {(t, %t - %) | —co<t< oo}.2 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution (0, —%); t =117
gives us (117,57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number ¢, the pair (t, %t — %) satisfies both equations.
Substituting x =t and y = %t — % into 2oz — 4y = 6 gives 2t — 4 (%t — %) = 6. Simplifying,
we get 2t — 2t + 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3z — 6y = 9, we get 3t — 6 (%t — %) = 9 which reduces to 3t —3t+9 =9, so it
checks out, too. Geometrically, 2z — 4y = 6 and 3x — 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

-5 % 2r —4y =6
2w+%=% 3z —6y =9
(Same line.)

2Note that we could have just as easily chosen to solve 2z — 4y = 6 for z to obtain = = 2y + 3. Letting y be the
parameter ¢, we have that for any value of ¢, z = 2t + 3, which gives {(2t + 3,t)| — oo < t < co}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by —3, we set the stage to eliminate z

122 + 6y = 18
+ (122 -6y = -36)
0 = -18

As in the previous example, both z and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = —18. This tells us that it is impossible to find a pair (z,y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6z + 3y = 9 and 4z + 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

z—y = 0
+ (r+y = 2)
20 = 2

which gives = 1. Substituting this into the first equation gives 1 —y = 0 so that y = 1.
We seem to have determined a solution to our system, (1,1). While this checks in the
first two equations, when we substitute * = 1 and y = 1 into the third equation, we get
—2(1)+(1) = —2 which simplifies to the contradiction —1 = —2. Graphing the lines z—y = 0,
x+y =2, and —2z +y = —2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

=N WA O

N A NG Al :
ERAN /

6z +3y =9
dx + 2y = 12 y—xz=0
y+xr=2
—2rx+y=-2

O

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among



486 SYSTEMS OF EQUATIONS

consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.? Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.* The system in 6 above is called overdetermined, since we have more
equations than variables.” Not surprisingly, a system with more variables than equations is called

underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,® but a consistent
underdetermined system of linear equations is necessarily dependent.”

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, z,, z,, ..., T, is an equation of the form
1T, + axxy + . .. + apT, = c where a,, a,, ...a, and c are real numbers and at least one of a,,
Ay, ..., Ay 1S NONZETO.

Instead of using more familiar variables like =, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3z, —x, = 4 represents the same relationship
between the variables x; and z, as the equation 3z — y = 4 does between the variables z and y.
In addition, just as we cannot combine the terms in the expression 3x — y, we cannot combine the
terms in the expression 3z, — x,. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.®

3In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

4The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems — they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

SIf we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

5We need more than two variables to give an example of the latter.

7 Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.

8That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

e Interchange the position of any two equations.
® Replace an equation with a nonzero multiple of itself.*

o Replace an equation with itself plus a nonzero multiple of another equation.

“That is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations

1 1, _
T—3Yy+gzz =

— %z = 4
z — —
Clearly z = —1, and we substitute this into the second equation y — %(—1) = 4 to obtain y = %
Finally, we substitute y = % and z = —1 into the first equation to get = — % (%) +1(-1) =1,

so that = = %. The reader can verify that these values of x, y and z satisfy all three original

equations. It is tempting for us to write the solution to this system by extending the usual (z,y)
notation to (z,y, z) and list our solution as (%, %, —1). The question quickly becomes what does
an ‘ordered triple’ like (%, %, —1) represent? Just as ordered pairs are used to locate points on
the two-dimensional plane, ordered triples can be used to locate points in space. Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,’
so our intersection point is where all three of these lines meet.

9In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these
equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x—%y%—%z =
—%z = 4
z = -1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x,, z,, ...x, is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.
2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variables® cannot be placed above an equation with variables.

“necessarily an identity or contradiction
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In our previous system, if we make the obvious choices z = x,, y = z,, and z = x5, we see that the
system is in triangular form.! An example of a more complicated system in triangular form is

r, —4drs+xs,—x = 6
To+2xs = 1
Ti+3xs—x5 = 8

s +9xs = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

3r—y+z = 3 20 +3y—2z = 1 3, +x,+2x, = 6
1. 20 —4dy+ 3z = 16 2. 10 —2 = 2 3. 20, + x5 — x5 = 4
r—y+z = D dr—9y+2z = 5 To—3x3—2x, = 0

Solution.

1. For definitiveness, we label the topmost equation in the system F1, the equation beneath that
E2; and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with z, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange F'1 and E3.

(E1) 3r—y+z = Switel B1 and £ (E1) r—y+z = 5
(F2) 2z —4y+3z = 16 b PlondPs (E2) 22—4y+3z = 16
(E3) r—y+z = b (E3) 3z—-y+z = 3

To satisfy Definition 8.3, we need to eliminate the z’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by —2 then add; to eliminate the = from E3, we need to
multiply £1 by —3 then add. Applying the third move listed in Theorem 8.1 twice, we get

(E1) Toytz = 5 Replace E2 with —2E1 + E2 (Bl) z-—y+z = b
E2) 2z —4y+3z = 16 R E2) -2 = 6
( ) . Yoz Replace E3 with —3FE1 + E3 ( ) ytz

(E3) 3x—y+z = 3 (E3) 2y—2z = —12

107f Jetters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem

8.1 and replace E2 with itself times —%.

Eg;; z _2y 1 z = 2 Replace E2 with —%E2 Eg;; r=Yy +1Z - g
— y ya = p— 52 — —
(E3) 2y—2z = —12 (E3) 2y—2z = —12
To eliminate the y in E3, we add —2FE2 to it.
(Fl) z—y+2z = 5 . (El) z—y+2z = 5
(EQ) - %Z _ _3 Replace E3 with —2FE2 + E3 (E2) - %Z _ _3
(E3) 2y—2z = —12 (E3) —z = —6

Finally, we apply the second move from Theorem 8.1 one last time and multiply £3 by —1
to satisfy the conditions of Definition 8.3 for the variable z.

(El) z—y+z = 5 Reolace B3 with — 153 (El) z—y+2z = 5
(E2) ~1y = 3 == (E2) -1z = -3
(E3) —z = —6 (E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y — 3 = —3 so that y = 0.
With y = 0 and z = 6, E1 becomes z — 0+ 6 = 5, or z = —1. Our solution is (—1,0,6).
We leave it to the reader to check that substituting the respective values for z, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

. Proceeding as we did in 1, our first step is to get an equation with = in the E1 position with

1 as its coefficient. Since there is no easy fix, we multiply E1 by %

_ 3, 1 — 1
Eg;; 2z +1§y —F = ) Replace E1 with 1 E1 Eg;; T+ 210 2% = %
T —z = T —z =
(E3) 4r—-9y+2z = 5 (E3) 4z —-9y+2z = 5
Now it’s time to take care of the z’s in £2 and E3.

(B1) z+3y—1: = } | (B1) a+dy—1s = 4
(E2) 0z —» — 9 Replace E2 w1.th —10E1 + E2 (E2) 15y 44 = -3
(E3) Ao — gy +92: = 5§ Replace E3 with —4FE1 + E3 (ES) _15y +4r = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have

3 1, _ 1 3 1, _ 1
(Bl) 2+3y-322 = > Replace E2 with —-= F2 (Bl) e+3y=32 = 3
(E2) —15y+4z = -3 19 (E2) y— ez L
(E3) —1lby+4z = 3 (E3) —1by+4z = 3

Finally, we rid E3 of y.
(E1) x+% - %z - % Replace E3 with 1552 + E3 (Bl) z-y+z = 5
(EQ) y — %z _ % eplace wit + (E2) _ 52 — _3
(E3) —1by+4z = 3 (E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by % to get a coefficient of 1 on x;.

(E1) 3z, 4+ +ay

1 1 _
Replace E1 with 3 E1 (E1) x + 32 + g2 = 2
(E2) 204+ x,—23 = 4 (E2) 224z, —23 = 4
(E?)) IL’2 - 3563 - 2.'];4 == 0 (EB) :1:2 - 3I3 —_ 2:1:4 == O

Next we eliminate x; from E?2

(E1) z,+ %xz + %a:4 = 2 (E1) o+ %332 + %au = 2
Replace E2
(E3) Ty — 3.%'3 - 2-:U4 == (E3) Ty — 3.1‘3 - 2164 = 0
We switch £2 and E3 to get a coefficient of 1 for x,.
(El) "Bl + %SL‘Q + %1’4 == 2 (El) ‘/Bl + %$2 + %"1:4 =
(EQ) %Jb — oz, — %$4 - 0 Switch E2 and E3 (EQ) Ty — 3$3 . 2$4 _
(E3) 2,—3x5—2x, = 0 (E3) fw,—my— 2z, =

Finally, we eliminate x, in E3.
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(E1) x4+ %ﬂsg + %:@ = 2 (E1) z,+ %SL‘Q + %m =
(B2) @ —3w,-20, = 0 — 2
(E3) %372—3:3— %x4 _ 0 with —1 B2 + E3
Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x;
or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting z; = s and z, = ¢t and obtain from E2
that @, = 3s 4 2. Substituting this and z, = ¢ into E1, we have z, + § (35 +2t) + 3t = 2
which gives #; = 2—s—t. Our solution is the set {(2—s—t,2s+3t,s,t)| —0c0 < s,t < oo}.!
We leave it to the reader to verify that the substitutions 1 =2 —s—1t, xo =35+ 2t, 13 = s
and x4 = t satisfy the equations in the original system. O

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(B1) z+3y—32 = &
(E2) —15y+4z = -3
(E3) —15y+4z = 3

that equations £2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.3. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we'll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

"Here, any choice of s and ¢ will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution 4+ amount of water = 500 mL

Using our defined variables, this reduces to x 4+ y + w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in  mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30z +0.90y = 200. Converting to fractions,'? our system of equations becomes

r+y+w = 500
Zr+ 5y = 200

We first eliminate the x from the second equation

(E1) z+y+w = 500  Replace E2 with —{5E1+ E2 (E1) :U—|—y+w = 500
(B2) $z+4 5y = 200 ' 50

—
&
[\

~—

o

Q@

,_.

O
S

I

Next, we get a coeflicient of 1 on the leading variable in E2

{(El) r+y+w = 500 Replace £2 with 3 F2 {(El) r+y+w = 500

(B2) 3y—3w = 50 (E2) —sw = 20

Notice that we have no equation to determine w, and as such, w is free. We set w = ¢ and from FE2
get y = 1t + 250 . Substituting into E'1 gives = + (%t + %) +t =500 so that x = —%t + @. This
system is cons&stent, dependent and its solution set is {(—%t + 12350, %t + 250 ) | — oo <t < oo}
While this answer checks algebraically, we have neglected to take into account that =, y and w,
being amounts of acid and water, need to be nonnegative. That is, z > 0 y > 0and w > 0. The
constraint x > 0 gives us —3 1250 >0,ort < 2500 . From y > 0, we get 5 1420 250 >0ort>— 500

The condition z > 0 yields t > O and we see that when we take the set theoretlc intersection of
these intervals, we get 0 <t < 259&. Our final answer is {( 3t + 12350, %t + 250 ) |0 <t< @}.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that %t + 250 — 100, and we get t = %. This means the amount of 30% solution required is
T = —%t—i— % = —% (lg—o) + 123& = % mL, and for the water, w =t = % mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required

40% acid mix. O

12%We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 EXERCISES

SYSTEMS OF EQUATIONS

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.{33+2y = 5

z = 6
2
% = _§
3. oy _ g
5 =
1 1
sr—3y = —1
5.4 2 °
2y —3z = 6

z {
: 1
=T _y

oles W5

20 -3 = 1
2.
{ y = 3

L sy =3
larrdy = 1

z+4y = 6
6. 1 1 _ 1
2T T3y = 3

5 5
2r+ 2y =
8.{ 6 3

|
w3

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

0. { —Sr+y = 17

r+y

dr—y+z =
2+ 62 =
r+z =

11.

rT+y+z =

13.
3 y—3z =

5

r+y+2z = 0

r—y+z
=3z + 2y + 4=z
T — 5y + 2z

20 —y+ 2
20+ 2y — 2
3z + 6y + 42

19.

3r —2y+2z = —5
15. r+3y—z = 12

z+y+z = 3
10. 22 —y+z = 0
—Br+dy+T7z = 7
dr—y+z = 5
12. 2y + 62z = 30
z+z = 6
r—2y+3z = 7
14. —3r+y+2z = =5
204+ 2y +2 = 3
2 —y+z = -1
16. dor +3y + 52z = 1
5y + 3z = 4
20 —4dy+2 = —7
18. r—2y+2z = =2
—r+4dy—2z = 3
r—3y—4z = 3
20. 3r+4y—2 = 13
2¢ — 19y — 192 = 2
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21.

23.

25.

27.

28.

29.

30.

31.

32.

33.

34.

r+y+z = 4 r—y+z = 8
2 —4dy — 2z = -1 22. 3r+3y—9z2 = —6
r—y = 2 Tx —2y+5z = 39
2¢0 —3y+2 = -1 20, + x5, — 1205, — 2, = 16
dr —4y+4z = —13 94 —x, + x5+ 12205 — 42, = -5
6r —b5y+72z = —-25 ) 3z, +2x, — 16253 — 32z, = 25
\ ﬂ?l+2$2—5334 — 11
Ty — Ty = —2 ( x,— 25— bz + 3z, = -1
20, —xy, = 0 9% Ty + Ty + 525 — 3, =
.'1:1 - 2'/1:2 + $3 = 0 ) .'Bg + 5$3 - 3.’1:4 == 1
_xg + Ty - 1 T, — 2.%'2 — 10%‘3 + 63’)4 == _1

Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 ANSWERS

1.

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

10.

11.

12.

13.

14.

Consistent independent
Solution (6, —%)

. Consistent independent

Solution (_ 16 _ %)

. Consistent dependent

Solution (t, %t + 3)
for all real numbers ¢

Inconsistent
No solution

rT+y = 5
y = 7
5 7, _ 7
T—3Yy—3% = 73
y—{—%z = 2
z = 0
At
y+3z = 15
0 = 0
s-tutde = 3
y+3z = 15
0 = 1
r+y+z = —-17
y—3z = 0
T—2y+3z = 7
_u, _ _16
5 5
z = 1

SYSTEMS OF EQUATIONS

2. Consistent independent
Solution (—%, —3)

. Consistent independent
. 49 25
Solution (ﬁ, _E)

6. Consistent dependent
Solution (6 — 4t,t)
for all real numbers ¢

8. Inconsistent
No solution

Consistent independent
Solution (—2,7)

Consistent independent
Solution (1,2,0)

Consistent dependent

Solution (—t + 5, —3t + 15,1)

for all real numbers ¢

Inconsistent
No solution

Consistent dependent
Solution (—4t — 17, 3t,t)
for all real numbers ¢

Consistent independent
Solution (2,—1,1)
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

—— —— —— —— —— —— —— ——

T+y+2z = 0
—%z = 6
z = =2
o-hyth =
ytsz = 3
0 = 1
r—y+z = —4
y—"7z = 17
z = —2
rT—2y+2z = -2
y = 3
z = 1
s-bytds =
—%z =0
z = 1
r—3y—4z = 3
y+1E = 13
0 = 0
r+y+z = 4
1, _ 3
y+§Z = 3
0 =1
r—y+z = 8
y—2z = =5
z = 1
At I
y+z = —%
0 = 0
x, + 2, — La, -z,
Ty + 4dxs — 32y
0
0
Ty — T3 — _2
T, %‘m = 0
1'3—%%1 —

o o o Y&

Consistent independent
Solution (1,3, —2)

Inconsistent
no solution

Consistent independent
Solution (1,3, —2)

Consistent independent

Solution (—3,3,1)

Consistent independent

Solution (%, %, 1)

Consistent dependent

Solution (%t + %, —%t + %,t)

for all real numbers ¢

Inconsistent
no solution

Consistent independent
Solution (4, —3,1)

Consistent dependent

Solution (—Qt 35 4 11

4 bl
for all real numbers ¢

Consistent dependent

Solution (8s —t+ 7, —4s + 3t + 2, s,1)
for all real numbers s and ¢

Consistent independent
Solution (1,2, 3,4)
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26.

27.

28.
29.
30.
31.

32.

SYSTEMS OF EQUATIONS

T, — Ty — DTy +3x, = -—1 Inconsistent
Ty +5rs —3x, = % No solution

0 = 1

0 = 0

If z is the free variable then the solution is (¢,3t, —t +5) and if y is the free variable then the
solution is (%t, t, —%t + 5).

13 chose the basic buffet and 14 chose the deluxe buffet.

Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.
Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

22.5 gallons of the 10% solution and 52.5 gallons of pure water.

% — %t pounds of Type I, % — %t pounds of Type II and ¢ pounds of Type III where 0 < t < %.
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8.2 PARTIAL FRACTION DECOMPOSITION

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

2
¥ —x—6
xTr = ——- 1
fa) = 1)
is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(z) as

fay=2FT 1O (2)

S22+l oz 22
If we are given the form of f(x) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(z) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

2 —x—6 2 —x—6

42?2 2?2 (22 +1)

We now think about which individual denominators could contribute to obtain z? (x2 + 1) as the
least common denominator. Certainly 22 and z? + 1, but are there any other factors? Since
22 + 1 is an irreducible quadratic! there are no factors of it that have real coefficients which can
contribute to the denominator. The factor 22, however, is not irreducible, since we can think of it as
2? = x2 = (v — 0)(x — 0), a so-called ‘repeated’ linear factor.? This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x (w2 + 1)? This, too, could contribute, but we would then wish to break down that denominator
into  and (m2 + 1), so we leave out a term of that form. At this stage, we have guessed

22 —x—6 2 —x—6 ? ? ?

v 22 22(224+1) P +;192+1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression ‘”;[ fxgﬁ is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators x? and 2 + 1 are at most

linear polynomials. That is, we guess that there are real numbers A, B, C, D and F so that

2 —x—6 xz—x—()’_é Bx+C Dx+FE

i 2?2 22(2241) =z x2 z?2+1

'Recall this means it has no real zeros.
2Recall this means = = 0 is a zero of multiplicity 2.
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However, if we look more closely at the term B’;*Q'C, we see that Bﬁ%c = % + m% = % + x% The
term % has the same form as the term % which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

a:2—a:—6_ 22 —x—6 _é+§+C$+D
ri+a?  22(2241) o 22 a2+1

Our next task is to determine the values of our unknowns. Clearing denominators gives
*—z—6=Ar (2 +1) + B (2* + 1) + (Cz + D)2?
Gathering the like powers of x we have
2 —2—-6=(A+C)2*+ (B+ D)2’ + Az + B

In order for this to hold for all values of x in the domain of f, we equate the coeflicients of
corresponding powers of = on each side of the equation® and obtain the system of linear equations

(F1) A+C = 0 From equating coefficients of 3
(F2) B+D = 1 From equating coefficients of x2
(E3) A = -1 From equating coefficients of =
(E4) B = —6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
7?7, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From E3, we have A = —1 and we substitute this into E1 to get C' = 1.
Similarly, since F4 gives us B = —6, we have from E2 that D = 7. We get

2 —x—6 22 —x—6 1 6 x+ 7

a2 22(22+1) oz 2?2 2241

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 77?7 guarantees that any polynomial with real coefficients can be factored over the
real numbers as a product of linear factors and irreducible quadratic factors. Once we have this
factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem ?7?) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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N(x)
D(z)
the degree of D(z) ® and N(x) and D(x) have no common factors.

Theorem 8.2. Suppose R(z) = is a rational function where the degree of N(x) less than

e If ¢ is a real zero of D of multiplicity m which corresponds to the linear factor ax + b, the
partial fraction decomposition includes

A, n A, o Am
ar+b (ax+0)?2 7 (ax+b)™

for real numbers A,, A,, ... A,,.

e If cis a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax?® + bz + ¢, the partial fraction decomposition includes

Bz + C; Bsx + C, Bz + C,,
ar? +br+c  (ax?+bz+c)>  (aa? +bzr+c)"

for real numbers B, B,, ...B,, and C,, C,, ...Cp,.

“In other words, R(z) is a proper rational function.

The proof of Theorem 8.2 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A;, A,, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3z —1
(22 —=1)(2— 2z —2?)
Factoring the denominator to find the zeros, we get (z +1)(z —1)(1 —2)(2 4+ z). We find x = —1

and x = —2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (z — 1) and (1 — ). One way to handle this is to note that (1 —z) = —(z — 1) so

3z —1 3r—1 1- 3z

(r+1)(z-1)1-2)2+2) —(r—1)2(z+1(x+2) (z-12(x+1)(z+2)

from which we proceed with the partial fraction decomposition

1—3x A B C D

G102t @12 -1 @—12 z+1 212
Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic az? + bx + c is the discriminant, b — 4ac. If b?> — 4ac < 0, the quadratic admits a
pair of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
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denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.2.
Next, we state a theorem that if two polynomials are equal, the corresponding coefficients of the like
powers of x are equal. This is the principal by which we shall determine the unknown coefficients
in our partial fraction decomposition.

Theorem 8.3. Suppose

an X" + ap_ 2+t axtag=bnz™ + Mg 2™ -+ by + b+ by

for all z in an open interval I. Then n =m and a; = b; for alli =1...n.

Believe it or not, the proof of Theorem 8.3 is a consequence of Theorem ??. Define p(x) to be
the difference of the left hand side of the equation in Theorem 8.3 and the right hand side. Then
p(z) = 0 for all z in the open interval I. If p(z) were a nonzero polynomial of degree k, then, by
Theorem 77, p could have at most k zeros in I, and k is a finite number. Since p(z) = 0 for all the
x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can be
no nonzero terms in p(z) and the theorem follows. Arguably, the best way to make sense of either
of the two preceding theorems is to work some examples.

Example 8.2.1. Resolve the following rational functions into partial fractions.

z+5 3 3
L R@)= 55— 2. R@)= 53— 5~ 3. R@)= 5 — 5~
423 3+ 5 —1 82
R(z) x2 -2 5. R(x) x4+ 62249 6. R(z) x4 4+ 16

Solution.

1. We begin by factoring the denominator to find 222 — 2 —1 = (2z+1)(z —1). We get z = —3
and x = 1 are both zeros of multiplicity one and thus we know

r+5 z+5 A N B
222 —x—1 (z+D(xz—-1) 2o+1 z-1

Clearing denominators, we get x+5 = A(z—1)+ B(2z+1) so that z+5 = (A+2B)x+ B — A.
Equating coefficients, we get the system

A+2B = 1
~A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = —3. Our
answer is easily checked by getting a common denominator and adding the fractions.

T+95 2 3

222 — 2 -1 -1 2241
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2. Factoring the denominator gives 3 — 222+ = 2 (:1:2 — 2 + 1) = z(z—1)? which gives z = 0
as a zero of multiplicity one and x = 1 as a zero of multiplicity two. We have

3 3 A, B C
T

:L‘3—2:L‘2+:U:a:(x—1)2_ +x—1+(x—1)2

Clearing denominators, we get 3 = A(z — 1)? + Bz(x — 1) + Cx, which, after gathering up
the like terms becomes 3 = (A + B)x? 4+ (—2A — B + O)x + A. Our system is

A+B = 0
—2A-B+C = 0
A =3

Substituting A = 3 into A + B = 0 gives B = —3, and substituting both for A and B in
—2A — B+ C =0 gives C = 3. Our final answer is

8 3 3
w3 —-222+r x -1 (v—1)2

3. The denominator factors as x (wQ —x+ 1). We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of 2 — x 4+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (—1)? — 4(1)(1) = —3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3 3 A Bx 4+ C

-2+ w@2-2+1) =z 22—-z+1

Proceeding as usual, we clear denominators and get 3 = A (z? —2 +1) + (Bz + C)z or
3=(A+B)2?+ (—A+C)x+ A. We get

A+B = 0
—-A+C =0
A =3

From A=3and A+ B=0, we get B=—-3. From —A+ C =0, we get C' = A = 3. We get

3 3 33z

ar3—a:2+:z:_x+ac2—x+1

4. Since x%ﬁ 5 isn’t proper, we use long division and we get a quotient of 4z with a remainder
. 3 . . . .
of 8. That is, m42’”_2 =4z + rzgf 5 SO we now work on resolving ng 5 into partial fractions.

The quadratic z? — 2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving
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2 — 2 = 0 gives us ¢ = +v/2, and each of these zeros must be of multiplicity one since
Theorem ?? enables us to now factor z2 — 2 = (a: — \/5) (x + \@) Hence,

8r 8x A . B
2 =2 (2—vV2)(z+v2) z-vV2 z+V2

Clearing fractions, we get 8z = A (z +v2) + B (z — v2) or 8z = (A+ B)z + (A — B)V2.
We get the system

A+B = 8
{aie =0

From (A — B)v/2 = 0, we get A = B, which, when substituted into A 4+ B = 8 gives B = 4.
Hence, A = B = 4 and we get

43 to 4 8z tx 4 4 N 4
x2 -2 x2—2 x+\/§ l‘—\/i

. At first glance, the denominator D(x) = z* 4 622 4+ 9 appears irreducible. However, D(x) has

three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(z) = (1‘2)2 + 627 + 9, we see it is a quadratic in disguise and factor D(z) = (z* + 3)2.
Since 22 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

3+ 5z —1 x3+5x—1_A:c+B Cx+ D

2t +622+9 (22432 22+3  (2243)°

When we clear denominators, we find 2® + 5z — 1 = (Az + B) (2% 4+ 3) + Cz + D which yields
23452 — 1 = Az + Ba? + (3A+ C)x + 3B + D. Our system is

A =

B =
3A+C =
3B+D = -

L i R

We have A =1 and B = 0 from which we get C' = 2 and D = —1. Our final answer is

:c3+5x—1_ T L 2x —1
at+622+9 2243 (22 +3)?

. Once again, the difficulty in our last example is factoring the denominator. In an attempt to

get a quadratic in disguise, we write

2416 = (22)° +42 = (22)° + 822 + 42 — 822 = (22 +4)° — 82
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and obtain a difference of two squares: (:U2 + 4)2 and 822 = (23:\/§)Q. Hence,

2t 16 = (x2+4—2:m/§) <x2+4+2x\/§) — ($2—2m\/§+4) (x2+2x\/§+4)

The discrimant of both of these quadratics works out to be —8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

82 82 Ax + B Cx+D

= +
4 4+ 16 (g;2—2x\/§+4)(x2+2m\/§+4) 22 —22V2+4 22+ 22V2+ 4

We get 822 = (Az + B) (4 22v2 +4) + (Cz + D) (2? — 2zv/2+4) or

822 = (A+ 0)az® + (2AV2 + B — 2CV2 4 D)a? + (4A+ 2BV2 + 4C — 2DV/?2)x + 4B + 4D

which gives the system

A+C =
24v/2+ B — 202+ D
4A + 2B\2 + 4C — 2DV2
AB+4D =

Il
oo wo

We choose substitution as the weapon of choice to solve this system. From A 4+ C = 0, we
get A= —C from 4B 4+ 4D = 0, we get B = —D. Substituting these into the remaining two
equations, we get

—20V2—-D—-20V2+D = 8
—4C —2D\2 +4C —2DV2 = 0

or

{—40\/5 = 8
—4DV2 = 0

We get C' = —v2 so that A = —C = /2 and D = 0 which means B = —D = 0. We get

82 - /2 V2
2 +16 22 22244 224+22V2+4
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EXERCISES

In Exercises 1 - 6, find only the form needed to begin the process of partial fraction decomposition.
Do not create the system of linear equations or attempt to find the actual decomposition.

1.

3.

D.

7 5 or +4
(z —3)(z +5) Cx(z—2)(2 - )
m . 4 ar? +br +c
(Tz = 6)(2*+9) C23(5r +9)(322 + Tx +9)
A polynomial of degree < 9 A polynomial of degree < 7
(x +4)5(x2 +1)2 " z(4x — 1)%(2? + 5)(922 + 16)

In Exercises 7 - 18, find the partial fraction decomposition of the following rational expressions.

7.

11.

13.

15.

17.

19.

2x 3 —Tx + 43
2 —1 T 3x24+19x — 14
1122 — 52 — 10 10 —222 + 20x — 68
53 — 52 "3 4+ 4x2 + 4x + 16
—22 4+ 15 1 2122+ 12— 16
4z + 40x2 + 36 " 3x3 4+ 422 -3z +2
5% — 3423 + 7022 — 33z — 19 ” 20 + 52° + 162* + 802% — 222 + 62 — 43
(x — 3)? ’ 23 + 522 4 16x + 80
—7x% — T6x — 208 16 —10z* + 2% — 1922 + 2 — 10
x3 4+ 1822 4+ 108z + 216 ) 2 4+ 213 + &
423 — 922 4+ 122 + 12 8 222 4 3z + 14
x* — 423 4 822 — 16z + 16 S (224224 9)(2+ 2 +5)

As we stated at the beginning of this section, the technique of resolving a rational function
into partial fractions is a skill needed for Calculus. However, we hope to have shown you that
it is worth doing if, for no other reason, it reinforces a hefty amount of algebra. One of the
common algebraic errors the authors find students make is something along the lines of

8 8 8
2072 9

Think about why if the above were true, this section would have no need to exist.
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8.2.2 ANSWERS

A N B 2 AJr B N C
r—3 x+5 Cx -2 (z—2)?

A Bx +C A B C D Ex+ F

4, — 4+ — + —

7:1:—6+x2+9 x+x2+x3+5x+9 3224+ 7x+9
A N B n C n D n E +F$+G+H$+I
z+4  (x+4)?2 (x+4)3 (z+4)* (44> 22+1  (22+41)?
é+ B N C +D1:+E+Fx+G
r 4dr—-1 (4z-1)2 2245  922+16

20 _ 1 1
2-1 z4+1 z-1

—Tr+43 5 4
302+ 192—14 3z—-2 xz+7
1122 =5z —10 3 2 4

5r3 —5x2 w22 5(x—1)

—20*+200-68 9 LTz -8
w3 4+4x2 +4x+16  z+4 2244

—22+15 1 3

11.

12.

13.

14.

15.

16.

17.

18.

Azt 14022+ 36 2(22+1) 4(z2+9)

—2la?4+2-16 6 3r+5
3x3 4422 —-3x+2  x+2 3x2—2x+1

5zt — 3423 + 7022 — 33z — 19 B

9 1
a2 —dx+ 1+ -
X

(x —3)2 -3 (z-23)?
2% + 525 + 162" + 8023 — 22 + 62 — 43 3 @+l 3
= —
a3 + 5x? + 162 + 80 x2+16 x+5
—T2? — 76z —208 7 L8 4
23+ 1822 + 108z +216  x+6 (z+6)2 (z+6)3
102" + 2® — 1922 + 2 — 10 o, t =
o+ 223+ oz 22+l (22+1)2
423 — 9z? + 122 + 12 1 4 3z +1

45182 160416 72 (222  2+4
222 + 32 + 14 1 1

(22422 +9)(22 + 2 +5) T 019 Zizis
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8.3 SYSTEMS OF NON-LINEAR EQUATIONS AND INEQUALITIES

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.3.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

422 + 9y = 36 ' y—2x = 0
2- 2 2 4- 2
4 — 9y = 36 y—z‘ = 0

SOLUTION:

1. Since both equations contain 22 and 32 only, we can eliminate one of the variables as we did
in Section 8.1.

(El) z? + y2 = 4 Replace E2 with (El) 72 + y2 — 4
—_—
(B2) 42°+9y° = 36 —4E1 + B2 (E2) 502 = 20

From 532 = 20, we get 4> = 4 or y = £2. To find the associated = values, we substitute each
value of y into one of the equations to find the resulting value of . Choosing 22 + 3% = 4,
we find that for both y = —2 and y = 2, we get x = 0. Our solution is thus {(0,2), (0,—2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of 22 + y? = 4 is a circle
centered at (0,0) with a radius of 2, whereas the graph of 422 +9y? = 36, when written in the
standard form %2 + Z—Q = 1 is easily recognized as an ellipse centered at (0,0) with a major
axis along the z-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,+2).

2. We proceed as before to eliminate one of the variables

Il
W

{ (E1) 22442

4 Replace E2 with (El) x? + y2
e e
(B2) 42%-9y*> = 36 —4AE1+ E2

(E2) —13y> = 20
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Since the equation —13y? = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that 2% + y? = 4 is the same circle as before, but when writing the
second equation in standard form, % — % = 1, we find a hyperbola centered at (0,0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We

see that the circle and the hyperbola have no points in common.

RN VAR
v N

?2+y? = 4
422 — 9> = 36

2 \3 ¢

?2+y? = 4

Graphs for {4$2+9y2 _ 36

Graphs for {

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y — 2x = 0, we get y = 2x. Substituting this
into 22 4+ y? = 4 gives 22 + (27)? = 4. Solving, we find 522 = 4 or = = :EQT‘/E. Returning

45 2v5

5

when z = =2, so

4
-2 4E). W

to the equation we used for the substitution, y = 2z, we find y =

one solution is (%ﬁ, 4T\/g . Similarly, we find the other solution to be (

leave it to the reader that both points satisfy both equations, so that our final answer is

{(%ﬁ, 4T\/5) , (_2?\/57 —%)}. The graph of 22 4+ y? = 4 is our circle from before and the

graph of y — 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y — 22 = 0 as y = x> and substitute, we note that this

system is set up for elimination.!

(E1) 2% + 3/2 = 4 Replace E2 with (E1) z2 4 y2 — 4
—
(B2) y—22 = 0 Fl+ E2 (B2) o4y = 4

From 4% 4+ y = 4 we get y?> +y — 4 = 0 which gives y = %ﬁ Due to the complicated
nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle 22 + y? = 4 intersects
the parabola y = 22 exactly twice, and both of these points have a positive y value. Of the
,1+2\/ﬁ

two solutions for y, only y = is positive, so to get our solution, we substitute this

1'We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y — 22 = 0 and solve for z. We get z = i\/ﬁ = i@
{(W —1+\/ﬁ) (_m _1+\/ﬁ>}
2 ) 2 ’ 2 ) 2

. Our solution is

, which we leave to the reader to verify.

, , , , , , ,
} } } } } } { }
-3 —2| -1 JQ 3 ' -3 _2&)2 3 g
1 -1l

y—2xz = 0

Graphs for { 9

Graphs for { y—a? — 36

O

A couple of remarks about Example 8.3.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,” we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.3.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1 2?42y —16 = 0 5 y+4e?r = 1 26—2) = =
>+ 20y —16 = 0 Tl 242t = 1 3. yz = y
(r—=20°+¢y* = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome zy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

(E1) 2?+22y—16 = 0  Replace B2 with (E1) 2242zy—16 = 0
Replace B2 with,
(EQ) y2 + 2a;y —16 = 0 _El1+E2 (EQ) y2 o 1‘2 - 0
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We get y?> — 22 = 0 or y = 4. Substituting y = z into E1 we get x? 4+ 222 — 16 = 0 so
that 22 = % or r = :l:%. On the other hand, when we substitute y = —x into E'1, we get

22 — 22?2 — 16 = 0 or 22 = —16 which gives no real solutions. Substituting each of z = i%ﬁ

into the substitution equation y = x yields the solution {(%ﬁ, %) , (—‘Lgﬁ, —%) } We
leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x?+2xy—16 = 0 for y to obtain y = 162_1 22 This
function is easily graphed. Solving the second equation, 4% + 2xy — 16 = 0, for y, however, is
more complicated. We use the quadratic formula to obtain y = —x 4 v/x2 + 16 which would
require the use of Calculus or a calculator to graph. Believe it or not, we don’t need either
because the equation y?42zy—16 = 0 can be obtained from the equation z?+2zy—16 = 0 by
interchanging y and x. Thinking back, this means we can obtain the graph of y?+2zy—16 = 0
by reflecting the graph of 22 + 22y — 16 = 0 across the line y = x. Doing so confirms that the
two graphs intersect twice: once in Quadrant I, and once in Quadrant III as required.

\41/

The graphs of 22 + 22y — 16 = 0 and y? 4+ 22y — 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y + 4e%* = 1 for Y we get y = 1 — 4e€?* which, when substituted
into the second equation, yields (1 — 462‘70) + 2e® = 1. After expanding and gathering like
terms, we get 16e?* — 8¢%* 4 2¢* = 0. Factoring gives us 2e” (863”” —4e* + 1) = 0, and since
2¢® # 0 for any real x, we are left with solving 8e3* — 4e” +1 = 0. We have three terms, and
even though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = e”.
The equation becomes 8u? — 4u + 1 = 0. Using zero-finding techniques, we find u = % is
a zero and use synthetic division to factor the left hand side as (u — %) (8u2 + 4u — 2). We

use the quadratic formula to solve 8u? 4+ 4u — 2 = 0 and find u = %\/5. Since u = €%, we
now must solve e = § and e® = %\/g. From e = 1, we get z = In () = —In(2). As
for e* = %\/g’ we first note that _1%‘/5 < 0,s0 e = _1%‘/5 has no real solutions. We are

left with e* = _1%‘/5, so that x = In (‘1%‘/5) We now return to y = 1 — 4e€?* to find the

accompanying y values for each of our solutions for z. For z = —In(2), we get
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B

For x =1In (‘11' ), we have

1 — 4e2®
1— 46721n(2)
1— 4¢m(7)
1
1-4(3)
0
1 — 4e?®

1— 462 ln(%ﬁ)

(3

1-4
1—4*ﬁﬁf
3-5
1-4(3
—1+V5
2
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We get two solutions, {(O7 —1n(2)), (ln (‘11'\/5) , _1“2"/5> } It is a good review of the prop-
erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 — 4€?* using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y? + 2¢* = 1, we need to graph both the
positive and negative roots, y = £1/1 — 2e%. After some careful zooming,? we get

ki
n=".B9Z147 V=0

IntgFseckion
n=-1.174358 =YY= g1@0==008 -

The graphs of y = 1 — 4e%* and y = £+/1 — 2€7.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

E1
E2

z(x —2) =
yz =

E3 (x—2)24+9¢% =

x
Y
1

2The calculator has trouble confirming the solution (—In(2),0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y # 0. Instead,
we take E2 and rewrite it as yz —y = 0 so y(z — 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

CASE 1: y =0. Substituting y = 0 into E1 and E3, we get
El z(z—-2) = z
E3 (x-2)?2 =1

Solving E3 for x gives x = 1 or z = 3. Substituting these values into E1 gives z = —1 when
x =1 and z = 3 when = = 3. We obtain two solutions, (1,0,—1) and (3,0, 3).

CASE 2: z=1. Substituting z =1 into F'1 and E3 gives us

El1  (1)(z-2) x
{E3(1—m2+f =1

Equation E1 gives us x — 2 = x or —2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1,0,—1),(3,0,3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1,0, —1).

O]

Example 8.3.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.

We close this section discussing how non-linear inequalities can be used to describe regions in the
plane. Before we embark on some examples, a little motivation is in order. Suppose we wish to
solve 22 < 4 — y%. If we mimic the algorithms for solving nonlinear inequalities in one variable, we
would gather all of the terms on one side and leave a 0 on the other to obtain z? + 4% — 4 < 0.
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Then we would find the zeros of the left hand side, that is, where is 22 +y? —4 = 0, or 22 +y* = 4.
Instead of obtaining a few numbers which divide the real number line into intervals, we get an
equation of a curve, in this case, a circle, which divides the plane into two regions - the ‘inside’
and ‘outside’ of the circle - with the circle itself as the boundary between the two. Just like we
used test values to determine whether or not an interval belongs to the solution of the inequality,
we use test points in the each of the regions to see which of these belong to our solution set.> We
choose (0,0) to represent the region inside the circle and (0, 3) to represent the points outside of
the circle. When we substitute (0, 0) into 22 +y% —4 < 0, we get —4 < 4 which is true. This means
(0,0) and all the other points inside the circle are part of the solution. On the other hand, when
we substitute (0,3) into the same inequality, we get 5 < 0 which is false. This means (0, 3) along
with all other points outside the circle are not part of the solution. What about points on the circle
itself? Choosing a point on the circle, say (0,2), we get 0 < 0, which means the circle itself does
not satisfy the inequality.? As a result, we leave the circle dashed in the final diagram.

Y
2
- T~
s ~
Ve N\
/ T \
/ \
1
U t t t
72\ /2 T
\ T /
N 7
~ -
~ 1 -
o

The solution to 22 < 4 — y2

We put this technique to good use in the following example.

Example 8.3.3. Sketch the solution to the following nonlinear inequalities in the plane.

Ly’ —4<a<y+?2 5 2 +y? > 4
Tl 2?20+ -2y < 0

Solution.

1. The inequality y?> — 4 < < y + 2 is a compound inequality. It translates as y?> — 4 < z
and x < y 4+ 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y?> — 4 < z, we write
y> —x —4 < 0. The curve y> — 2 — 4 = 0 describes a parabola since exactly one of the

variables is squared. Rewriting this in standard form, we get 4> = = + 4 and we see that the

vertex is (—4,0) and the parabola opens to the right. Using the test points (—5,0) and (0, 0),

we find that the solution to the inequality includes the region to the right of, or ‘inside’; the

parabola. The points on the parabola itself are also part of the solution, since the vertex

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4 Another way to see this is that points on the circle satisfy 22 +y? —4 = 0, so they do not satisfy 22 + 3% —4 < 0.
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(—4,0) satisfies the inequality. We now turn our attention to x < y+2. Proceeding as before,
we write x — y — 2 < 0 and focus our attention on x —y — 2 = 0, which is the line y = = — 2.
Using the test points (0,0) and (0, —4), we find points in the region above the line y = 2 — 2
satisfy the inequality. The points on the line y = x — 2 do not satisfy the inequality, since
the y-intercept (0, —2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

{(EH) y? = x+4
(E2) y = z-2

Solving E1 for z, we get x = y?> — 4. Substituting this into E2 gives y = y?> — 4 — 2, or
y> —y—6=0. We find y = —2 and y = 3 and since x = y? — 4, we get that the graphs
intersect at (0, —2) and (5,3). Putting all of this together, we get our final answer below.

y? —4 <z r<y+2 Y —4<z<y+2

2. To solve this system of inequalities, we need to find all of the points (x,y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality z? +y? > 4 which we rewrite as
22 + 9% —4 > 0. The points which satisfy 22+ y? — 4 = 0 form our friendly circle 22 +y? = 4.
Using test points (0,0) and (0,3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0,2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality z? — 2z + y?> — 2y < 0, we start with
22 — 2z + y? — 2y = 0. Completing the squares, we obtain (z — 1)? + (y — 1)2 = 2, which is
a circle centered at (1,1) with a radius of v/2. Choosing (1,1) to represent the inside of the
circle, (1,3) as a point outside of the circle and (0,0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle 2 4+ y?> = 4 which lie on or
inside the circle (x —1)2 4 (y — 1)? = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system

Il
S

(E1) 22 42
(B2) 2?2 -22+y*—2y = 0
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We can eliminate both the 2 and 32 by replacing F2 with —E1 + E2. Doing so produces
—2x — 2y = —4. Solving this for y, we get y = 2 — z. Substituting this into F1 gives
22 + (2 — 2)? = 4 which simplifies to 2% + 4 — 4z + 2% = 4 or 222 — 4 = 0. Factoring yields
2x(x — 2) which gives z = 0 or z = 2. Substituting these values into y = 2 — z gives the
points (0,2) and (2,0). The intermediate graphs and final solution are below.

y
34
2-\
—14
—21
—34
2?24y’ >4 2?2 =2 +1y> -2y <0 Solution to the system.
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8.3.1 EXERCISES

In Exercises 1 - 6, solve the given system of nonlinear equations. Sketch the graph of both equations
on the same set of axes to verify the solution set.

) -y = 4 5 ?2+y? = 4 3 2?2 +y? = 16
) 224y = 4 ' 22—y =5 1622 +4y> = 64
2?4y = 16 2?2 +y? = 16 2 +y? = 16
2 1@.2 5. 1.2 1.2 _ 6. o
9x 16y = 144 gy - = 1 r—y = 2

In Exercises 9 - 15, solve the given system of nonlinear equations. Use a graph to help you avoid
any potential extraneous solutions.

7{:52—3/2:1 S{W—yzo 9{x+292:2

>+ 4y = 4 2?44y = 4 2+ 4y = 4
(r—2)2+y%> = 1 2?2 +y? = 25 22 +y? = 25
10. )Ty = 11. vz 2.9 , 0T8T
r* + 4yt = 4 y—x = 1 4+ (y—3) = 10
2,2
13. { v 14. { LW 15.{ 42-9y = 0
vy = o= 32— 16z = 0

16. A certain bacteria culture follows the Law of Uninbited Growth, Equation ??. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?

Consider the system of nonlinear equations below

4 3
il — 1
T Yy
3 2
242 =
r y
If we let u = % and v = i then the system becomes
du+3v = 1
Ju+2v = -1
This associated system of linear equations can then be solved using any of the techniques presented
earlier in the chapter to find that u = —5 and v = 7. Thus z = % = —% and y = % = %

We say that the original system is linear in form because its equations are not linear but a few
substitutions reveal a structure that we can treat like a system of linear equations. Each system in
Exercises 17 - 19 is linear in form. Make the appropriate substitutions and solve for  and y.
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I
—_

3 — x -y — 2
17 4303 + 3y 1 18, 463; + 36_ 1 19, 41n(x) + 3y2
3r°+2/y = -1 3e” +2e7Y 3In(x) +2y° = -1

|
|
—_

20. Solve the following system

2?4 \/y + logy(2)
322 — 2/y + 2logy(2) =
—52% + 3,/y + 4logy(z) = 13

In Exercises 21 - 26, sketch the solution to each system of nonlinear inequalities in the plane.

91 22—y < 1 9 2?2+y? < 25
T 2244 > 4 2+ (y—3)?2 > 10
— 9)2 2 2
93, (x 22) +y2 < 1 oy LU > 10:63 x
¢ +4yr < 4 y < x° + 8
o z+2y2 > 2 0 2 +y? > 25
| 22 +4y? < 4 ' y—x < 1

27. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and A is called a Lagrange
multiplier. With the help of your classmates, solve the system.’

20+2z = Ayz
204+ 2z = Az
2y +2x = Axy

zyz = 1000

28. According to the Complex Factorization Theorem, the polynomial p(z) = z* + 4 can be
factored into the product linear and irreducible quadratic factors. In this exercise, we present
a method for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (224 az+b)(2?+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of 2* + 4. You should get four
equations in the four unknowns a, b, ¢ and d. Write p(z) in factored form.

29. Factor q(x) = 2% + 622 — 52 + 6.

SIf using X\ bothers you, change it to w when you solve the system.
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8.3.2 ANSWERS

1. (£2,0), (£v3,-1) 2. No solution
)

4. (£4,0)

7. (i@,i%) 8. (0,1) 9. (0,%1), (2,0)

10. (%,i% 11. (3,4), (—4,-3) 12. (£3,4)

13. (—4,-56), (1,9), (2,16) 14. (-2,2), (2,-2) 15. (3,4)

16. Initially, there are 252800 ~ 5102 bacteria. It will take 5112((?%)5 ) ~ 33.92 minutes for the colony

to grow to 50,000 bacteria.
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17. (—v/5,49) 18. No solution 19. (e7®,£V/7)

20. (1,4,8), (—1,4,8)

2 .2
-y <
21'{x2+4y2 > 4

—_

23‘{(30—2)2-|-y2 < 1 24‘{y > 10z — 22

1 2 T
—14
2% > 2 “ty? >
95, 12:—1— y2 > 9. 4 ¢ +yc > 25
¥ 4+4yt < 4 y—xz < 1

27. 2 =10, y =10, z=10,A = 2
28. (¢) a' +4= (2" -2z +2)(2* + 22+ 2)



CHAPTER 9

HoOOKED oN CONICS

9.1 INTRODUCTION TO CONICS

In this chapter, we study the Conic Sections - literally ‘sections of a cone’. Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.

This chapter is part of College Algebra (©)Stitz & Zeager 2013.
This material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.
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Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.


http://clem.mscd.edu/~talmanl/HTML/ConicSections.html
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If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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9.2 CIRCLES

Recall from Geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 9.1. A circle with center (h, k) and radius r > 0 is the set of all points (x,y) in the
plane whose distance to (h, k) is r.

From the picture, we see that a point (z,y) is on the circle if and only if its distance to (h, k) is 7.
We express this relationship algebraically using the Distance Formula, Equation 77, as

r=1/(z—h)?+(y—k)?

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 9.1. The Standard Equation of a Circle: The equation of a circle with center
(h,k) and radius r > 0 is (z — h)? + (y — k)% = r2.

Example 9.2.1. Write the standard equation of the circle with center (—2,3) and radius 5.
Solution. Here, (h,k) = (—2,3) and r = 5, so we get

(= (=2)°+(y—3)° = (57
(z+2)%+(y—3)? = 25

Example 9.2.2. Graph (x +2)% + (y — 1)? = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 9.1, we have that x+2 is x — h, so h = —2
and y — 1 is y — k so k = 1. This tells us that our center is (—2,1). Furthermore, 7? = 4, so r = 2.
Thus we have a circle centered at (—2,1) with a radius of 2. Graphing gives us
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O

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x + 2)? + (y — 1)? = 4, we’d be contending with 2% + 42 + y?> — 2y +1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 9.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 9.2.3. Complete the square to find the center and radius of 322 — 6z + 3y% + 4y — 4 = 0.

Solution.
322 -6z + 3y’ +4y—4 = 0
322 — 62 +3y> +4y = 4 add 4 to both sides
4
3 (a:2 - 23;) +3 <y2 + 3y> = 4 factor out leading coefficients
9 5 4 4 4 )
3(m —2m+l)+3 Y +§y+§ = 4+3(1)+3 9 complete the square in x, y
2\° 25
3(x—1)2+3 <y + > = — factor
3 3
2 2\* _ 25 iy .
(x—=1)"+(y+ 3 = 3 divide both sides by 3

From Equation 9.1, we identify xt — 1 as x — h, so h = 1, and y+% asy—k,so k= —%. Hence, the

center is (h, k) = (1, —%) Furthermore, we see that 2 = 23 so the radius is r = 2. O

9

wlot
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It is possible to obtain equations like (z — 3)%2 + (y+1)? = 0 or (x — 3)? + (y + 1)? = —1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 77, in conjunction with the ideas presented so far in this section.

Example 9.2.4. Write the standard equation of the circle which has (—1,3) and (2,4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

Yy
/’——_\\
, N
4t T
T
« 31+ (bR )
N /
N /
~ 7/
2\_\—//
11
-2 -1 1 2 3 €T

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 77 gives us

)
_[(—1+2 344
- 2 72

B 17

- (33)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

(h.k) = (leQ ylﬂh)

ro= % (7, $1)2+(y2*?/1)2
= VO D+ E-3p
1

2 2 2
V10 10 1 7 10
Finally, since <2> = our answer becomes (m — ) + <y — > = — O
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We close this section with the most important® circle in all of mathematics: the Unit Circle.

Definition 9.2. The Unit Circle is the circle centered at (0,0) with a radius of 1. The
standard equation of the Unit Circle is z? + y% = 1.

3
Example 9.2.5. Find the points on the unit circle with y-coordinate —.

3
Solution. We replace y with \Qf in the equation 22 + 4% = 1 to get

2
3
mz—i—(f) =1
2
3
—+z2 =1
4
PR
4
T 1
r = +-
1 V3 1 v3
Our final answers are <2,\2[) and (—2,\2[>. O

While this may seem like an opinion, it is indeed a fact. See Chapters ?? and ?? for details.
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9.2.1 EXERCISES

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center (—1,—5), radius 10 2. Center (4, —2), radius 3
3. Center (-3, 1—73), radius 3 4. Center (5,—9), radius In(8)
5. Center (—e, ﬁ), radius 7 6. Center (m,e?), radius /91

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify
the center and the radius or explain why the equation does not represent a circle.

7. 22 —4x +y? + 10y = —25 8. —22% —36x — 2y — 112 =0
9. 22 +9y°+8x—10y—1=0 10. 22+ 9> +52—y—1=0
11. 422 +4y> =24y +36 =0 12. 22 +z+y? - Sy =1

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.
13. center (3,5), passes through (-1, —2) 14. center (3,6), passes through (—1,4)

15. endpoints of a diameter: (3,6) and (—1,4)  16. endpoints of a diameter: (%,4), (%, —1)

17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot
tall platform making its overall height is 136 feet.? Find an equation for the wheel assuming
that its center lies on the y-axis.

18. Verify that the following points lie on the Unit Circle: (£1,0), (0, £1), <:|:§, j:g), <:|:%, L3
V3 41
and <Zl:7, Zl:§>
19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 9.1,

from the equation of the Unit Circle, 2 4+ y? = 1 using transformations. (Thus every circle
is just a few transformations away from the Unit Circle.)

20. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how transformations can be used to produce a function whose graph is either the top
or bottom of an arbitrary circle.

21. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.



http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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9.2.2 ANSWERS

1. (z+1)2+ (y+5)? =100 2. (=42 +(y+2?2=9
Y

54

4. (z =52+ (y +9)? = (In(8))?
Yy

x

5— :ln(8) :5 5+ :ln(8)

I\J‘l\)
alN
'

t

g~ G~

-3 x —9 4+ In(8)+

—-94

—9 — In(8)+

6. (z—7)°+ (y— 62)2 =913

e 4 Yot

V2 -7 e24
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7. (-2 +(y+5?2=4 8. (z+9)7%+y*=25
Center (2,—5), radius r = 2 Center (—9,0), radius r =5
9. (x4+4)2+ (y—5)2 =42 10. (z43)°+ (y—1)? =2
Center (—4,5), radius r = V42 Center (-3, 1), radius r = @
11. 224+ (y—3)2=0 12. (x+%)2+(y—§)2=%
This is not a circle. Center (_%7 %)’ radius r = 11(()31
13. (x—3)2+ (y—5)2=65 14. (x—3)2+(y—6)2=20
15. (z=1)*+(y—5)*=5 16. (z—1)2+(y—3)*=1

17. 22 + (y — 72)% = 4096
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9.3 PARABOLAS

We have already learned that the graph of a quadratic function f(x) = ax? + bz + ¢ (a # 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 9.3. Let F' be a point in the plane and D be a line not containing F'. A parabola is
the set of all points equidistant from F' and D. The point F' is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

D

Each dashed line from the point F' to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied earlier. Let p
denote the directed! distance from the vertex to the focus, which by definition is the same as the
distance from the vertex to the directrix. For simplicity, assume that the vertex is (0,0) and that
the parabola opens upwards. Hence, the focus is (0,p) and the directrix is the line y = —p. Our
picture becomes

From the definition of parabola, we know the distance from (0,p) to (z,y) is the same as the
distance from (z, —p) to (x,y). Using the Distance Formula, Equation ??, we get

'We’ll talk more about what ‘directed’ means later.
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VE—02+y—p? = (@—2)?+@y—(—p)?

2+ (y-p? = Vy+p)?
2+ (y—-p? = (y+p)? square both sides
2 +y?* —2py+p? = y 4 2py+p? expand quantities
22 = dpy gather like terms
Solving for y yields y = %, which is a quadratic function of the form found in Equation ?? with
a= ﬁ and vertex (0,0).

We know from previous experience that if the coefficient of x? is negative, the parabola opens
2

downwards. In the equation y = XT; this happens when p < 0. In our formulation, we say that p is

a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,

the focus is below the vertex. The focal length of a parabola is |p|.

If we choose to place the vertex at an arbitrary point (h, k), we arrive at the following formula
using either transformations or re-deriving the formula from Definition 9.3.

Equation 9.2. The Standard Equation of a Vertical® Parabola: The equation of a
(vertical) parabola with vertex (h, k) and focal length |p| is

( —h)* = 4p(y — k)
If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

“That is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 9.3.1. Graph (x + 1)? = —8(y — 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 9.2. Here, x —hisxz +1so h = —1,
and y — k is y — 3 so k = 3. Hence, the vertex is (—1,3). We also see that 4p = —8 so p = —2.
Since p < 0, the focus will be below the vertex and the parabola will open downwards.

Y

A5 | 12 5 8¢
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The distance from the vertex to the focus is |p| = 2, which means the focus is 2 units below the
vertex. From (—1,3), we move down 2 units and find the focus at (—1,1). The directrix, then, is
2 units above the vertex, so it is the line y = 5. O

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.? The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

the latus rectum
______ _*_ —_— — — — — —

F

D

It turns out® that the length of the latus rectum, called the focal diameter of the parabola is |4p],
which, in light of Equation 9.2, is easy to find. In our last example, for instance, when graphing
(r+1)?2 = —8(y — 3), we can use the fact that the focal diameter is | — 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 9.3.2. Find the standard form of the parabola with focus (2,1) and directrix y = —4.
Solution. Sketching the data yields,
y

%
|
. ]
—1 1 2 3
|
|
[
|
|
|
|
|

The vertex lies on this vertical line

midway between the focus and the directrix

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an z-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1 — (—4) = 5,
which means the vertex lies 5 units (halfway) below the focus. Starting at (2,1) and moving down
5/2 units leaves us at (2, —3/2), which is our vertex. Since the parabola opens upwards, we know
p is positive. Thus p = 5/2. Plugging all of this data into Equation 9.2 give us

e = () (D)
ot oo

If we interchange the roles of z and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices® of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex, as seen below.

D

Equation 9.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y —k)* = 4p(z — h)
If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

4plural of ‘directrix’
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Example 9.3.3. Graph (y — 2)2 = 12(z + 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 9.3. Here, x — hisx+ 1 so h = —1,
and y — k is y — 2 so k = 2. Hence, the vertex is (—1,2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (—1,2) and move right 3 units, we arrive at the focus (2,2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (—1,2), we’d be on the vertical line
x = —4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

Y

O

As with circles, not all parabolas will come to us in the forms in Equations 9.2 or 9.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-
squared variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.

Example 9.3.4. Consider the equation 32 + 4y + 8z = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need a perfect square (in this case, using y) on the left-hand side of the equation
and factor out the coefficient of the non-squared variable (in this case, the x) on the other.
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vP+4y+8r = 4
44y = —8r+4
y?+4y+4 = —8xr+4+4 complete the square in y only
(y+2)? = —8r+8 factor
(y+2? = —8@z—1)

Now that the equation is in the form given in Equation 9.3, we see that z —hisz—1so h =1, and
y—kisy+2so k= —2. Hence, the vertex is (1,—2). We also see that 4p = —8 so that p = —2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1, —2) and move left 2 units, we arrive at the focus (—1, —2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1, —2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

Y

O

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.
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Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

Example 9.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution.
If the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola suggested
to us by this data. For simplicity, we’ll assume the vertex is (0,0) and the parabola opens upwards.
Our standard form for such a parabola is 22 = 4py. Since the focus is 2 units above the vertex, we
know p = 2, so we have z? = 8y. Visually,

L (6,y)
12 units wide

|
o
ot
8

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = % = % = 4.5. Hence, the dish will be 4.5 feet deep. O
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EXERCISES

In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix.
Include the endpoints of the latus rectum in your sketch.

1.

3.

D.

7.

(z —3)* = —16y 2. (z+ 1) =2(y+3)
(y—2)% = —12(z +3) 4. (y+4)? = 4z
(z—1)* =4(y +3) 6. (z+2)2=—-20(y — 5)
(y—4)° =18(x - 2) 8 (y+3)°=-7(x+2)

In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

9.

11.

13.

y? — 10y — 272 + 133 =0 10. 2522 + 20z + 5y —1=0
22+ 22 — 8y +49 =0 12. 202 +4y+2—-8=0
22 —10z+12y+1=0 14. 3y? =27y + 4z + HL =0

In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

15.

17.

19.

20.

21.

22.

23.

Vertex (7,0), focus (0,0) 16. Focus (10,1), directrix x =5

Vertex (—8,—9); (0,0) and (—16,0) are  18. The endpoints of latus rectum are (-2, —7)
points on the curve and (4, —7)

The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.® If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where should the receiver be placed to maximize reception?

A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch.

A popular novelty item is the ‘mirage bowl.” Follow this link to see another startling appli-
cation of the reflective property of the parabola.

With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’


http://spie.org/etop/2007/etop07methodsV.pdf
http://www.astro.ubc.ca/LMT/lzt/

9.3 PARABOLAS

9.3.2 ANSWERS

1. (z—-3)%=-16y
Vertex (3,0)
Focus (3, —4)
Directrix y = 4
Endpoints of latus rectum (=5, —4), (11, —4)

2. (x—l—%)? =2(y+3)
Vertex (fg,f%)
Focus (—%, —2)

Directrix y = —3

Endpoints of latus rectum (—m —2), (—é —2)

3. (y—2)2%=—-12(z +3)
Vertex (—3,2)
Focus (—6,2)
Directrix x =0
Endpoints of latus rectum (—6,8), (—6, —4)
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(y+4)* =4z

Vertex (0, —4)

Focus (1,—4)

Directrix x = —1

Endpoints of latus rectum (1, —2), (1, —6)

(2= 1)? = 4(y +3)

Vertex (1, —3)

Focus (1, -2)

Directrix y = —4

Endpoints of latus rectum (3, —2), (-1, —2)

(z +2)% = —20(y — 5)

Vertex (—2,5)

Focus (—2,0)

Directrix y = 10

Endpoints of latus rectum (—12,0), (8,0)

(y—4)? = 18( — 2)
Vertex (2,4)
Focus (%,4)
Directrix z = —2

2
Endpoints of latus rectum (1—23, —5), (1—23, 13)

HoOOKED OoN CONICS
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9. (y—5)2=27(x —4)
Vertex (4, 5)
4
Focus (13,5)
Directrix z = —%

11. (z+1)2=8(y —6)
Vertex (—1,6)
Focus (—1,8)
Directrix y =4

13. (z—5)2=—-12(y — 2)
Vertex (5,2)

Focus (5,—1)
Directrix y = 5

15. y? = —28(x — 7)

17. (z+8) =% (y+9)

541

10.

12.

14.

16.

18.

(y+1)?=—1(z—10)

Vertex (10, —1)
79

Focus (g,— )

Directrix = = %

(v-3)° = -2
Vertex (2, %)
Focus (%, %)

Directrix z =

W~

19. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by

Carl himself!)

20. The receiver should be placed 5.0625 centimeters from the vertex of the cross section of the

antenna.

21. The arch can be modeled by 22 = —(y — 9) or y = 9 — 22. One foot in from the base of the
arch corresponds to either x = +2, so the height is y = 9 — (+:2)% = 5 feet.
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9.4 ELLIPSES

In the definition of a circle, Definition 9.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 9.4. Given two distinct points F; and F, in the plane and a fixed distance d, an
ellipse is the set of all points (z,y) in the plane such that the sum of each of the distances from
F, and F, to (z,y) is d. The points F; and F, are called the foci” of the ellipse.

“the plural of ‘focus’

dy + d, = d for all (z,y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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Minor Axis

Major Axis

An ellipse with center C; foci F}, F,; and vertices Vi, V,

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0,0), its major axis along the z-axis, and has foci (¢,0) and (—c,0)
and vertices (—a,0) and (a,0). We will label the y-intercepts of the ellipse as (0,b) and (0, —b) (We
assume a, b, and ¢ are all positive numbers.) Schematically,

Yy

(0,0)

(07 _b)

Note that since (a,0) is on the ellipse, it must satisfy the conditions of Definition 9.4. That is, the
distance from (—¢,0) to (a,0) plus the distance from (¢, 0) to (a,0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (—c,0) to (a,0) + distance from (¢, 0) to (a,0) = d
(a+c)+(a—c) =
2 = d

=9
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